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1. Introduction. In this paper we prove existence and comparison results for the
functional Volterra integral equation

u(t) = h(t, u) +
∫ t

t0

f (t, s, u(s), u) ds, t ∈ J,

where J is a real interval with t0 as its left endpoint, f : � × E × Lp(J, E) → E, � =
{(t, s) ∈ J × J | a ≤ s ≤ t} and h : J × Lp(J, E) → E, 1 ≤ p ≤ ∞. We assume that E is
a lattice-ordered Banach space which has the following properties.

(E0) Bounded and monotone sequences of E have weak limits.
(E1) The mapping E � x �→ x+ := sup{0, x} is demicontinuous, and ‖x+‖ ≤ ‖x‖

for all x ∈ E.
We shall also study cases where ordinary iterative methods are applicable. As an
application we prove an existence and comparison result for a first order impulsive
initial value problem involving discontinuities and functional dependencies.

The main features of this paper are:
– The functions h and f may be discontinuous in all their arguments.
– Many hypotheses common in papers dealing with equations in ordered Banach
spaces, such as normality, (full) regularity and/or solidity of their order cones, or the
existence of upper and lower solutions, are not assumed.

2. Preliminaries. Let J be a real interval and E = (E,≤, ‖·‖) a lattice-ordered
Banach space having properties (E0) and (E1). Denote by Lp(J, E), 1 ≤ p ≤ ∞, the
space of all strongly measurable functions u : J → E for which t �→ ‖u(t)‖ belongs to

https://doi.org/10.1017/S0017089504001971 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089504001971


530 S. HEIKKILÄ AND D. O’REGAN

Lp(J, �). Identifying a.e. equal functions, then Lp(J, E) is an ordered Banach space
with respect to the p-norm and the partial ordering

u ≤ v if and only if u(t) ≤ v(t) for a.e. t ∈ J. (2.1)

Given p ∈ [1,∞], w ∈ Lp(J, �+) and a, b ∈ Lp(J, E), denote{
P = {u ∈ Lp(J, E) | ‖u(t)‖ ≤ w(t) for a.e. t ∈ J},
[a, b] = {u ∈ Lp(J, E) | a ≤ u ≤ b].

(2.2)

The hypothesis (E1) implies that the mapping v+ = sup{0, v} = t �→ sup{0, v(t)}
belongs to Lp(J, E) for each v ∈ Lp(J, E) by [7, Corollary 3.1], and ‖v+(t)‖ ≤ ‖v(t)‖ for
all t ∈ J. These properties ensure that v+ = sup{0, v}, and hence also v− = sup{0,−v}
and inf{0, v} = −v− belong to P for each v ∈ P.

We say that a mapping G : P → P is increasing if Gu ≤ Gv whenever u, v ∈ P and
u ≤ v. Given a subset W of P, we say that u ∈ W is the least fixed point of G in W if
u = Gu, and if u ≤ v whenever v ∈ W and v = Gv. The greatest fixed point of G in W
is defined similarly, by reversing the inequality. A fixed point u of P is called minimal if
v ∈ P, v = Gv and v ≤ u imply v = u, and maximal if v ∈ P, v = Gv and u ≤ v imply
v = u.

Notice that if G : P → P is increasing, then the relations

G−u = inf{0, Gu}, G+u = sup{0, Gu}, u ∈ P (2.3)

define increasing mappings G± : P → P.
Our main result is based on the following fixed point theorem.

THEOREM 2.1. Let E be a lattice-ordered Banach space with properties (E0) and (E1),
let P be given by (2.2) with w ∈ Lp(J, �+) and p ∈ [1,∞], and assume that G : P → P is
an increasing mapping.

(a) G has minimal and maximal fixed points.
(b) G has least and greatest fixed points in [a−, b+] ∩ P, where a− is any minimal

fixed point of G− and b+ is any maximal fixed point of G+.
(c) G has least and greatest fixed points u∗ and u∗ in [a, b] ∩ P, where a is the

greatest fixed point of G− and b is the least fixed point of G+.
Moreover, u∗ and u∗ are increasing with respect to G.

Proof. The results follow from [7], Theorems 5.1, 5.3 and 5.4 when L is the identity
mapping and N is chosen to be G, G− and G+, respectively.

