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SECOND-ORDER GATEAUX
DIFFERENTIABLE BUMP FUNCTIONS
AND APPROXIMATIONS IN BANACH SPACES

D. McLAUGHLIN, R. POLIQUIN, J. VANDERWERFF AND V. ZIZLER

ABSTRACT  In this paper we study approximations of convex functions by twice
Gateaux differentiable convex functions We prove that convex functions (respectively
norms) can be approximated by twice Gateaux differentiable convex functions (respec-
tively norms) 1n separable Banach spaces which have the Radon-Nikodym property and
admut twice Gateaux differentiable bump functions New characterizations of spaces
1somorphic to Hilbert spaces are shown Locally uniformly rotund norms that are limits
of C*-smooth norms are constructed in separable spaces which admit C¥-smooth norms

1. Introduction. It is known that the existence of a twice Fréchet differentiable
bump function on a Banach space X has a profound impact on the structure of X and thus
is a very restrictive condition on X. For example the space (3°;2, [})> has a norm with
modulus of smoothness of power type 2 yet admits no twice Fréchet differentiable bump
function; see e.g. [DGZ,, Chapter V]. It is also known that there is a norm on /, which
cannot be approximated uniformly on bounded sets by functions with uniformly contin-
uous second derivatives ([V]). However, it seems to be unknown whether every norm
on I; can be approximated uniformly on bounded sets by twice Fréchet differentiable
convex functions.

In Section 2, it is shown that the situation is different in the case of second-order
Gateaux differentiability. Motivated by a recent paper of Borwein and Noll ([BN]), we
show that if a separable Banach space admits a norm with modulus of smoothness of
power type 2, then convex functions (respectively norms) can be approximated by twice
Gateaux differentiable convex functions (respectively norms). Thus, such approxima-
tions are valid, for example, in (32, [})>. Moreover, using techniques of [BN] and
[DGZ,], it is proven that a space with the Radon-Nikodym property (RNP) admits a
norm with modulus of smoothness of power type 2 provided it admits a continuous twice
Gateaux differentiable bump function; see [Bou] for properties of RNP spaces. As an ap-
plication of this, the isomorphic characterizations of Hilbert spaces in [DGZ,;] and [F]
are improved.

The third section shows that a separable Banach space X admits a locally uniformly
rotund norm which is a limit of C*-smooth norms provided X admits a C*-smooth norm.
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SECOND-ORDER GATEAUX DIFFERENTIABLE FUNCTIONS 613

All Banach spaces (in short spaces) considered here are over the real field. We will
say a function ¢: X — R is twice Gdteaux differentiable at x € X provided that ¢'(y)
exists for y in a neighborhood of x, and that the limit

1
¢"(0h k) = Tim (¢'Ce+th) — ¢'(x)) (h)

exists for each 4,k € X, and that ¢”(:,-) is a continuous symmetric bilinear form. A
function f: X — R has a second-order directional Taylor expansion at xy if

Fxo+th) = f(xo) +1(y", h) + (t2/2)(Th, h) + o(*) (t—0)

where T: X — X* is a bounded linear operator and y*: X — R is continuous and linear;
of. [BN].

Recall that a C*-smooth function is a real-valued function which is continuously k-
times Fréchet differentiable. A norm ||- || is locally uniformly rotund (LUR) if ||x—x, || —
0, whenever 2||x||? + 2||x,]|> — |lx + x,]|> — 0. A norm is uniformly rotund (UR) if
||, — yull — O, whenever {x,} is bounded and 2||x,||* + 2||yal|* = [|Xx + yul|> — 0. We
will use the notation By = {x: ||x|| <1}, Sx = {x: ||x]| = 1}, B, = {x: ||x]] < r} and
B(xp,€) = {x: ||x — xo|| <€}

The modulus of smoothness px(7) of (X, || - ||) is defined for 7 > 0 by

or = sup{ 3 (e | + el 22 ] = 1] < 7};

ox(7) is of power type p, for 1 < p < 2, if there exists a C > 0 such that px(7) < CrP.
In particular, such a norm is uniformly smooth, that is lim, o p(1) /7 = 0. Recall that X
admits a uniformly smooth norm if and only if X is super-reflexive and admits a UR norm
(IEn, p. 287]); in addition, the UR norms are dense among all norms on X (see e.g. [B,
Exercise 1, p. 211]). From the proof of [FWZ, Lemma 2.4] it is easy to see that a norm
|| - || on X with modulus of smoothness of power type 2 has Lipschitz derivative on its
sphere. Moreover, a direct computation then shows that || - ||? has Lipschitz derivative on
all of X; the details are in [DGZ;, Chapter V1. Finally, a norm || - || is Lipschitz smooth
at x # 0 if there exists a C > 0 so that ||x + &| + ||x — k|| — 2||x|| < C||h||> forall h € X
(¢f. [FWZ, Lemma 2.4]).

