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TWO EXAMPLES CONCERNING EXISTENTIAL UNDECIDABILITY
IN FIELDS

PHILIP DITTMANN

Abstract. We construct an existentially undecidable complete discretely valued field of mixed
characteristic with existentially decidable residue field and decidable algebraic part, answering a question
by Anscombe–Fehm in a strong way. Along the way, we construct an existentially decidable field of positive
characteristic with an existentially undecidable finite extension, modifying a construction due to Kesavan
Thanagopal.

§1. Introduction. Given a field K, one may ask whether there is an algorithm
to decide which multivariable polynomials with coefficients in the prime field have
zeroes in K—in short, whether K is existentially decidable. Motivated by Hilbert’s
Tenth Problem, much research has been done on this question in particular in global
fields and function fields (see for instance the monograph [24]). On the other hand,
this question is also of interest in henselian valued fields, where it is the first step of a
good model-theoretic understanding of the full first-order theory. See in particular
[1, 3, 4, 17] for recent related work.

The chief aim of this note is to prove the following theorem, giving an interesting
example of existential undecidability.

Theorem 1.1. Let p be a prime number. There exists a complete discretely valued
field (E, v) of characteristic 0 and residue characteristic p such that the residue fieldEv
is existentially decidable, the set of polynomials in Q[X ] with a zero in E is decidable,
but the field E is existentially undecidable.

This answers a question by Anscombe–Fehm in a strong way (see Remark 5.3 for
a discussion). The existential theories of complete discretely valued fields of mixed
characteristic (or more generally finitely ramified henselian valued fields) are further
explored in [2].

In order to prove Theorem 1.1, we use an example of a different phenomenon in
existential decidability, which seems interesting in its own right.

Theorem 1.2. Let p be a prime number. There exists an existentially decidable field
of characteristic p with an existentially undecidable quadratic extension.

A variant of this problem was first considered in Kesavan Thanagopal’s thesis
[26], where an example was given in characteristic 0. We modify the construction
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TWO EXAMPLES CONCERNING EXISTENTIAL UNDECIDABILITY IN FIELDS 553

given there, based on Ershov’s theory of fields with a strong local–global principle
presented in [10].

§2. A useful family of varieties. Let p be a prime number, and q > 1 a power of
p. In this section we prove the following proposition, which will be useful later.

Proposition 2.1. Let n ≥ 1. There exists a smooth projective geometrically
integral variety V/Fq such that for any m ≥ 1 we have:

• if m | n, then V (Fqm ) = ∅;
• if lcm(m, n) ≥ 4n, then V (Fqm ) �= ∅.

For definiteness, in this article we take a variety (over a specified base field) to
be a separated scheme of finite type, although almost all varieties occurring will be
quasi-projective and geometrically integral.

The proof of Proposition 2.1 relies on the following lemma.

Lemma 2.2. There exists a smooth projective geometrically integral curveC/Fq such
that C (Fq) = ∅, but C (k) �= ∅ for any field extension k/Fq with 4 ≤ [k : Fq] <∞.

Proof. Let g be the smallest integer bigger than q–3
2 with g ≡ – 1 (mod p), so

q–3
2 < g ≤

q–3
2 + p. By [6, Lemma 2.2], there exists a hyperelliptic curve C/Fq of

genus g with C (Fq) = ∅.
The number of Fqm -rational points of C is at least qm + 1 – 2g

√
qm ≥ qm + 1 –

(q – 3 + 2p)qm/2 by the Hasse–Weil bound. This is positive if q – 3 + 2p ≤ qm/2,
which is the case if m ≥ 4. 	

Remark 2.3. The situation would be neater if we could strengthen the lemma to
say thatC (k) �= Fq for any proper finite extension k/Fq , in which case we could also
strengthen the proposition to say that V (Fqm ) = ∅ if and only if m | n.

In order to improve the lemma in this way, one would need to improve the
construction of Becker and Glass, finding a bound for the genus which is better than
linear in q. This works at least for specific values for q in any characteristic p > 3
(see [27]).