3. Existence and comparison results for discontinuous functional integral equations.
Let E be an ordered Banach space and J a real interval with t0 its left endpoint. In this
section we study the functional Volterra integral equation

u(t) = h(t, u) +
∫ t

t0

f (t, s, u(s), u) ds, t ∈ J, (3.1)

where h : J × Lp(J, E) → E, f : � × E × Lp(J, E) → E, 1 ≤ p ≤ ∞ and
� = {(t, s) ∈ J × J | a ≤ s ≤ t}.

Assuming that Lp(J, E) is equipped with a.e. pointwise ordering (2.1), we impose
the following hypotheses on the functions h and f .
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(h0) h(t, ·) is increasing for a.e. t ∈ J, h(·, u) is Bochner integrable for all u ∈
Lp(J, E), and there exists an α ∈ Lp(J, �) such that ‖h(t, u)‖ ≤ α(t) for a.e.
t ∈ J and all u ∈ Lp(J, E).

(f0) The mappings f (t, ·, u(·), u), t ∈ J, and t �→ ∫ t
t0

f (t, s, u(s), u) ds are strongly
measurable for each u ∈ Lp(J, E).

(f1) f (t, s, z, u) is increasing with respect to z and u for a.e. (t, s) ∈ �.
(f2) ‖f (t, s, x, u)‖ ≤ g(t, s, ‖x‖) for a.e. (t, s) ∈ � and all x ∈ E, u ∈ Lp(J, E), where

g : � × �+ → �+, g(t, s, r) is increasing in r for a.e. (t, s) ∈ �, the functions
g(t, ·, w(·)) and t �→ ∫ t

t0
g(t, s, w(s)) ds are Lebesgue integrable for each w ∈

Lp(J, �) and the integral equation

w(t) = β(t) +
∫ t

t0

g(t, s, w(s)) ds, t ∈ J (3.2)

has for each β ∈ Lp(J, �+) the greatest solution in Lp(J, �+).
Assuming also that E is lattice ordered and has properties (E0) and (E1) we prove in
subsection 3.1 existence and comparison results for (3.1). In subsection 3.2 we study
the cases where solutions of (3.1) can be obtained by iterative methods.

3.1. Existence and comparison results for (3.1). In this subsection we derive
existence and comparison results for the integral equation (3.1) under the hypotheses
given above.

THEOREM 3.1. Let E be a lattice-ordered Banach space with properties (E0) and (E1),
and assume that the hypotheses (f0), (f1), (f2) and (h0) are satisfied. Then the equation
(3.1) has

(a) minimal and maximal solutions in Lp(J, E);
(b) least and greatest solutions in [a−, b+], where a− is any minimal solution of the

integral equation

u(t) = −
(

h(t, u) +
∫ t

t0

f (t, s, u(s), u) ds
)−

, t ∈ J, (3.3)

and b+ is any maximal solution of the integral equation

u(t) =
(

h(t, u) +
∫ t

t0

f (t, s, u(s), u) ds
)+

, t ∈ J (3.4)

in Lp(J, E);
(c) least and greatest solutions u∗ and u∗ in [a, b], where a is the greatest solution

of (3.3) and b is the least solution of (3.4) in Lp(J, E).
Moreover, the solutions u∗ and u∗ are increasing with respect to h and f .

Proof. Let P be given by (2.2), where w ∈ Lp(J, �+) is the greatest solution of
(3.2) with β = α. We shall first show that the relation

Gu(t) = h(t, u) +
∫ t

t0

f (t, s, u(s), u) ds, t ∈ J, (3.5)
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532 S. HEIKKILÄ AND D. O’REGAN

defines a mapping G : P → P. If u ∈ P, then ‖u(t)‖ ≤ w(t) for a.e. t ∈ J. Applying the
hypotheses (h0) and (f2) we obtain

‖Gu(t)‖ ≤ ‖h(t, u)‖ +
∫ t

t0

‖f (t, s, u(s), u)‖ ds ≤ α(t) +
∫ t

t0

g(t, s, w(s)) ds = w(t)

for a.e. t ∈ J. This result implies that G maps P into P. The hypotheses (f1) and (h0)
imply that if u, v ∈ Lp(J, E) and u ≤ v, then

Gu(t) = h(t, u) +
∫ t

t0

f (t, s, u(s), u) ds ≤ h(t, v) +
∫ t

t0

f (t, s, v(s), v) ds = Gv(t)

for a.e. t ∈ J. This proves that G is increasing.
Thus the hypotheses of Theorem 2.1 hold for G : P → P, defined by (3.5). Assume

now that u is a fixed point of G in Lp(J, E), and let w denote the greatest solution of
(3.2) with β(t) = max{‖u(t)‖, α(t)}. Then

‖u(t)‖ ≤ ‖h(t, u)‖ +
∫ t

t0

‖f (t, s, u(s), u)‖ ds ≤ α(t) +
∫ t

t0

g(t, s, ‖u(s)‖) ds

≤α(t) +
∫ t

t0

g(t, s, w(s)) ds ≤ β(t) +
∫ t

t0

g(t, s, w(s)) ds = w(t), t ∈ J.