2. Second-order Giteaux differentiability and approximation. The following
theorem summarizes our main results.

THEOREM 2.1.  For a separable Banach space X, the following are equivalent.

(a) X has the RNP and admits a continuous twice Gdteaux differentiable bump func-
tion.

(b) X has the RNP and admits a continuous bump function with second-order direc-
tional Taylor expansion at each point.

(c¢) X admits a norm with modulus of smoothness of power type 2.
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(d) Every norm on X is a limit of UR norms which are twice Gateaux differentiable
on X \ {0} and have moduli of smoothness of power type 2.

(e) Every convex function which is bounded on bounded subsets of X can be ap-
proximated uniformly on bounded sets by twice Gateaux differentiable convex
functions whose first derivatives are also Lipschitz.

REMARK. Notice that (a) does not follow trivially from (b). Indeed, there are bump
functions that have second-order Taylor expansions and yet do not possess a second-order
Gateaux derivative; consider the function 7> cos(1 / 1) (cf. [BN, Section 3, Remark 2]).
However, this cannot occur for convex functions as was demonstrated in [BN, Theo-
rem 3.1]. Also, it is relatively easy to obtain any of the first three conditions of the above
theorem from either of the last two. The main effort will involve showing that (b) implies
(c) and that (d) and (e) can be obtained from (c).

Some preliminary definitions and results will be given before proving Theorem 2.1.

DEFINITION. For 1 < p < 2 areal-valued function ¢ defined on a Banach space X
has directional modulus of smoothness of power type p at x € X if for each h € Sy there
exist C > 0 and 6 > O such that
2.1 |¢p(x + th) + ¢(x — th) — 2¢(x)| < C# whenever ¢ € [0,6].

If this happens for all x € X, we say that ¢ has pointwise directional modulus of smooth-
ness of power type p. If the constant C in (2.1) does not depend on A, we say that ¢ has
pointwise modulus of smoothness of power type p at x.

The function ¢ is said to be directionally Lipschitz at x if there exists a6 > 0 such
that given 2 € Sy there is a C, > 0 for which |¢(xo + th) — ¢(x0)| < Ci|t| whenever
1| <6.

FACT 2.2.  Suppose ¢ is continuous and pointwise directionally Lipschitz at xo. If
¢ has directional modulus of smoothness of power type p at xo, then so does 1 = ¢~ >
provided ¢(xp) # 0.

PROOF. Let f(x) = ¢~ '(x). Choose § > 0 and K > 0 so that lf(x)] < K whenever
|x = xo]| <8&. Fix h € Sy, then for 0 <t < §, we have:

[ (xo + th) + f (xo — th) — 2f (x0))|
< KP[¢(xo + th)d(xo) + d(xo — th)d(x0) — 26(xo + th)(xo — th)|
= K3[¢(xo + th)[26(x0) — d(x0 + th) — ¢(xo — th)]
+[$(xo — th) — $(xo + th)] [$(x0) — Hlxo + th)]|
= o).

By the above inequality and the fact that f is directionally Lipschitz at xo, for0 <t < ¢
we obtain:

[F%(x0 + th) + f2(xo — th) — 2f*(xo)|
= |[f (xo + th) + f (xo — th) — 2f (x0)] [f (xo + th) + f(x0)]
+ [f(xo — th) — f(x0)] [f (xo — th) — f(x0 + th)]|
= O0({). =
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The following proposition shows that the bump function in [DGZ;, Theorem II1.1]
need only have a pointwise directional modulus of smoothness.

PROPOSITION 2.3.  Assume that X has the RNP. If X admits a continuous pointwise
directionally Lipschitz bump function ¢ with pointwise directional modulus of smooth-
ness of power type p, then X admits an equivalent norm with modulus of smoothness of
power type p.

PROOF. We essentially follow the proof of [DGZ,, Theorem III.1].
First define 1: X — RU{00} by ¥i(x) = ¢ 2(x) if p(x) # 0 and /(x) = 00 if ¢(x) = 0.
Let ¢* be the Fenchel conjugate function of 1/ i.e. for y € X*

¥ (y) = sup{(y,x) — ¥(x) : x € X}.