Proof of the proposition. Let C/Fqn be a curve as in the lemma, so that
C (Fqn ) = ∅, but C (Fqnl ) �= ∅ for l ≥ 4. Let V/Fq be the Weil restriction of C. It
is a smooth projective geometrically integral variety over Fq because C/Fqn is so:
Indeed, by [8, Proposition A.5.9] V is smooth and geometrically connected (hence
geometrically integral), and by [8, Proposition A.5.8] and [7, Proposition 7.6/5] V
is quasi-projective and proper, hence projective.

By the defining property, for any m, the set V (Fqm ) is in bijection to C (Fqm ⊗Fq

Fqn ). For m | n we have C (Fqm ⊗Fq Fqn ) = C (Fmqn ) = C (Fqn )m = ∅.

Now let m ≥ 1 with lcm(n,m) ≥ 4n. We have Fqm ⊗Fq Fqm = F
nm/ lcm(n,m)

qlcm(n,m) .

Then C (Fqm ⊗Fq Fqn ) = C (Fnm/ lcm(n,m)

qlcm(n,m) ) �= ∅ since C (Fqlcm(n,m) ) �= ∅ by the defining

property of C. This proves the desired property of V. 	
Remark 2.4. It will be important for us later that for given q and m, a variety

V as in the proposition can be effectively determined. This follows from the proofs,
since both the construction of [6, Lemma 2.2] and Weil restriction as in the proof of

https://doi.org/10.1017/jsl.2023.87 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.87


554 PHILIP DITTMANN

Proposition 2.1 are effective. On the other hand, this is also clear without going back
into the proofs, merely using the existence statement: simply enumerate candidate
varieties, test for points over small fields, and use the Hasse–Weil bound.

§3. The construction. Fix again a prime p. We find an extension field K of Fp(t)
satisfying a strong local–global principle, after Ershov.

We first fix some terminology. A discrete valuation is a Krull valuation whose
value group is isomorphic to Z, i.e., is given by a discrete valuation ring in the usual
sense of commutative algebra. We do not distinguish between valuations and their
valuation rings, so in particular we identify equivalent valuations. Given a valuation
v on a field K, we write Kv for the residue field and Khv for the henselisation. A
valuation of Fp(t) is said to be above Fp[t] if its valuation ring contains Fp[t], i.e., if
it is not the degree valuation of Fp(t).

Proposition 3.1. There exists a countable regular field extensionK/Fp(t) together
with a family V of discrete valuations such that the following hold:

(1) For every v ∈ V , the restriction of v to Fp(t) is again a discrete valuation, which
lies above Fp[t]. Further, the extension (K, v)/(Fp(t), v|Fp(t)) is immediate, i.e.,
the residue fieldsKv and Fp(t)v|Fp(t) agree and a uniformiser for v|Fp(t) remains
a uniformiser for v.

(2) For every discrete valuation v0 of Fp(t) above Fp[t] there is precisely one v ∈ V
prolonging v0.

(3) Any x ∈ K is in the valuation ring of all but finitely many v ∈ V .
(4) If a geometrically integral varietyX/K has a smooth Khv -point for every v ∈ V ,

then it has a K-point.

Proof. This is a consequence of [10, Theorem 3.6.3], as we now explain.
Let V0 be the family of discrete valuation rings of Fp(t) above Fp[t]. Then any

two distinct members ofV0 are independent;V0 is a near Boolean family in Ershov’s
sense since Fp[t] is an “NB-ring” [10, Remark 2.5.1] and the valuation rings of the
valuations in V0 are precisely the localisations of Fp[t] at its maximal ideals [10,
Proposition 2.5.3]; and the residue fields of V0 are “regularly closed at infinity” [10,
Section 3.4, p. 172], as they are finite fields with only finitely many of cardinality
lower than a given bound, and so the desired property follows from the Lang–Weil
bounds [21, Theorem 7.7.1(iv)].

Thus by [10, Theorem 3.6.3], there exists a countable regular extension K/Fp(t)
with a family of valuation rings V such that every valuation v ∈ V lies over a
valuation v0 ∈ V0, this induces a bijection between V and V0, and the extension of
valued fields (K, v)/(Fp(t), v0) is immediate. In particular every v ∈ V is discrete,
and conditions (1) and (2) are satisfied.

