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Abstract

Transparent, understandable, and persuasive recommendations support the electricity consumers’ behavioral change
to tackle the energy efficiency problem. This paper proposes an explainable multi-agent recommendation system for
load shifting for household appliances. First, we extend a novel multi-agent approach by designing and implementing
an Explainability Agent that provides explainable recommendations for optimal appliance scheduling in a textual and
visual manner. Second, we enhance the predictive capacity of other agents by including weather data and applying
state-of-the-art models (i.e., k-nearest-neighbors, extreme gradient boosting, adaptive boosting, Random Forest,
logistic regression, and explainable boosting machines). Since we want to help the user understand a single
recommendation, we focus on local explainability approaches. In particular, we apply post-model approaches local,
interpretable,model-agnostic explanation and SHapleyAdditive exPlanations asmodel-agnostic tools that can explain
the predictions of the chosen classifiers. We further provide an overview of the predictive and explainability
performance. Our results show a substantial improvement in the performance of the multi-agent system while at the
same time opening up the “black box” of recommendations.

Impact Statement

This application paper addresses the explainability side of the load-shifting recommendations aiming at energy
efficiency in residential households. Seeing the transparent and understandable recommendations daily will
increase the awareness of residents of their energy consumption and will encourage more climate-related actions
(supporting SDG 13). The shifted load will facilitate energy efficiency in the grid (SDG 7), foster energy
innovation toward sustainable development (SDG 9), reduce the environmental impact, and stronger the
households’ sustainability, making them inclusive, safe, and resilient (SDG 11).

1. Introduction

Europe faces a double urgency to increase energy efficiency: on the one hand, caused by the war in
Ukraine, and on the other hand, due to the continuous rise in electricity consumption (European
Commission, 2022). Tackling the energy efficiency problem through consumers’ behavioral change is
an obvious, however, challenging solution. People often need guidance and sometimes a soft nudge to put
the intentions into actions (Frederiks et al., 2015), for instance, to change the timing of appliance usage.
Recommender systems can suggest energy-efficient actions to facilitate such behavioral changes.
To increase trust in the recommendation system, and, thus, the acceptance rate of recommendations,
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users need to understand why and how the model makes its predictions (Luo et al., 2021; Sayed et al.,
2022). Thus, the recommendation system should be explainable.

Existing recommendation systems for enhancing energy efficiency in residential buildings vary in
approach and implementation. Pinto et al. (2019) introduce a multi-agent case-based reasoning system
that focuses on load curtailing. Ran and Leng (2019) propose a load-shifting strategy for optimizing
energy costs. Jimenez-Bravo et al. (2019) present a multi-agent system that offers load-shifting recom-
mendations. Sinha and De (2016) develop a load-shifting algorithm that prioritizes time-of-day tariffs,
offering potential cost savings and scalability. Machorro-Cano et al. (2020) introduce a home energy
management system that generates recommendations based on behavioral patterns.

However, the existing research on explainability in recommender systems for energy-efficient smart
homes is very scarce (Himeur et al., 2021). Zhang and Chen (2020) provide a thorough literature review
on explainability in recommender systems for other application domains. However, most existing
approaches are not applicable to the smart home area because of the missing data structures. Sardianos
et al. (2021) design an explainable context-aware recommendation system for a smart home ecosystem.
They show that displaying the advantages and the reasoning behind recommendations leads to a 20%
increase in acceptance rate. To the best of our knowledge, the issue of explainability in multi-agent
recommendation systems for energy-efficient smart homes has not been studied yet.

Our contributions are twofold. First, we suggest an explainable multi-agent recommendation system
for energy efficiency in private households. In particular, we extend a multi-agent approach of Riabchuk
et al. (2022) by designing and implementing an Explainability Agent that provides explainable recom-
mendations for optimal appliance scheduling in a textual and visual manner. Second, we enhance the
predictive capacity of other agents by including weather data and applying state-of-the-art models.
We also provide an overview of predictive and explainability performance.

2. Explainable multi-agent recommendation system

Riabchuk et al. (2022) introduce a utility-based context-aware multi-agent recommendation system that
provides load-shifting recommendations for household devices for the next 24 h. Their system includes
six agents: Price Agent (prepares external hourly electricity prices), Preparation Agent (prepares data for
the other agents), Availability Agent (predicts the hourly user availability for the next 24 h), Usage Agent
(calculates the devices’ usage probabilities for the prediction day), Load Agent (extracts the typical
devices’ loads), and Recommendation Agent (collects the inputs from the other agents and provides
recommendations). Themulti-agent architecture is flexible and can be easily integrated into existing smart
home systems. However, the cost of the simplicity of the approach (i.e., they use logistic regression for the
availability and usage predictions) is a relatively low prediction accuracy.