Because 1/(x) = 0o outside a bounded set, the function ¢ is finite, convex and w*-lower
semicontinuous on X*. Because X has RNP, the function ¢* is Fréchet differentiable at
each point of a norm dense Gj subset Q of X* (¢f. [C]) with derivative in X (x* is in the
subdifferential of 1 at x if and only if x is in the subdifferential of ¢* at x*; see [ET,
Corollary 5.2, p. 22]). Let ¥ denote the Fenchel conjugate of ¢* on X. It is shown in the
proof of [DGZ,, Theorem IIL1] that if yo € Q and xo = (") (30), then (xo, ¥(x0)) is
a strongly exposed point of the epigraph of ¢ (exposed by (yy, —1)). Because of strong
exposedness, the point (xo, &(xo)) actually belongs to the epigraph of ¢ and this means
that 1(xg) = ¥(xy) < oo. By Fact 2.2, 1 has directional modulus of smoothness of
power type p at xo. Because v is convex, majorized by 1 and agrees with v at xo, it is
straightforward to verify ) has directional modulus of smoothness of power type p at xo.

We can now use the argument in [BN, Proposition 2.2] to show that ¢ has modulus
of smoothness of power type p at xo. Indeed, choose § > 0 so that 1 is bounded and
continuous on B(xy, 0). Define F, by

F, = {h € By : Y(x + th) + U(xo — th) — 2¢(x) < n||th||P for 0 <t < §}.

Now F, is closed; moreover U2 | F,, = By because J) is bounded on B(xy,d) and has
directional modulus of smoothness of power type p at xy. According to the Baire Category
Theorem, there is a neighborhood V of a point Ay, in the interior of By, and n an integer,
such that

V(xo + th) + P(xg — th) — 2U(xo) < n||th||P forallh €V, 0<rt<é.

Consider the cone generated by taking the convex hull of —A¢ and V. This cone contains
B, for some r > 0. For some k > n, by convexity one has,

(2.2)  U(xo +th) + P(xo — th) — 20(xo) < k||th||F forall |A|| <r, 0<t<6.
Because ¥ is convex, from (2.2) it follows that ¥/(xp) exists and equals y and that

[P(xo + h) — ¥(x0) — (yo, h)| < nl|h||P for ||h]| < ér.
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To complete the proof of Proposition 2.3, one need only reproduce (word for word)
the proof of [DGZ,, Theorem III.1] starting form equation (4). The argument shows that
using the Baire Category Theorem we can produce an equivalent norm on X* which
has modulus of rotundity of power type (1 — p~!)~!. By duality X admits a norm with
modulus of smoothness of power type p; see [B, Lemma 3, p. 208]. ]

REMARK. It is immediate that any function with a second-order directional Taylor
expansion at xg is directionally Lipschitz at xy and has directional modulus of smoothness
of power type 2 at xp. In particular, Proposition 2.3 (with p = 2) is valid for RNP spaces
admitting continuous twice Géteaux differentiable bump functions.

We now develop some results concerning the approximation of convex functions. In
what follows f og denotes the infimal convolution of the convex functions f and g on a
Banach space X. In other words, fog(x) = inf{f(y)+ g(x—y) : y € X}.

LEMMA 2.4.  Suppose X is a Banach space and let f be a convex function on X which
is bounded on bounded sets. If {gi} is a sequence of convex functions such that g(0) < 1
and gi(x) > k||x|| — %for all x € X, then fag, — f uniformly on bounded subsets of X.

PROOF. Let r > 0 and suppose that f has Lipschitz constant K on B,,;. For xy € B,
fixed and for each k we can choose y, so that fog,(xo) > f(vi) +gr(xo — yi) — % For any
k > K+ 1 withk > 3 we have

1
S (x0) + % = f(x0) + &x(0) = fogx(x0)

1

2.3) > fOn) + gilxo — yi) — z

2
> f) +klxo — wel| — P

Let Ay € 9f (xp), then ||Ag||* < K since f has Lipschitz constant K on B,.;. Because
FOr) —f(x0) = Ao(yk) — Ao(xo), we have
Fx0) — ) < (|80l [lyx — xoll < K[y — xol-
Thus it follows from (2.3) that

3
Kllve = xoll + 3 > Ko — 3l

In other words,

3
— < -
%0 = well < K
In particular, y; € B,y and so [f(y) — f(x0)| < K||yx — xo||. From this we obtain
2 2
SO +kllxo — yell = = > f(x0) — Kl|xo0 — il + kllxo — il — =
k k
(2.4) )
> fxo) — =
> f(xo) A
Clearly the lemma follows from (2.3) and (2.4). =

In the following proposition, part (a) generalizes [BN, Theorem 5.2(1)] while part (b)
is well-known (see e.g. [B]) and is given here for the reader’s convenience.
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PROPOSITION 2.5. Let X be a Banach space which has a norm with modulus of
smoothness of power type 2.
(a) Any convex function f which is bounded on bounded subset of X can be approxi-
mated uniformly on bounded sets by convex functions with Lipschitz derivatives.
(b) Every norm on X can be approximated by norms with moduli of smoothness of
power type 2.