The bijection V → V0 is furthermore a homeomorphism with respect to the
Zariski topologies on V and V0 (see [10, Section 2.2]), which means that for all
x ∈ K the (“Zariski closed”) set Cx := {v ∈ V : v(x) < 0} is either finite or all of
V since the analogous statement holds in Fp(t). However, we cannot have Cx = V ,
since otherwise for a suitable element b ∈ Fp(t)× (a high power of a uniformiser
for some valuation in V0) the set Cxb would be infinite but strictly contained in V,
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violating the homeomorphism property. Therefore the set Cx is finite for all x ∈ K.
This gives condition (3).

In addition, the family V satisfies Ershov’s “arithmetic local–global principle”
LGA, and therefore also the “geometric local–global principle” LGG [10, Proposition
3.2.5], which gives our condition (4) for geometrically integral affine varieties X/K.
Now take an arbitrary geometrically integral varietyX/K, and letX0/K be an affine
dense open subvariety. If X has a smooth Khv -point for every v ∈ V , then the same
holds forX0: This is the ampleness of the henselian field Khv (see [10, Corollary 3.1.6]
and the surrounding discussion). Hence we have ∅ �= X0(K) ⊆ X (K) by the affine
case, proving (4) in full generality. 	

Remarks 3.2. (1) Fields K as in the proposition are weak analogues of the
“surprising extensions of Q” considered in [9] (also variously translated as
“wonderful” or “amazing” extensions). Note, however, that there also the
place at infinity, i.e., the real place of Q, is included.

(2) Since it plays no role in the sequel, we have not imposed the condition which
is called maximality in [9], i.e., that for every proper separable algebraic
extension L/K, some valuation in V has no immediate extension to L.
This condition can, however, always be added (see [10, Proposition 4.4.3,
Remark 4.4.3, and Proposition 4.4.4]).

(3) Any non-trivial valuation v of K not in V always has separably closed
henselisation, and hence poses no obstruction to the existence of rational
points on varieties. This follows from [10, Corollary 3.5.4] (there stated for
Boolean families of valuations, but the same proof works for near-Boolean
families with residue fields regularly closed at infinity). In particular, the
family V simply consists of all discrete valuations of K.

(4) Instead of starting with the discrete valuations of Fp(t) above Fp[t], we could
have worked with the coordinate ring of any irreducible smooth affine curve
over Fp and its function field.

We henceforth fix a field K as in the proposition.

Lemma 3.3. Let L/K be a finite separable extension. Let X/Fp be a smooth
projective geometrically integral variety. ThenX (L) �= ∅ if and only if for every v ∈ V
and every prolongation w of v to L, X has a point over the residue field Lw.

Proof. Let W be the family of prolongations of valuations in V to L. By [10,
Proposition 3.4.1] (a Weil restriction argument), the same local–global principle as
for V holds for W. In particular, X (L) �= ∅ if and only if X has a point over all
henselisations Lhw , w ∈W .

Let w ∈W . If X has a point over the henselisation Lhw , then it has a point over
the residue field Lw, using that X is projective (given homogenous coordinates of
an Lhw-point of X, clear denominators and reduce).1 Conversely, if X has a point
over the residue field Lw, then it has a point over the henselisation Lhw since there
exists an embedding Lw ↪→ Lhw (apply Hensel’s Lemma to the minimal polynomial

1Using the valuative criterion of properness, it would suffice to assume that X is proper instead of
projective.
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of a primitive element of Lw over Fp). Together with the local–global principle, this
proves the statement. 	

Remark 3.4. None of the hypotheses of smoothness, projectivity, and geometric
integrality can be omitted in Lemma 3.3. This explains why these hypotheses, in
particular smoothness and geometric integrality, recur throughout this article. We
sketch a few examples to demonstrate this.

For the variety X which is the affine line A1 punctured at each of its Fp-points—
equivalently, X is the plane curve described by the equation yx(x – 1) ··· (x – (p –
1)) = 1—we have X (K) �= ∅, but for the residue field Fp of the unique valuation
v ∈ V above the t-adic valuation of Fp(t) we have X (Fp) = ∅ by construction.
Thus one direction of the lemma fails for L = K with the non-projective smooth
geometrically integral variety X.