Thus, denoting w = t �→ ‖u(t)‖, the relation

Qv(t) = α(t) +
∫ t

t0

g(t, s, v(s)) ds, t ∈ J (3.6)

defines an increasing mapping Q from the order interval [w,w] of Lp(J, �) into itself.
It follows from [8, Theorem 1.2.3 and Proposition 5.8.9] that Q has a fixed point
in [w,w]. But w, as the greatest solution of (3.2), is the greatest fixed point of Q,
whence ‖u(t)‖ = w(t) ≤ w(t) for a.e. t ∈ J. This proves that all the solutions of (3.1)
are contained in P. Because of the property (E1) of E the similar reasoning shows
that all the solutions of (3.3) and (3.4) belong to P. Noticing also that fixed points
of G defined by (3.5) are solutions of (3.1) and vice versa, the assertions follow from
Theorem 2.1.

3.2. Applicability of iterative methods. In this subsection we consider a case when
the extremal solutions of the integral equation (3.1) can be obtained by successive
approximations.

PROPOSITION 3.1. Let E be a lattice-ordered Banach space with properties (E0) and
(E1). Assume that the hypotheses (f0), (f1), (f2), and (h0) hold, and that

(B) h(t, un) ⇀ h(t, u) for a.e. t ∈ J and f (t, s, un(s), un) ⇀ f (t, s, u(s), u) for a.e.
(t, s) ∈ � if (un) is a monotone sequence in Lp(J, E) and un(s) ⇀ u(s) for a.e.
s ∈ J.

Then the successive approximations:
(a) an+1(t) = −(h(t, an) + ∫ t

t0
f (t, s, an(s), an) ds)−, t ∈ J, a0 = 0,

converge weakly a.e. pointwise to the greatest solution a of (3.3);
(b) bn+1(t) = (h(t, bn) + ∫ t

t0
f (t, s, bn(s), bn) ds)+, t ∈ J, b0 = 0,

converge weakly a.e. pointwise to the least solution b of (3.4);
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(c) un+1(t) = h(t, un) + ∫ t
t0

f (t, s, un(s), un) ds, t ∈ J, u0 = a,

converge weakly a.e. pointwise to the least solution u∗ of (3.1) in [a, b];
(d) vn+1(t) = h(t, vn) + ∫ t

t0
f (t, s, vn(s), vn) ds, t ∈ J, v0 = b,

converge weakly a.e. pointwise to the greatest solution u∗ of (3.1) in [a, b].

Proof. It is easy to see that the sequences (bn) and (un) are increasing, and that the
sequences (an) and (vn) are decreasing. Moreover, all these are contained in P, whence
they are a.e. pointwise bounded. Thus it follows from the hypothesis (E0) that all these
sequences possess asserted a.e. pointwise weak limits a, u∗, b and u∗. In view of (2.2),
[7, (3.1), Corollary 3.1 and Proposition 3.2] these limits belong to P. The hypothesis
(B) implies that

ϕ(f (t, s, un(s), un)) → ϕ(f (t, s, u∗(s), u∗)) for a.e. (t, s) ∈ � and for all ϕ ∈ E′.

This result and the Dominated Convergence Theorem imply that

ϕ

(∫ t

t0

f (t, s, un(s), un) ds
)

=
∫ t

t0

ϕ(f (t, s, un(s), un)) ds →
∫ t

t0

ϕ(f (t, s, u∗(s), u∗)) ds

= ϕ

(∫ t

t0

f (t, s, u∗(s), u∗) ds
)

for a.e. t ∈ J and for all ϕ ∈ E′. In view of this result and the hypothesis (B) we have

h(t, un) ⇀ h(t, u∗) and
∫ t

t0

f (t, s, un(s), un) ds ⇀

∫ t

t0

f (t, s, u∗(s), u∗) ds for a.e. t ∈ J.