PROOF. Let || - || have modulus of smoothness of power type 2. Then || - ||> has
Lipschitz derivative on all of X; hence so does g; where g;(x) = k*||x||?. Easily gx(x) >
k||x|| — ¢ for all k and g(0) = 0, therefore fog, — f uniformly on bounded sets by
Lemma 2.4.

To see that f; = fog, has Lipschitz derivative for each k we use the Mean Value

Theorem to choose C; > 0 such that
(2.5) gk(x +h) + ge(x — h) — 2g,(x) < Cel]|?

forall x,h € X; cf. [FWZ, Lemma 2.4]. Fix an arbitrary xo € X. Since X is reflexive we
choose yj so that fi(xo) = f(yx) + gx(xo — v¢)- Then, using (2.5), for any & € X we have

Jilxo +h) + filxo — h) — 2fixo) < f(ye) + &lxo +h — yi) +F (i) + 8k(xo — h — i)
= 2(f0) + gkl — yo))
= g(xo — yx + h) + gi(xo — yi — h) — 2gi(x0 — yx)
< Gyl

Since C; does not depend on xy, it follows from the proof of [FWZ, Lemma 2.4] (see
[DGZ,, Chapter V]) that f; is Lipschitz. This proves (a).

To see (b), for a given norm | - | let f = | - |2 Then by (a) the norms | - |, = (fog)?
have moduli of smoothness of power type 2 and converge to | - | uniformly on bounded
sets. u

To obtain approximating functions which are twice Gateaux differentiable we need a
lemma whose proof is almost identical to the proof of [FWZ, Theorem 3.1].

LEMMA 2.6.  Let X be a separable Banach space and let ¢ > 0 and r > 0 be given.

(a) Iff is a convex function whose first derivative is Lipschitz, then there is a convex
function g such that |g(x) — f(x)] < € for all x € B, and g is twice Gdteaux
differentiable with Lipschitz first derivative.

(b) If|| - || is a norm with modulus of smoothness of power type 2, then there is a norm
||l such that (1 —e)||x|| < ||x||i < (1+¢€)||x||forallxand||-||: is twice Gateaux
differentiable on X \ {0} and has modulus of smoothness of power type 2.

PROOF. To begin the proof we fix ¢ > 0 and » > 0. Let C € R be such that f
is Lipschitz with constant C on B,.;, and select a set {h,»},?go dense in Sy. Next, fix a
C*°-smooth function ¢y: R — R such that ¢, is nonnegative and even, vanishes outside
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[5¢6 3¢ and satisfies Jg ¢o = 1. Setting fo = f and ¢, = 2"¢o(2"t) fort € R, n > 1, we
define a sequence of functions {f,: X — R}, by

fn(x) = f() (x - i tlhl) ﬁ ¢t(tt)dt0 o 'dtm
=0 =0

R+l

As in the proof of [FWZ, Theorem 3.1] there is a function g: X — R such that f,, —
g uniformly on bounded sets and g is twice Gateaux differentiable with Lipschitz first
derivative.

Moreover, for x € B, we have

f(x) —g)| = li’fn'/Rm [fo(x) —fo (x - ‘;)t,h,)] ]j)(b;(t,)dto o d,

< / C
= D/

SCE-Cze.

n
> b,

1=0

H ¢t(tz) dtO T ‘dtn
1=0

In case (b) where the functionf is a norm we set fo(x) = ||x||. It follows that the func-
tion g as obtained above is convex and even. By (a) choose g so that g(x) &€
[Jx]I> = € ||x||* + €] whenever ||x]| < 5. If weset B = {x € X : g(x) < 16} then
as in [FWZ] the Minkowski functional of B is an equivalent norm | - | which is twice
Gateaux differentiable on X \ {0} and has modulus of smoothness of power type 2. Let
I-lli = 4|-|.Now ||x||; = 4if and onlyif g(x) = 16 which implies 16—¢ < ||x]|* < 16+¢.
Therefore, (1 — €)||x|| < |lx|li < (1 +¢)||x|| forallx € X. .