In the other direction, both smoothness and geometric integrality are needed
in general for Ershov’s local–global principle to apply. Consider a finite extension
L0/Fp(t) which is the function field of a smooth projective geometrically integral
Fp-curve without rational points and set L = L0K. Then L is regular over Fp, but
carries no valuation with residue field Fp. Let Fq be a finite field which occurs as
the residue field of some discrete valuation on L. Let C/Fp be a smooth projective
geometrically integral curve without Fq-points. Then C has no L-point, but it has
an Lw-point for all but finitely many discrete valuations w on L by the Hasse–
Weil bound. For a suitable list F(1), ... ,F(n) of proper finite extensions of Fp, the
Fp-variety C ′ := C

∐
Spec(F(1))

∐
···

∐
Spec(F(n)) has an Lv-point for all discrete

valuations v on L, but no L-point (since none of its connected components has an
L-point by construction). Thus C ′ is a reducible smooth projective Fp-variety for
which the statement of the lemma does not hold.

To find a projective non-smooth geometrically integral example, one can again
start with L and C as above, and construct a curveC ′′ from C not by adding finitely
many points, but by a pinching construction (see for instance [23, Section 1.3] for
an explanation in principle, but only for curves over algebraically closed fields, and
[11] for the generality needed here): thus C will be the normalisation of C ′′, and
by wisely choosing the pinching data, one forces C ′′ to have rational points over all
residue fields of L, but none over L itself. We omit the details.

We next wish to find finite extensions L/K such that the discrete valuations of L
have prescribed residue fields. This is achieved by the following lemmas.

Lemma 3.5. Let S1, S2 be two disjoint finite sets of prime numbers greater than 4.
There exists a cyclic extension L0/Fp(t) of degree 4 such that:

(1) For every l ∈ S1, there exists a discrete valuation of L0 above Fp[t] with residue
field Fpl .

(2) For every l ∈ S2 and every Fpm occurring as the residue field of a valuation of
L0, we have lcm(l, m) ≥ 4l .

Proof. Let L0/Fp(t) be a cyclic extension of degree 4 in which each of the
(non-zero) finitely many discrete valuations of Fp(t) with residue field Fpl , l ∈ S1,
is completely split, and each of the finitely many discrete valuations of Fp(t) with
residue field Fpn , S1 �� n ≤ 4 max(S2), is inert. The existence of such an extension
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follows from the Grunwald–Wang Theorem [19, Theorem 9.2.8], which allows the
construction of abelian extensions of Fp(t) in which the decomposition behaviour of
finitely many places is prescribed. The field L0 satisfies the required properties. 	

Lemma 3.6. Let S1, S2 be two disjoint finite sets of prime numbers greater than 4.
Then there exists a cyclic extension L/K of degree 4 such that conditions (1) and (2)
from Lemma 3.5 hold for L (in place of L0).

Proof. Take L0/Fp(t) as in Lemma 3.5, and let L = KL0 (free compositum,
equivalently the tensor product K⊗Fp(t) L0). For any discrete valuation v of L, the
restriction w to L0 is also a discrete valuation and we have the inclusion of residue
fields L0w ⊆ Lv. Thus condition (2) transfers from L0 to L: Indeed, ifm0 = [L0w :
Fp] and m = [Lv : Fp], we have m0 | m and thus 4l ≤ lcm(l, m0) | lcm(l, m).

On the other hand, for every discrete valuation w ofL0 above Fp[t], the restriction
v0 to Fp(t) is again discrete, and the defining property of K affords a discrete
valuation v on K such that (K, v)/(Fp(t), v0) is immediate. In particular, K embeds

into the completion F̂p(t)v0 over Fp(t). Thus L embeds into the completion L̂0w

over Fp(t) since both K and L0 have such an embedding and are linearly disjoint
over Fp(t). Therefore L carries a discrete valuation above Fp[t] with residue field
L0w. Thus condition (1) transfers from L0 to L. 	

We can now show that ℵ0-saturated elementary extensions K∗ of K have
existentially undecidable finite extensions.