We address the limitations in Riabchuk et al. (2022) by enhancing the performance of the Availability
and the Usage Agents. In particular, we apply the K-nearest neighbors (KNN), extreme gradient boosting
(XGBoost), adaptive boosting (AdaBoost), and Random Forest to predict the availability and usage
probabilities in the smart home environment. Furthermore, we use logistic regression (Logit) and
explainable boosting machines (EBM) as inherently explainable models designed for interpretability
(Nori et al., 2019).

We justify our choice of advanced algorithms for the following reasons. First, the size of the dataset,
the complex feature space, and the nonlinear energy consumption patterns make it difficult for a linear
model such as linear regression to effectively capture the complexity. Second, our goal goes beyond
predictive accuracy. We aim at providing explainable recommendations to consumers, thereby encour-
aging behavioral changes to enhance energy efficiency. Advanced models such as Random Forest,
XGBoost, and EBM offer a balance between predictive power and interpretability that is crucial for our
application.

The explainability models are divided into local and global, depending on their capability to explain a
particular instance or the entire model. Since we want to help the user understand a single recommen-
dation, we focus on explainers of local models aiming at uncovering the reasons for the decision of a
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black-box model for a specific instance. We apply post-model approaches local, interpretable, model-
agnostic explanation (LIME) (Ribeiro et al., 2016) and SHapley Additive exPlanations (SHAP)
(Lundberg and Lee, 2017) as model-agnostic tools that can explain the predictions of the chosen
classifiers. In particular, LIME uses simple linear models to explain the black-box model and focuses
on explaining the prediction of a single instance of data in an interpretable and faithful manner. SHAP
explains the prediction of a black-box model by computing the contribution of each feature to the
prediction.

We propose an Explainability Agent that is called within the Recommendation Agent (see Figure 1).
To create an explanation for a recommendation, the Explainability Agent extracts feature importance from
the explainability models and provides them to the Recommendation Agent. To inform the user about
what causes the specific recommendation besides price, we design the explanation for a single device
recommendation to include two parts: usage and availability explanations. The usage explanation shows
which features lead to the specific device usage prediction for the day, whereas the availability
explanation describes which features drive the user availability prediction for the hour. We do not include
an explanation for the Load Agent since we do not consider the extracted typical load profile of every
shiftable device as informative to the users. As a result, the Recommendation Agent suggests the cheapest
starting hour within the hours of user availability for the shiftable devices that are likely to be used on the
prediction day with an explanation in text and visual form. The system provides no recommendations if
the predictions for the availability and usage probabilities are below the thresholds.

3. Experimental design

We use the REFIT electrical load measurement dataset (Murray et al., 2017). It contains the energy
consumption in Watts of nine appliances used in 20 households in the United Kingdom as well as the
aggregate energy consumption in each household over the period 2013–2015. Energy consumption
readings are recorded at 8-s intervals. We perform a number of preparation steps, including data
aggregation; data preparation (i.e., examining data for skewness, identifying outliers, handling outliers,
scaling the data); feature creation; andweather data integration. The energy consumption data have skewed
distributions, likely due to periods when appliances are switched off and not using energy. However, this
skewness is considered acceptable for the analysis since the focus is on periods when appliances are
actively in use.We handle the outliers in the energy consumption data through outlier truncationmethod to
ensure that extreme values do not influence the analysis.

To capture hidden patterns, improve predictions, and reveal insights beyond the raw data, we create
several types of features from the energy consumption dataset. The device usage features are binary
variables that indicate whether a device has been used in a given time period. These features are based on
the scaled energy consumption of each device and involve setting a threshold to account for noise in the
consumption data. The last usage feature calculates howmany time periods have passed since the last usage
of a device, providing insight into the frequency and recency of device use. The user availability feature is a
binary variable that indicates whether the user was available during a given time period. It is based on

Figure 1. Architecture of the explainable multi-agent recommendation system.
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the use of appliances that require user interaction (e.g., tumble dryer, washing machine, dishwasher).
The Time features include information such as the hour of the day, day of the week (i.e., index), day name,
month index, month name, andwhether the period falls on a weekend. The time lag features represent time
shifts for specific periods and features. For example, the availability lag and hour lag features provide
insight into how usage and time-related variables change over time intervals (e.g., lag of 1 h, 2 h, and 5 h).
These additional features enhance the analysis of energy consumption and user behavior, facilitating the
exploration of device usage, availability, and temporal patterns to gain insight into the factors that affect
household energy consumption.