PROOF OF THEOREM 2.1. It is obvious that (a) = (b), while (b) = (c) follows from
Proposition 2.3. Next it is shown that (¢) = (d).

STEP 1. If X admits a norm with modulus of smoothness of power type 2, then every
UR norm is a limit of UR norms with moduli of smoothness of power type 2.

Let | - | be UR and let € > 0. By Proposition 2.5(b) choose norms | - |, with moduli
of smoothness of power type 2 so that (1 — €)|x] < |x|, < |x] and | - |, — | - |. Choose
C, > 2 sothat |x + k|2 + |x — h|2 — 2|x|2 < C,|h|? for all x,h € X and define ||| - ||| by

o)

sl = (joff +e 2

Easily [||x+ A||% + || x — A[||> — 2]|x]||*> < (C\ + D)|||A||? for all x,h € X and (1 — €)|x] <
lIxlll < (1 + €)|x|. To see that ||| - ||| is UR, suppose that

20l1xalll? + 2[[1yalll* = [ll20 + yalll* — 0.
From this it follows, for each k, that

2|x,,|,% + 2|Yn|/% - |xn +)’n|z — 0.
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Thus,
2|x,,|2 +2|y,,|2 — |xn +y,,|2 — 0.

Therefore |x, — y,| — O which implies that |||x, — y,||| — 0. That is, ||| - ||| is UR.

STEP 2. If the initial norm in Lemma 2.6(b) is UR, then so is the norm in the con-
clusion.

Let | - | be UR with modulus of smoothness of power type 2. By uniform rotundity, for
afixed r > 0, given & > 0 there exists ¢ > 0 so that 2|x|2+2|y|?> > |x+y|? +4¢ whenever
|x| <r+1,|y| <r+1and|x—y| > 4. Hence using | - | to construct the functions f, as
in the proof of Lemma 2.6, for |x — y| > é and |x| <,

#(57) = heo

- JRn+!

y| < r, we have

+y n
)ﬁ_l — Z t,h,
2 1=0

X — Z:l:() Lh, + y— Zf'zo th,
2 2

I R M s
< (—' — tn, +*} — Lh,
— JRn+l 2X 1=ZO 2y I—ZO

1 1
= S50+ 3 —c.

2 n
1 ¢t dro. .. dt,
=0

2

ﬁ o(t)dty. .. dt,
1=0

2 n
—e) 6@ dro... dt,
1=0

Now f, — f for some f, therefore
x+y 1 1
f(T) S S+ 5f0) e

Let B = {x : f(x) < M} be the unit ball of some norm || - || we will show that || - || is
UR. Now B C {x: |x| <r} for some r > 0. Given ¢ > 0, there exists an ¢ > 0 so that

xX+y 1 1
f(—2—) Sif(x)"'if@)—ESM—e

whenever |[x — y|| > 6 and x, y € B. Since f is convex and bounded on bounded sets, it
is certainly uniformly continuous on B. Thus there is an n > 0 such that ||ju — v|| < g
and u, v € B imply |f(u) — f(v)| < €. Hence

x+y

flaem(32) <r(52) +e<m.

This implies
G PuE
2 17 1+

whenever x, y € B and ||x — y|| > é. Thus || - || is UR. This finishes Step 2.

Finally, since the UR norms are dense among all norms in X, Step 1, Step 2 and
Lemma 2.6(b) show that (¢) = (d).

One obtains (d) = (e) immediately from Proposition 2.5(a) and Lemma 2.6(a). To see
that (e) = (a), notice that (e) easily implies that X admits a continuous twice Gateaux
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differentiable bump function with Lipschitz Fréchet derivative and therefore is super-
reflexive; see [FWZ, Theorem 3.2]. It is also easy to directly construct a norm with mod-
ulus of smoothness of power type 2 using (e) and the Implicit Function Theorem. L]

REMARK. (a) If f is globally Lipschitz with Lipschitz constant K and g is as in
Lemma 2.4, then arguing as in inequalities (2.3) and (2.4) for any xy € X we have

1 2
fo)+ 7 = foglxo) > flxo) +(k — K)llxo — il — T

Thus the approximation is uniform on all of X. Moreover in Lemma 2.6(a) the approxi-
mation is uniform on all of X provided the given function f is globally Lipschitz. There-
fore the approximation in Theorem 2.1(e) will be uniform on all of X provided the initial
function is globally Lipschitz.