Recall (see for instance [25, Definition 1.6.8]) that a set of natural numbers A
is many-one reducible to a set of natural numbers B if there exists a computable
function f : N → N such that for any x ∈ N we have f(x) ∈ B if and only if x ∈ A.
This is a formalisation of the notion that membership in A is no harder to decide
than membership in B. (A different formalisation is given by Turing reducibility,
which is implied by many-one reducibility.)

By fixing a standard Gödel coding, we identify formulae of a given finite first-
order language with natural numbers. In particular, computability-theoretic terms
such as decidability and many-one reducibility make sense for sets of formulae. We
generally work in the language of rings Lring = {+, –, ·, 0, 1}.

Theorem 3.7. Let S be a set of prime numbers. Then any ℵ0-saturated elementary
extension K∗ of K has a cyclic extension L/K∗ of degree 4 such that S is many-one
reducible to the existential theory of L. In particular, there exist cyclic extensionsL/K∗

of degree 4 with undecidable existential theory.

Proof. For every prime number l, let Vl/Fp be a variety as in Proposition 2.1
(with q = p, n = l). We claim that we can choose L such that for all primes l > 4, we
haveVl (L) �= ∅ if and only if l ∈ S. SinceVl can be computed from l by Remark 2.4,
and Vl (L) �= ∅ is straightforwardly translated into an existential sentence, this L
solves the problem.

It thus remains to find L satisfying the claim. Recasting the search for L as the
search for the coefficients of an irreducible polynomial of degree 4 over K∗ with a
root generating L, saturation reduces us to finding, for every finite set of primes S1

disjoint from S and finite S2 ⊆ S, an extension L/K of degree 4 with Vl (L) = ∅
for 4 < l ∈ S1 and Vl (L) �= ∅ for 4 < l ∈ S2. This problem is solved by Lemma 3.6:
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Indeed, the field L produced there satisfies the condition by Lemma 3.3 and the
construction of the Vl .

The “in particular” holds because if S is an undecidable set, then the existential
theory of L cannot be decidable. 	

Remark 3.8. The passage to an elementary extension of K is due to the need
to realise a certain type, given by the requirements for the coefficient tuple of an
irreducible polynomial defining L. Given that this is only one type, a well-chosen
countable elementary extension K∗ of K (depending on S) would be sufficient in
place of an ℵ0-saturated one.

§4. Existential decidability. Let again p be a prime number, K/Fp(t) as in the last
section. In this section we prove that the existential theory of K is decidable.

Lemma 4.1. Let X/Fp be a geometrically integral smooth affine variety. Then
X (K) �= ∅ if and only if X (Fp((s))) �= ∅.

Proof. First observe that sinceK carries a discrete valuation with residue fieldFp
(for instance the prolongation in V of the t-adic valuation of Fp(t)), K embeds into
Fp((s)), and therefore the existence of a K-rational point of X implies the existence
of an Fp((s))-rational point.

Suppose conversely that X has an Fp((s))-rational point. Then it has a point over
the henselisation Fp(s)hs at the s-adic valuation, since the fields Fp((s)) and Fp(s)hs
have the same existential theory by [3, Corollary 7.2] (or by [18, Theorem 5.9]).
Therefore X has a rational point over the henselisation Khv for every v, since every
such henselisation embeds Fp(s)hs (sending s to a uniformiser). Now X (K) �= ∅
follows from the local–global principle. 	

The following general lemma reduces the existential theory of a field to
information about which smooth affine varieties have rational points. This may
well have appeared elsewhere in the literature, but I am unaware of a reference. As
usual, given a field F, the language Lring(F ) is simply the expansion of Lring by
constants for the elements of F. In particular, every extension E/F is naturally an
Lring(F )-structure.

Lemma 4.2. Let F be a field, andE1/F ,E2/F two regular extensions. Assume that
for every geometrically integral smooth affine F-variety X we have X (E1) �= ∅ if and
only if X (E2) �= ∅. Then the existential Lring(F )-theories of E1 and E2 agree.

Proof. By standard reductions (disjunctive normal form, elimination of inequal-
ities) it suffices to show that for any f1, ... , fk ∈ F [X1, ... , Xn], the fi have a
common zero in E1 if and only if they have a common zero in E2. In other words,
we must show that for every affine F-variety X we have X (E1) �= ∅ if and only if
X (E2) �= ∅.