Furthermore, the weather may be crucial for the use of some appliances in a household. Therefore, we
extend our dataset with specific weather features from the Meteostat (2022). In particular, we use the
following features: dew point (dwpt), relative humidity (rhum), air temperature (temp), average wind
direction (wdir), and average wind speed (wspd). The missing values are imputed using the KNN
algorithm.

We apply an exhaustive grid search over the algorithms mentioned in the previous section, excluding
the EBM. The latter is computationally expensive. Overall, 87 parameter combinations are tested twice
(with and without weather data) to quantify the benefit of including additional data. We use a KernelEx-
plainer for explaining Logit, AdaBoost, KNN, and Random Forest. For XGBoost, we use the fastest
version of the TreeExplainer—interventional feature perturbation (Lundberg et al., 2020).

To evaluate the performance of the multi-agent model, we apply multiple metrics depending on the
task. The Usage and the Availability Agents perform a classification task, and therefore, we evaluate their
area-under-the-ROC-curves (AUC). We evaluate each day by predicting probabilities of availability and
usage and compare them to the true values. The Load Agent is evaluated by investigating the mean
squared error (MSE) of the predicted load profile to real usages. We refer to Riabchuk et al. (2022) for
details. We do not make any changes to the prediction approach of the Load Agent and, therefore, we do
not report its performance evaluation.

With the evaluation of the explainability approaches, we aim at a quantitative comparison of the
individual explanations that the models offer. For this purpose, we use three metrics within the Explain-
ability Agent to reflect howwell the explainability approaches work in giving accurate local explanations
(Carvalho et al., 2019): accuracy, fidelity, and efficiency. Accuracy shows howwell the explainablemodel
predicts unseen instances compared to the real outcome.We use theAUC as ameasure to compare the true
labels with the predictions from the explainers. Fidelity determines how close the prediction from the
explainable model is to the black-box model’s prediction. In other words, fidelity describes how well the
explainability model can imitate the prediction of the black-box model. Additionally, we calculate the
mean absolute explainability error (MAEE) for every approach tomeasure how close is the decision of the
black-box model to the explainability approach. The MAEE represents how well the explainability
approaches are calibrated. The efficiency metric describes the algorithmic complexity of the explain-
ability approaches when calculating the local explanations. For this purpose, we measure the time that
each method needs to calculate all the local explanations for a day and average the values for all
calculations.

4. Results

Table 1 provides the performance evaluation results for the Availability and Usage Agents without
weather data. The models show relatively stable performance for the Availability Agent, with AdaBoost
slightly outperforming the others. For the Usage Agent, we observe a much greater variation in
performance across devices, with the highest AUC achieved by the KNN model. The inclusion of
weather data (see Table 2) leads to slight performance improvements for the Availability Agent, but a
significant performance increase for the Usage Agent. Without the additional data, most models achieve
an AUC of around 0.7 for the Usage Agent. However, the inclusion of the weather data allows for a
substantial increase in performance toward 0.9. Complex models in particular benefit considerably from
the inclusion of the data, outperforming the approach of Riabchuk et al. (2022).

e7-4 Alona Zharova et al.

https://doi.org/10.1017/eds.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2024.8


Specifically, the Random Forest model profits the most from additional data and consistently
outperforms other models for both agents and devices. We conclude that it is not sufficient to use either
a more complex model or weather data. Instead, it is the combination of both that leads to significant
performance improvements.

Table 1. Performance evaluation results (in AUC) for the Availability and the Usage Agents with tuned
hyperparameters excluding weather data

Model Availability Usage TD Usage WM Usage DW

Logit 0.838 0.702 0.689 0.676
Random Forest 0.835 0.713 0.683 0.715
AdaBoost 0.849 0.710 0.701 0.680
KNN 0.826 0.738 0.718 0.779
XGBoost 0.845 0.712 0.682 0.710
EBM 0.846 0.707 0.683 0.700

Abbreviations: TD—tumble dryer, WM—washing machine, DW—dishwasher.
The best-performing model is in bold.