(b) Variants of Proposition 2.5 are also valid, for example, in spaces which admit
uniformly smooth norms or norms whose derivatives are o-Holder on the sphere and for
C'-smoothness in reflexive spaces.

(c) Given f a convex function bounded on bounded sets of X, we construct in The-
orem 2.1(e), Lemma 2.4, and Proposition 2.5 a sequence of convex functions {fk} con-
verging uniformly to f on bounded sets (in Theorem 2.1(e) the f;’s are twice Gateaux
differentiable and in Proposition 2.5 they have Lipschitz derivative). It is easy to show
that uniform convergence on bounded sets implies Mosco-convergence of the sequence
{fi}- Recall that {f; } Mosco-converges to f if for every x € X we have

(2.6) Vx, — x (weakly), f(x) < liminff(x;)
dx — x (innorm),  f(x) > limsup fi(xx)

In our case, to establish that f; Mosco-converges to f we need only verify (2.6). To
this end let {x;} be a sequence weakly converging to x. Because the sequence is norm
bounded, for a fixed € > 0 we have that f;.(x;) > f(x;) — € for all large k. Thus

liminf f;(x,) > liminf f(x);
moreover, because the function f is weakly lower semicontinuous, it follows that
lim inf fi(xx) > f(x).

Since the spaces X we are dealing with are reflexive, the fact that the sequence {f}
Mosco-converges to f has many interesting and valuable properties, for example

X £3
f¢ Mosco-converges to f~, and

if x;, € argminf; with x; — x then x € argminf,

where A* is the conjugate of 4 (see [ET]) and argmin £ is the set of minimizers of . For
a complete survey on Mosco-convergence we refer the reader to [A].
We conclude this section with some isomorphic characterizations of Hilbert spaces.
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COROLLARY 2.7.  Assume either X or X* has the RNP. If both X and X* have contin-
uous pointwise directionally Lipschitz bump functions with pointwise directional moduli
of smoothness of power type 2, then X is isomorphic to a Hilbert space.

PROOF.  From Proposition 2.3 it follows that that X is super-reflexive. Therefore we
are in a situation where both X and X* satisfy the hypothesis in Proposition2.3. Applying
Proposition 2.3 to both X and X*, we conclude that both X and X* have equivalent norms
with moduli of smoothness of power type 2. If Y is a separable subspace of X, then
Y* admits a twice Géteaux differentiable norm by [FWZ, Theorem 3.1]. Thus [FWZ,
Theorems 2.7 and 2.8] show that Y is isomorphic to a Hilbert space. It follows that X
is isomorphic to a Hilbert space because Hilbert spaces are separably determined—this
can be shown directly or one can use Kwapien’s theorem ([K]). n

It has recently been shown that a Banach space which admits a continuous twice
Gateaux differentiable bump function is an Asplund space, therefore the assumption that
X or X* has the RNP is redundant in Corollary 2.7 in the case that one of the bump
functions is twice Gateaux differentiable; the details are in [V>].

Recall that in [F], Fabian defined an LD-space to be a Banach space on which every
continuous convex function has a dense set of Lipschitz smooth points. Proposition 2.3
can be used to obtain the following improvement of [F, Theorem 3.3].

COROLLARY 2.8. If X (X*) admits a continuous bump function with pointwise di-
rectional modulus of smoothness of power type 2 and X* (X) is an LD-space, then X is
isomorphic to a Hilbert space.

PROOF.  First the nonparenthetical assertion: because X* is LD, X has the RNP (see
[Bou, Theorem 5.2.12]). According to Proposition 2.3 X admits a norm with modulus of
smoothness of power type 2. Now let Y be a closed separable subspace of X. Invoking
[FWZ, Theorem 3.1] yields a norm ||| - || which is twice Gateaux differentiable on Y\ {0}.
The proof is completed exactly as the proof of [F, Theorem 3.3].

For the parenthetical assertion: X* has the RNP since X is an LD-space. Thus by
Proposition 2.3 X is reflexive and the nonparenthetical assertion applies. n

3. Approximating LUR norms by C*-smooth norms in separable spaces. The
following remark illustrates the power of combining higher order smoothness with ro-
tundity.

REMARK. Suppose X admits an LUR norm || - || that is Lipschitz smooth at each
point of Q a dense Gy subset of X. Then X admits a norm with modulus of smoothness
of power type 2.