By passing to the reduction of X is necessary, and using that for every reduced
variety the regular locus is open and not empty [12, Corollary 12.52(2)], we can
write X as a union of finitely many regular integral affine locally closed subvarieties.
In other words, it suffices to consider integral regular affine X.

If X is not geometrically integral, then X (E1) = ∅ = X (E2): Indeed, the base-
changed varieties XE1/E1 and XE2/E2 are regular [13, Proposition 6.7.4], integral
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[12, Corollary 5.56(3)], but not geometrically integral, and therefore they have no
rational points (see for instance [20, Lemma 10.1]).

Thus let us assume that X is geometrically integral. Then the smooth locus
Xsm ⊆ X is dense open [12, Theorem 6.19 and Remark 6.20(ii)]. Any E1-rational
point on X is necessarily smooth [14, Proposition 17.15.1], i.e., is an E1-rational
point on the geometrically integral smooth variety Xsm. By the assumption applied
to the open affine subvarieties of Xsm, we must then also have an E2-rational point
on Xsm and therefore on X. By symmetry, this shows that X (E1) �= ∅ if and only if
X (E2) �= ∅, as desired. 	

Proposition 4.3. The existential theory of K agrees with the existential theory of
Fp((s)). In particular, it is decidable.

Proof. The first statement follows from the two preceding lemmas (take F = Fp,
E1 = K, and E2 = Fp((s))). The “in particular” is [3, Corollary 7.5]. 	

Corollary 4.4. There exists an existentially decidable field K of characteristic p
with an existentially undecidable separable quadratic extension. We can choose K such
that the relative algebraic closure of Fp in K is finite.

Proof. Let K∗ be an ℵ0-saturated elementary extension of K, and let L/K∗ be
a cyclic extension of degree 4 which is existentially undecidable (Theorem 3.7). Let
L0/K

∗ be the unique quadratic intermediate field. Since K is regular over Fp(t),
the prime field Fp is relatively algebraically closed in K and thus in K∗. Hence the
relative algebraic closure of Fp in L is finite. Since K∗ is existentially decidable as K
is, either L0/K

∗ or L/L0 is a pair of fields as desired. 	
This proves Theorem 1.2 from the introduction. As mentioned previously, the

analogue in characteristic 0 was established in [26, Theorem 3.3.1], with a similar
technique. There the full first-order theory of the base field is decidable, so the result
is stronger than ours (inspection of the proof yields that the quadratic extension still
has undecidable existential theory). Decidability of the full first-order theory seems
out of reach in positive characteristic with the current method, as our understanding
of the model theory of valued fields is insufficient.

Conditionally on a conjecture related to resolution of singularities, we can
establish a slightly stronger decidability result in the language Lring(Fp(t)). Here
we fix a natural coding of Fp(t) (specifically, a coding witnessing the computability
of the field Fp(t)) to identify Lring(Fp(t))-formulae with natural numbers. Since
every element of Fp(t) is quantifier-freely Lring-definable in terms of the constant
t, instead of Lring(Fp(t)) we could equivalently work in the expansion of Lring by a
single constant symbol for t.

Lemma 4.5. Assume the consequence (R4) of local uniformisation from [1]. Then
there is an algorithm which, given as input k, n > 0 and polynomials f1, ... , fk ∈
Fp(t)[X1, ... , Xn] such that the affine variety described by the fi is geometrically
integral and smooth over Fp(t), decides whether the variety has a K-rational point,
i.e., whether the fi have a common zero in K.