Table 2. Performance evaluation results (in AUC) for the Availability and the Usage Agents with tuned
hyperparameters including weather data

Model Availability Usage TD Usage WM Usage DW

Logit 0.836 0.728 0.703 0.684
Random Forest 0.859 0.928 0.932 0.929
AdaBoost 0.850 0.779 0.777 0.788
KNN 0.830 0.760 0.758 0.785
XGBoost 0.852 0.922 0.925 0.922
EBM 0.854 0.803 0.822 0.842

Abbreviations: TD—tumble dryer, WM—washing machine, DW—dishwasher.
The best-performing model is in bold.

Table 3. Performance evaluation results (in AUC) for Random Forest for the Availability and the
Usage Agents for 10 households

Household Availability Usage TD Usage WM Usage DW Usage WM2 Usage WD

1 0.795 0.949 0.923 0.942
2 0.827 0.892 0.932
3 0.859 0.927 0.934 0.927
4 0.860 0.929 0.871
5 0.816 0.910
6 0.826 0.914 0.948
7 0.881 0.950 0.945 0.945
8 0.675 0.921
9 0.765 0.926 0.944 0.920
10 0.820 0.950

Abbreviations: DW, dishwasher; TD, tumble dryer; WD, washdryer; WM, washing machine; WM2, second washing machine.
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To assess the stability of the Random Forest model, we further analyze the AUC across 10 households
in Table 3 (see Table A1 in Appendix for performance evaluation results with logistic regression). The
results indicate consistent performance for both the Availability and the Usage Agents, with an average
AUC of 0.812 and 0.918, respectively, across all households. Based on these findings, we utilize the
Random Forest model with the tuned hyperparameters obtained from the grid search for the prediction
tasks of both agents.

4.1. Explainability

We examine the results of the explainability evaluation by using the predictions from LIME and SHAP
(see Tables 4 and 5). SHAP generally performs better according to the higher accuracy and fidelity
compared to LIME. Most strikingly, since the forecasts of the prediction algorithms and SHAP are so
similar, the fidelity is almost perfect. In other words, SHAP works very well for mimicking the local
behavior of the prediction model. The accuracy of LIME for the Usage Agent is not as high. The possible
reason for this is that the predictions, for example, for AdaBoost, are very close to the chosen cutoff of 0.5
to create target values of the prediction. For example for the AdaBoost model, LIME is only off by an
average of 0.0311 AUC points, sometimes exceeding the cutoff and assigning the values to the wrong
class. For the Availability Agent, the poorer calibration of LIME does not have too much of an impact as
the prediction values are more extreme. Furthermore, SHAP produces predictions faster than LIME in
most cases. Therefore, we choose SHAP over LIME for our explainability task because of its higher
performance on the metrics.

Since there is no significant difference between the fidelity of SHAP across the models, we apply
SHAP with one of the most consistent and stable algorithms. The AdaBoost model shows the highest

Table 4. Explainability evaluation results for LIME and SHAP for the Availability Agent for 10
households

LIME SHAP

Model Accuracy Fidelity MAEE Duration* Accuracy Fidelity MAEE Duration*

Logit 0.8371 0.9890 0.0265 73.748 0.8362 1 0 2.147
KNN 0.8295 0.9747 0.0194 79.695 0.8386 1 0 20.759
AdaBoost 0.8369 0.9349 0.0035 50.975 0.8479 1 0 52.103
Random Forest 0.8411 0.9761 0.0313 107.363 0.8451 1 0 64.853
XGBoost 0.8378 0.7971 0.1848 310.551 0.8366 1 0 0.717

*The duration is only comparable within the model since the evaluation was run on different machines with different background tasks.

Table 5. Explainability evaluation results for LIME and SHAP for the Usage Agent for 10 households

LIME SHAP

Model Accuracy Fidelity MAEE Duration* Accuracy Fidelity MAEE Duration*

Logit 0.6761 0.8215 0.1454 2.582 0.7049 1 0 0.084
KNN 0.6928 0.8101 0.1858 2.864 0.7611 1 0 0.852
AdaBoost 0.5757 0.5934 0.0311 1.859 0.8254 1 0 0.813
Random Forest 0.7101 0.7988 0.1203 3.682 0.8726 1 0 0.957
XGBoost 0.6763 0.6516 0.2705 10.222 0.9353 1 0 0.230

*The duration is only comparable within the model since the evaluation was run on different machines with different background tasks.
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performance for the Availability Agent, followed by the Random Forest with a slightly lesser perform-
ance. For the Usage Agent, the best model is the XGBoost, closely followed by the Random Forest. Thus,
the Random Forest model has a consistently good performance across agents and is therefore selected as a
final model for the prediction task.