To prove this, set F, = {x : |[x+ hl| + ||x — h]| — 2||x|| < n||n|]* for all h € X}.
Then F, is closed and Q C UF,,. By the Baire Category Theorem, for some ny, F,, has
nonempty interior, say, B(xg,2¢) C Fp, for some ¢ > 0 and xo € X. Therefore, || - ||’
is Lipschitz on B(xy, ¢). We now proceed as in the proof of [FWZ, Theorem 3.3]. Let
H={heX:|xl/(h)=0}.Since| - || is LUR, there is aé > 0 such that for h € H and
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[lkll > €, we have ||xo+h|| > ||xo|| +6. For h € H, let ¢(h) = ||xo+h]||+||xo — k|| —2[|x0]|-
Set 0 = {h € H: ¢(h) < §}. Let g be the Minkowski functional of Q. The Implicit
Function Theorem asserts that as an equivalent norm on H, ¢ has Lipschitz derivative on
its sphere. Thus there is a norm with modulus of smoothness of power type 2 on X.

Notice that the above remark shows that the norm constructed in the next proposition
cannot, in general, be Lipschitz smooth (in particular twice Gateaux differentiable by
[BN, Proposition 2.2]) at each point of a dense Gj set. See [PWZ, Proposition 2] for a
construction on c¢o(I') which is similar to the following.

PROPOSITION 3.1.  Let X be a separable Banach space which admits a norm that is
C*-smooth on X \ {0} for some k € N U {oo}. Then there is an LUR norm on X which
is C'-smooth on X \ {0} and is limit of norms which are C*-smooth on X \ {0}.

PROOF. Let the norm || - || be C*-smooth X\ {0} and {h, }°°, be dense in Sx. Choose
fu € Sx- such that f,(h,) = 1 and define the projections P, by P,x = f,(x)h,. For
m=1,2,...let ¢, be even, convex and C*°-smooth functions on R such that ¢,,(r) = 0
if |1 < L and ¢,,(1) > 0if || > L: suppose also that ¢,,(2) < 1 for all m. Now set

9,,_”,()() = ¢m(”xll) + ¢M(”'x - P,,X”)

Observe that 6, is C*-smooth, even, convex and uniformly continuous on bounded
subsets of X. If V,,,, = {x: O, ;(x) < 1}, then V,,, is the unit ball of an equivalent norm
I - llnm- Because 8,,,(x) < 1 whenever ||x|] < 1, one has || - ||,,» < || - ||. Moreover,
0pm(0) = 0 and 6, ,,(x) = 1 whenever ||x||,,, = 1; thus the convexity of ,,, implies
0,,,(x)(x) > 1 whenever ||x||,,» = 1. According to the Implicit Function Theorem, ||- || m

is C*-smooth on X \ {0}.
Consider the norm || - ||| defined by
2 1 2 LR Lo
Il = (I + 32 sl + 32 afie) ™
Notice that || - [||* is C'-smooth because the sum of the derivatives of the terms in its

definition converge uniformly on bounded sets. In addition, the norms

il = (el + &

nm<y

g ¥l + 22 520 00)

are Ck-smooth on X \ {0} and ||| - |, — [l - |II-
We will show that the norm ||| - ||| is LUR. For this, suppose that |||x||| = 1 and

3.1 2/l + 2l =l + x]]1* — 0.

We now show, for every n, that ||x, — P,x,|| — ||x — Pux||. To do this, we first assume
that lim sup, ||x, — P,x,|| > ||x — Pyx]| for some n. Thus there is a subsequence {x, } such
that [|x, — Pux, || > ||x — P,x|[ +6 for some § > 0 and for all j. Now fix m so that .- < 3
Because ||x|lnn < ||x]] < ||x]] = 1, we choose & > 1 so that

d)m(aHx“) + ¢m(a'|x - an“) =1
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The definition of ||| - ||| and (3.1) imply ||x,|| — ||x||. Since ¢,, is continuous and nonde-
creasing on (0, 00), we have

limjinfd)m(ocHx,/ Ih+ bm(af|x, — Pux, D > dm(e||x]]) + pmlx||x — Pux|| +6).
Because ¢,, is a convex function, it follows that
On(2) = 6(0) < bl — Purll + =) — Gu(acl = Puxl).
m m
Let A = gzbm(%) — om(0) = ¢m(,%) > 0. Because ¢,, is nondecreasing on (0, 00) and
o> %, the above inequality implies
Om(a||x]D) + dm(al|x — Pux|| +8) > dmle||x|)) + dm(c||x — Ppx||)+
2
+ 6 (tllx = Pax] + = ) = Gn(erllx — Pax)

> ‘j’m(a“x”) + ¢m(a”x - an”) +A

=1+
Hence for some jo € N, ¢m(a|x, ||) + dm(e||x, — Pux, [|) > 1 +4 forj > jo. Since ¢y, is
uniformly continuous on bounded sets, there is an € > 0 so that

dm((1 —O)atllx, [[) + ém((1 = )ar|lx, — Pux, ||) > 1 for all j > jo.