Proof. Let V0 be the set of discrete valuations of Fp(t) above Fp[t]. By [21,
Remark 7.7.3] (a combination of the Lang–Weil bounds and Hensel’s Lemma) one
can effectively determine a finite subset S ⊆ V0 such that for all v ∈ V0 \ S the fi
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have a common zero in the completion F̂p(t)v , and therefore in the henselisation

Fp(t)hv since Fp(t)hv is existentially closed in F̂p(t)v [18, Theorem 5.9].
In order to decide whether the fi have a common zero in K, by the local–global

principle it therefore suffices to decide whether they have a common zero in the
henselisation Khv for each discrete valuation v of K above one of the valuations in
S. The decidability of this problem (under the assumption (R4)) follows from [1,
Theorem 4.12]. Indeed, for each such v, the henselisation Khv (with the canonical
valuation) is an immediate extension of Fp(t) (with the restricted valuation), and
therefore its universal/existentialLring(Fp(t))-theory is formally entailed by the first-
order axioms expressing that it is a henselian valued field extending (Fp(t), v|Fp(t))
with the same residue field and uniformiser. 	

Proposition 4.6. Assume (R4). Then the existential Lring(Fp(t))-theory of K is
decidable.

Proof. Consider the Lring(Fp(t))-theory T given by the following system of
axioms:

(1) the field axioms;
(2) the quantifier-free diagram of Fp(t);
(3) for each irreducible polynomial f ∈ Fp(t)[X ] the sentence ∀x(f(x) �= 0);
(4) for any finite list of polynomials f1, ... , fk ∈ Fp(t)[X1, ... , Xn] describing a

geometrically integral smooth affine Fp(t)-variety, an axiom asserting that
the fi have a common zero if this is the case in K, and otherwise an axiom
asserting that they do not have a common zero.

We claim that this system of axioms is computably enumerable. This is clear for the
field axioms, follows from the computability ofFp(t) for the quantifier-free diagram,
and from the existence of a splitting algorithm for Fp(t) for the third point. For the
fourth point, this is essentially the preceding lemma and the observation that it is
decidable whether a system of polynomials defines a geometrically integral smooth
variety (for instance by Gröbner basis techniques and the Jacobian criterion).

The models of T are field extensions E of Fp(t) in which Fp(t) is relatively
algebraically closed, i.e., which are regular over Fp(t), and such that the same
geometrically integral smooth affine Fp(t)-varieties have rational points in E as in
K. By Lemma 4.2, the theory T is therefore complete for universal and existential
Fp(t)-sentences, i.e., for any existential Fp(t)-sentence, T entails either the sentence
or its negation. A proof calculus therefore gives a decision procedure for existential
consequences of T, which proves the claim since K |= T . 	

§5. An existentially undecidable complete valued field. Let p be a fixed prime. We
prove the following (stated as Theorem 1.1 in the introduction):

Theorem 5.1. There exists a complete discretely valued field (E, v) with
charE = 0, charEv = p, such that the existential theory of Ev is decidable, but
the existential theory of E is undecidable. We can furthermore choose E such that the
set of one-variable polynomials in Q[X ] with a zero in E is decidable.
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Proof. By Corollary 4.4, we may select an existentially decidable field K of
characteristic p with an existentially undecidable separable quadratic extension L,
such that furthermore the relative algebraic closure of Fp in K is finite.

There is an element α ∈ L with L = K(α) and a := α2 – α ∈ K . (We use this
equation instead of a = α2 to handle all characteristics simultaneously.)

Let (F, v) be the unique complete discretely valued field of characteristic 0
with residue field K and uniformiser p. (See for instance [4, Theorem 2.10 and
Corollary 6.6] for the (classical) existence and uniqueness of such (F, v) in terms
of the valuation ring, although we do not in fact need the uniqueness.) Let b ∈ F
be a lift of a, and set E = F (

√
p(1 + 4b)). We continue to write v for the unique

prolongation to finite extensions of F, in particular to E.
We claim that (E, v) is as desired. Note first that v(1 + 4b) = 0: this is clear

if p = 2, and holds for odd p since otherwise a =– 1/4 and so the polynomial
X 2 – X – a would be reducible in K. Therefore the extension E is obtained by
adjoining to F a square root of the uniformiser p(1 + 4b), and is thus totally
ramified. In particular Ev = Fv = K , which is existentially decidable.

On the other hand, the fieldE(
√
p) contains the element

√
1 + 4b, and therefore a

root of the polynomialX 2 – X – b, so the residue fieldE(
√
p)v must beK(α) = L.