The reported SHAP runtimes within the Random Forest model for the Availability and Usage Agents
are 64.853 and 0.957, respectively (see Tables 4 and 5). To expedite the explainability evaluation
(i.e., decrease the duration) while retaining accuracy, we conduct further runs with the TreeExplainer.
This led to a significant reduction in the SHAP runtimes for Availability and Usage Agents to 0.558 and
0.0357, respectively. It is noteworthy that this alteration in runtime has minimal impact on the other
metrics. Consequently, we utilize SHAP and Random Forest with TreeExplainer as the ultimate model.

4.2. Explainable recommendation

The recommendation for the next 24 h is provided once a day at the same time specified by the user. To
create an explanation for the recommendation, we create a feature importance ranking using SHAP
values. We provide two different explanations for the Availability and the Usage Agents. We separate the
features into two categories for each of the agents: features based on weather data and non-weather
features. The Recommendation Agent embeds the two most important features of each group into an
explanation sentence. The usage explanation is provided for each device (if its usage is recommended)
since their predictions differ. Additionally, we adapt the plots provided by SHAP to inform the user about
the specific impact of the features.We only display themost important features to shorten the explanation.
We show an exemplary explainable recommendation in Figure 2.

5. Future work

In our future work, we aim to create an integration of the explainable multi-agent recommendation system
for the existing open-source smart home platform Home Assistant. With around 330,000 active users
worldwide (Home Assistant, 2024), it provides a viable real-world environment for testing our solution
within selected households. We are going to modify the recommendation system to work with real-time
data streams from the smart home and include a user feedback option. This research work on an
explainable multi-agent recommendation system lays a solid foundation for further evaluation of the
interpretability, comprehensibility, and understandability of the recommendations using user feedback.

6. Conclusions

This paper presents an explainable multi-agent recommendation system aimed at enhancing energy
efficiency in private households. Our empirical results show significant performance improvements by

Figure 2. Exemplary explainable recommendation.
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incorporating weather data into the recommendation system. In particular, we observe notable improve-
ments in AUC values, especially for the Usage Agent, where performance increases from around 0.7 to
approximately 0.9. This highlights the importance of leveraging weather data to improve energy
efficiency recommendations.

In the context of explainability, our evaluation highlights the superiority of SHAP over LIME, with
SHAP exhibiting higher accuracy and fidelity. Particularly, SHAP’s ability to closely mimic the local
behavior of the prediction model contributes to its selection as the preferred explainability method.
Furthermore, our findings consistently identify the Random Forest model as a strong performer across
different agents and devices. The ability of this model to consistently achieve high performance
underscores its suitability for the prediction tasks within the recommendation system.

To conclude, our study demonstrates that generating load-shifting recommendations for household
appliances as explainable enhances the transparency and trustworthiness of the system. The comprehen-
sible and persuasive nature of these recommendations facilitates consumers behavior change, making
them more inclined to address the energy efficiency problem.
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Appendix

Table A1. Performance evaluation results for logistic regression for the 10 households from Riabchuk
et al. (2022)

Availability AUC Usage AUC Load MSE

Household 0 1 2 0 1 2

1 0.72 0.52 0.45 0.49 1,224.45 511.49 3,021.88
2 0.77 0.60 0.80 – 320.81 14,578.80 –

3 0.80 0.65 0.65 0.65 24,907.50 890.33 314.84
4 0.82 0.67 0.52 – 0.80 1,793.77 –

5 0.76 0.68 – – 37,982.21 – –

6 0.77 0.53 0.66 – 424.78 6,032.65 –

7 0.83 0.79 0.80 0.81 43,673.35 336.83 6,845.26
8 0.62 0.77 – – 0.35 – –

9 0.67 0.60 0.57 0.78 30,711.30 14.36 5,480.13
10 0.77 0.74 – – 647.57 – –

The table is reproduced here from Riabchuk et al. (2022) to enable the direct comparison with our results in Tables 3. Legend for mapping the shiftable
devices 0–2 is provided in Table A2.
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Table A2. Legend for mapping the shiftable devices to an integer index from Riabchuk et al. (2022)

Devices

Household 0 1 2
1 Tumble dryer Washing machine Dishwasher
2 Washing machine Dishwasher –

3 Tumble dryer Washing machine Dishwasher
4 Washing machine (1) Washing machine (2) –

5 Tumble dryer – –

6 Washing machine Dishwasher –

7 Tumble dryer Washing machine Dishwasher
8 Washing machine – –

9 Washer dryer Washing machine Dishwasher
10 Washing machine – –
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