Hence lim inf, (1 — €)||x, [lnm > [|x]|»,n. However this leads to a contradiction since (3.1)

and the definition of ||| - ||| imply that ||x,||n,n — ||x|/s.n- Therefore, lim sup, ||x, — P,x,|| <
[|x — P,x|| for each n.

Similarly we see that liminf, ||x, — P,x,|| > ||x — P,x]|| for each n. Therefore,

(3.2) |lx; = Pux,|| — ||x — Pyx]| for all n.

We now show that ||| - ||| is LUR. Let ¢ > 0 and recall that P,v = f,(v)h, where
Wall* = |hall = fu(hy) = 1. Since {h,}>° , is dense in Sx, we choose and fix n such that
(3.3) lx — Pux|| <e.

According to (3.2) and (3.3) there is an iy such that
(3.4) |lx; — Pux,|| < € foralli > ip.

Because of (3.1) and the definition of ||| - ||| it follows that lim, f,(x,) = f,(x). Thus replac-
ing ip by a larger number if necessary we also have:
(3.95) [fu(x) — fu(®)] < e forall i > iy.
Finally, for i > iy (3.3), (3.4) and (3.5) imply
llx = xll < flx = Puxi]| + [|Pux; = Poxl| + [| Prx — x|

= [lx = Pux|| + | (Fux) — fu@) )| + || Pox — x]|

< 3e.
Since ||| - ||| is equivalent to || - ||, ||lx — x||| — O. Therefore ||| - ||| is LUR. .

It is not known if any norm on a space admitting a C*-smooth norm can be approx-

imated by C*-smooth norms. However, approximations of LUR norms as in Proposi-
tion 3.1 are particularly useful for structural reasons: for example, they can be used to
construct smooth homeomorphic maps of spaces into ¢ or /,;see [DGZ,, Chapter V].

https://doi.org/10.4153/CJM-1993-032-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1993-032-9

624 D McLAUGHLIN R POLIQUIN J VANDERWERFF AND V ZIZLER

PROPOSITION 32 If X 15 a separable Banach space with a norm whose k th Frechet
derwvative s uniformly continuous on its sphere for some k € N, then X admits an LUR
norm which has uniformly continuous k-th Frechet dertvative on its sphere

PROOF Essentially the same proof as in Proposition 3 1 works As before for
[Ixllnm = 1, we have 6/, ,(x)(x) > 1, thus the Implicit Function Theorem asserts that
II' |lnm has uniformly continuous k-th derivative since 6, ,, has uniformly continuous
k-th derivative Now define the norm ||| ||| by

1 > 1 '
lall = (11 + 32 sl + 22 5200

where C,, ,, > 118 chosen so that the k-th derivative of 517 | ||, hasnorm < 11fx # 0
The rules for differentiating an infinite sum show that ||| ||| has uniformly continuous
k-th dertvative on its sphere L]

Note that even 1n [, there 1s an LUR norm which 1s not a limit of functions with
uniformly continuous second derivatives (see [V]) However, 1t seems to be unknown
whether there 1s a UR norm which 1s a limit of norms with uniformly continuous & th

derivative on the sphere under the hypothesis of Proposition 3 2

REMARK  Suppose X does not contain a subspace 1somorphic to ¢o(N) If X admats
a norm whose k-th derivative 1s locally uniformly continuous on X \ {0}, then X admuts
a norm with uniformly continuous k-th derivative on 1ts sphere

This remark was not included 1n the paper [FWZ] but follows easily from the results
therein by [FWZ, Theorem 3 3(1)], X 1s super-reflexive Therefore there exists a strongly
exposed pointon By The proof of [FWZ, Theorem 3 3(11)] then shows that the conclusion
of the remark 1s valid

From the above remark and Proposition 3 2 we obtain

COROLLARY 33 Suppose that X 1s separable and admits a norm which s C**!
smooth on X \ {0} for some k > 1 If X does not contain a subspace 1somorphic to
co(N) then X admits an LUR norm which has uniformly continuous k th derivative on
its sphere
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