It then follows from (c) as n → ∞ that u∗ is a solution of (3.1). Similar reasoning shows
that u∗ is also a solution of (3.1), that a is a solution of (3.3), and that b− is a solution
of (3.4). By standard arguments one can show that a is the greatest solution of (3.3),
that b is the least solution of (3.4), and that u∗ and u∗ are least and greatest solutions
of (3.1) in [a, b].

REMARKS 3.1. The hypothesis (B) is required to hold only for those iteration
sequences which are defined in Proposition 3.1.

If the values of h and f are contained in the order cone E+ of E, then in Theo-
rem 3.1 and in Proposition 3.1 u∗ = b is the least solution of (3.1). Similarly, if the
values of h and f are in −E+, then u∗ = a is the greatest solution of (3.1). Thus the
lower and upper bounds a and b of the solutions u∗ and u∗ cannot be improved, in
general.

4. An application to an impulsive IVP. The result of Theorem 3.1 will now be
applied to the following impulsive initial value problem (IIVP){

u′(t) + p(t)u(t) = F(t, u(t), u) a.e. on J = [t0, t1],

u(t0) = x0, �u(λ) = H(λ, u), λ ∈ W,
(4.1)

where p ∈ L1(J, �), F : J × E × L1(J, E) → E, x0 ∈ E, �u(λ) = u(λ + 0) − u(λ),
H : W × L1(J, E) → E, and W is a well-ordered (and hence countable) subset of (t0, t1).

Denoting W<t = {λ ∈ W | λ < t}, t ∈ J, and by AC(J, E) the set of all absolutely
continuous functions v : J → E, we say that u : J → E is a solution of the IIVP (4.1)
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if it satisfies the equations of (4.1), and if it is contained in the set

V =
{

u : J → E |
∑
λ∈W

‖�u(λ)‖ < ∞ and t �→ u(t) −
∑

λ∈W<t

�u(λ) ∈ AC(J, E)

}
.

It is easy to verify that V is a subset of L1(J, E).
The following result, which is proved in [3], allows us to convert the IIVP (4.1) to

a Volterra integral equation.

LEMMA 4.1. ([3, Lemma 3.1]) If p ∈ L1(J, �), q ∈ L1(J, E), x0 ∈ E and c : W → E,
and if

∑
λ∈W ‖c(λ)‖ < ∞, then problem

{
u′(t) + p(t)u(t) = q(t) a.e. on J,

u(t0) = x0, �u(λ) = c(λ), λ ∈ W,
(4.2)

has a unique solution u. This solution can be represented as

u(t) = e− ∫ t
t0

p(s)dsx0 +
∑

λ∈W<t

e− ∫ t
λ

p(s)dsc(λ) +
∫ t

t0

e− ∫ t
s p(τ )dτ q(s) ds, t ∈ J. (4.3)

We shall impose the following hypotheses on the functions H and F .
(H0) H(λ, ·) is increasing for all λ ∈ W , and there exists an M > 0 such that∑

λ∈W ‖H(λ, u)‖ ≤ M for all u ∈ L1(J, E).
(F0) The mapping F(·, u(·), u) is Bochner integrable for each u ∈ L1(J, E).
(F1) F(s, z, u) is increasing with respect to z and u for a.e. s ∈ J.
(F2) ‖F(s, x, u)‖ ≤ q(s)ψ(‖x‖) for a.e. s ∈ J and all x ∈ E, u ∈ L1(J, E), where

q ∈ L1(J, �+), ψ : �+ → (0,∞) is increasing, and
∫ ∞

0
dx

ψ(x) = ∞.

THEOREM 4.1. Let E be a lattice-ordered Banach space with properties (E0) and
(E1), and assume that the hypotheses (F0), (F1), (F2) and (H0) are satisfied. Then the
IIVP (4.1) has for each x0 ∈ E and p ∈ L1(J, �),

(a) minimal and maximal solutions;
(b) least and greatest solutions in [a−, b+], where a− is any minimal solution of the

integral equation

u(t) = −
(

e− ∫ t
t0

p(s)dsx0 +
∑

λ∈W<t

e− ∫ t
λ

p(s)dsH(λ, u) +
∫ t

t0

e− ∫ t
s p(τ )dτ F(s, u(s), u) ds

)−
,

(4.4)

and b+ is any maximal solution of the integral equation

u(t) =
(

e− ∫ t
t0

p(s)dsx0 +
∑

λ∈W<t

e− ∫ t
λ

p(s)dsH(λ, u) +
∫ t

t0

e− ∫ t
s p(τ )dτ F(s, u(s), u)ds

)+
; (4.5)

(c) least and greatest solutions u∗ and u∗ in [a, b], where a is the greatest solution
of (4.4) and b is the least solution of (4.5).