In the complete discretely valued field (E(
√
p), v) both the valuation ring Ov and

its maximal ideal mv are existentially Lring-definable (without parameters), since for
a natural number n > 2 coprime to p a well-known application of Hensel’s Lemma
shows that

Ov = {x ∈E(
√
p) : ∃y(1 + pxn = yn)}, mv = {x ∈E(

√
p) : ∃y(1 + xn/p= yn)}.

Therefore the residue field L is (parameter-freely) existentially interpretable in
E(

√
p) (i.e., we have an interpretation satisfying the property of [15, Theorem

5.3.2 and Remark 3]), so the existential Lring-theory of E(
√
p) is undecidable.

(See [15, Theorem 5.3.2 and Remark 4] for generalities on transfer of decidability
under interpretations.) Consequently, the existential Lring-theory of E is likewise
undecidable, since E(

√
p) is quantifier-freely interpretable in E.

Lastly, consider the subfield Qp ⊆ F (given as the topological closure of the
subfield Q). Since the relative algebraic closure of Fp in Fv = K is finite and (F, v)
has uniformiser p, the fundamental equality for algebraic extensions of Qp (see for
instance [10, Proposition 1.4.6]) shows that the relative algebraic closure of Qp in F
is a finite extension of Qp, and therefore the same holds in E. Thus the algebraic part
of E is the same as the algebraic part of a local field of characteristic zero. The local
fields of characteristic zero have decidable first-order theory [22, Corollary 5.3], so
in particular it is decidable whether a given polynomial in Q[X ] has a zero in E. 	

Remark 5.2. The condition that the set of polynomials in Q[X ] with a zero in E
be decidable is occasionally phrased as E having “decidable algebraic part,” in the
sense that it allows to decide which elements of an algebraic closure of Q lie in E (up
to conjugacy). There is, however, a certain ambiguity in this expression, as it may
also be understood to assert that the field E ∩Q is decidable, i.e., has decidable full
first-order theory, which is a stronger condition. Our proof of Theorem 5.1 shows
that even this stronger condition is satisfied, since the algebraic part of a local field
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is an elementary substructure and therefore shares its (decidable) first-order theory
[22, Theorem 3.4 and Theorem 5.1].

Remark 5.3. In [3, Remark 7.6] it was asked whether there exists an existentially
undecidable henselian valued field of mixed characteristic with existentially
decidable residue field and pointed value group (i.e., value group with a constant
for the value of p). Theorem 5.1 provides an example for this phenomenon, as even
the full first-order theory of the value group Z is decidable [15, Theorem 3.3.8] (and
expanding by a constant symbol for v(p) does not change this, since any constant
in Z is definable).

It was previously pointed out that there must exist (non-discrete) examples of
valued fields with the desired property in [16, Remark 3.6.9], using an inexplicit
counting argument. However, the reason for existential undecidability of the
examples there is due to it not being decidable which one-variable polynomials
over Q have roots, unlike in our example.

The algebraic part has been known for some time as an obstruction in the
model theory of henselian valued fields of mixed characteristic (see for instance
[5, Corollary 1.6] and [3, Remark 7.4]). Our theorem shows that the obvious
attempt to repair the failure of the decidability statement [3, Corollary 7.5] in mixed
characteristic, by requiring a decidable axiom scheme describing the algebraic part,
still fails, even in the case of value group Z.

In the case of finitely ramified fields (generalising the situation of value group Z
in mixed characteristic), a satisfactory replacement for [3, Corollary 7.5] is obtained
in [2, Theorem 5.10]: here the obstruction from Theorem 5.1 is surmounted by
considering the residue field in a certain expansion of the language of rings.
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writing, as well as for comments on a draft version.
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01062 DRESDEN, GERMANY
E-mail: philip.dittmann@tu-dresden.de

https://doi.org/10.1017/jsl.2023.87 Published online by Cambridge University Press

https://ora.ox.ac.uk/objects/uuid:c5b04608-c6ff-4b15-b332-36cadf56144e
mailto:philip.dittmann@tu-dresden.de
https://doi.org/10.1017/jsl.2023.87

	1 Introduction
	2 A useful family of varieties
	3 The construction
	4 Existential decidability
	5 An existentially undecidable complete valued field