Moreover, the solutions u∗ and u∗ are increasing with respect to x0, H and F.
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Proof. The given hypotheses ensure that for each x0 ∈ E the relations{
h(t, u) = e− ∫ t

t0
p(s)dsx0 + ∑

λ∈W<t e− ∫ t
λ

p(s)dsH(λ, u), t ∈ J, u ∈ L1(J, E),

f (t, s, x, u) = e− ∫ t
s p(τ )dτ F(s, x, u), (t, s) ∈ �, u ∈ L1(J, E)

(4.6)

define mappings h : J × L1(J, E) → E and f : � × E × L1(J, E). Denoting{
K = e

∫ t1
t0

|p(s)|ds
, α(t) = (‖x0‖ + M)K, t ∈ J,

g(t, s, r) = Kq(s)ψ(r), (t, s) ∈ �, r ≥ 0,
(4.7)

it follows that the hypotheses (h0), (f0), (f1), and also (f2) hold with the exception that
β ∈ L1(J, �+) is now replaced in (3.2) by a constant w0 ≥ 0. This replacement and
(4.7) imply that (3.2) can be rewritten as

w(t) = w0 +
∫ t

t0

Kq(s)ψ(w(s)) ds, t ∈ J. (4.8)

The hypothesis (F2) and [2, Lemma B.7.1] ensure that (4.8) has a unique solution in
AC(J, �). This is enough because in the proof of Theorem 3.1 we used the functions
β = α, which is now constant by (4.7), and β(t) = max{α(t), ‖u(t)‖}, t ∈ J, where u is
a fixed point of G, i.e. a solution of (3.1), which by (4.6) can be rewritten as

u(t) = e− ∫ t
t0

p(s)dsx0 +
∑

λ∈W<t

e− ∫ t
λ

p(s)dsH(λ, u) +
∫ t

t0

e− ∫ t
s p(τ )dτ F(s, u(s), u) ds. (4.9)

Thus

‖u(t)‖ ≤ w0 := (‖x0‖ + M)K +
∫ t1

t0

K‖F(s, u(s), u)‖ ds, t ∈ J,

whence we can replace the function β(t) = max{α(t), ‖u(t)‖}, t ∈ J in the proof of
Theorem 3.1 by w0. Consequently, the results of Theorem 3.1 hold for (3.1), or
equivalently, for (4.9), which implies the assertions because by Lemma 4.1 the solutions
of the IIVP (4.1) are the same as the solutions of the integral equation (4.9).

REMARKS 4.1. The result of Proposition 3.1 implies that some solutions of the
IIVP (4.1) can be obtained via successive approximations if H and F satisfy also the
following hypothesis.

(A) H(λ, un) ⇀ H(λ, u) for all λ ∈ W and F(s, un(s), un) ⇀ F(s, u(s), u) for a.e.
s ∈ J if (un) is a monotone sequence in L1(J, E) and un(s) ⇀ u(s) for a.e. s ∈ J.

The functional dependence on the last argument u of h, f , H and F can be formed,
e.g., by bounded, linear and positive operators, such as integral operators of Volterra
and/or Fredholm type with nonnegative kernels. Thus the results derived in this paper
can be applied also to integro-differential equations.

Weakly complete Banach lattices have properties (E0) and (E1) (cf. [10]). Examples
of such spaces are, for instance, UMB-lattice defined in [1, XV, 14], the spaces �m, m =
1, 2, . . . , and lp, p ∈ [1,∞), ordered coordinatewise and normed by p-norm, and spaces
Lp(
), where p ∈ [1,∞) and 
 = (
,A, µ) is a measure space, equipped with p-norm
and a.e. pointwise ordering. Moreover, the Sobolev spaces W 1,p(
) and W 1,p(
), p ∈
(1,∞) ordered a.e. pointwise, where 
 is a bounded domain in �m, posses properties
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(E0) and (E1) (cf. [2]). In particular, we can choose E to be one of these spaces in the
above considerations. As for other existence results for integral equations in abstract
spaces, see, e.g., [4, 5, 9, 11, 12]. Existence results for explicit and implicit discontinuous
IIVP’s are derived in [3] in the case when the order cone of E is regular.
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