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Dirichlet's diophantine

approximation theorem

T.W. Cusick

One form of Dirichlet's theorem on simultaneous diophantine

approximation asserts that if a,, a_, ..., a are any real

numbers and m 2 2 is an integer, then there exist integers

q, p , p , ..., p such that 1 5 q < m and |qa.—p. | £ m~

holds for 1 £ i £ n . The paper considers the problem of the

extent to which this theorem can be improved by replacing m~

by a smaller number. A general solution to this problem is

given. It is also shown that a recent result of Kurt Mahler

{.Bull. Austral. Math. Soc 14 (1976), 1+63-U65] amounts to a

solution of the case n = 1 of the above problem. A related

conjecture of Mahler is proved.

For any real number x , let ||x|| denote the distance from x to the

nearest integer; thus % > ||x|| > 0 for all x . The well-known theorem

of Dirichlet concerning simultaneous diophantine approximation can be

stated as follows: if a. , a?, ..., a are any real numbers and m > 2

is an integer, then there exists an integer q such that

(1) 1 £ q < m and ||qct.|| < m~1/n (l 5 i S n) .

It is natural to ask whether the result given in (l) can be improved,

and if so to what extent. In this paper we consider this question from the

following point of view: define the function f(m, n) for integers m > 2

Received 8 November 1976. [For a different proof of Mahler's
conjecture, see V.C. Dumir and R.J. Hans-Gill, "On a conjecture of Mahler",
Bull. Austral. Math. Soc. 16 (1977), 125-129. Editor.]
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220 T.W. C u s i c k

f(m, n) = sup min max ||<7a.|| ,
l<i£n v

and n i l by

where the supremum i s taken over a l l w-tuples of real numbers
a . , . . . , a . Thus (1) can be restated as1 n

(2) f(m, n) 5 nT1/n ,

and (l) is improved for any pair m, n for which we can prove that strict

inequality holds in (2). We prove below that for fixed n the upper bound

m in (2) cannot be decreased by more than 2(n-l)m~ for any m ,

and that for infinitely many m equality holds in (2). Thus (l) can never

be improved by very much, and infinitely often (l) actually gives the best

possible result of its type.

There is another way of looking at the question of improving (l). For

any w-tuple of real numbers a. , ..., a , define

c ( a , . . . , a ) = l im sup min max m ||<7a.|| .

Thus ( l ) says that e(o, , . . . , a ) £ 1 for a l l real numbers a.. , . . . , a ,

and ( l ) i s improved for any n-tuple a , . . . , a for which we can prove

tha t c(a. , . . . , a ) < 1 . Davenport and Schmidt [2] proved that for almost

a l l (in the sense of Lebesgue measure) rj-tuples ou , . . . , a , we have
1 n

c(a. , . . . , a ) = 1 . Thus, from this point of view, no improvement of (1)

i s possible except on a set of zero measure. Some resul ts on the nature of

the n-tuples that are in th i s set of zero measure were proved in an

ea r l i e r paper of Davenport and Schmidt [ / ] .

THEOREM 1. For any given integers m 2 2 and n 2 1 , let k be

an arbitrary integer such that k + k - k - m holds. Then

(3) fc^V1 < f(m, n) 5 m~1/n

holds.

Proof. We already have the right-hand inequality in (3). To prove

the left-hand inequal i ty , we suppose m 2 2 and n > 1 are given, and we
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define

Now we have

Dirichle+'s theorem 22 1

o. = fe^'V1 (l « j < n) .
d

(5) kn~Xm 1 £ im 1 £ l - kn """m"1 for kn~X £ i £ m - fe""1 .

I f m S f e +?c - k (true by the hypothesis of the theorem), then

(6) ^""""m"1 £ ikrrT1 S I - k""1^"1 for S:""2 £ I £ fe""1 - 1 .

Similarly, for 2 £ v £ n-1 , if m 2 fen + fe"~ - kr (true by the

hypothesis of the theorem), then

(7) kn~ m~ £ ikVm~ £ 1 - kn~ m~ for kn~T~ £ i £ fe"~r - 1 .

Since for any integer a satisfying 1 £ a £ m-1 we have

||(m-a)a .|| = ||aa .|| for each a. defined in (h), putting together (5), (6),
3 3 3

and (7) with r = 2, 3, ..., M-1 gives

min max Wqa. .\\ - kn~ .m~

This proves f(m, n) > k m

COROLLARY 1. For each m > 2 , we have f(m, 1) = nf1 .

This corollary is the theorem given by Mahler in [3]. Mahler stated

the result in the more general form

sup inf ||sa|| = m ,
a s

where the supremum is taken over all real a and the infimum is taken over

all s in any set S (finite or infinite) of positive integers which

contains 1,2, ..., m-1 but not im for i = 1, 2, ... . However, as

Mahler points out, it is easily seen that the more general result follows

from the special case in which S = {l, 2, ..., m-l} .

COROLLARY 2. For each m 2 2 , we have f(m, 2) > m~* - m'1 and

f(m, n) > rrTlln - 2(n-l)m"2/n (n > 3) .
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Proof. Theorem 1 gives f(m, 2) > km~ with k satisfying

k2 £ m < (fc+1)2 ; tha t i s , m* - 1 < k £ nT . This gives the f i r s t part

of the corollary. Similarly, for n 2 3 , the theorem gives

f(m, n) > kn~ m'1 with k satisfying

kn + kn~X - k £ m < (fe+l)W + (fe+1)""1 - fc - 1 .

This last inequality implies m < (fe+2) ; thus k > m - 2 , which

implies k ~ m~ > m - 2(n-l)m . This gives the second part of the

corollary.

Our next theorem shows that the lower bound in (3) can sometimes be

improved.

THEOREM 2. For any given integers m > 2 and n 2: 1 , if t is an

integer satisfying m £ t , then

(8) t-1 < f(m, n) .

In particular, for each t > 2 we have

(9) t'1 = /(*", n) .

Proof. Suppose m 2 2 , n * 1 , and t satisfying m £ t are

given, and define

n. = t"-7' (1 < j £ n) .
3

Now H â || > t~ xf q $ 0 mod t , and for j = 2, 3 , . . . , n ,

\\qa .|| > t " 1 i f .<? S 0 mod f7'"1 but q \ 0 mod tJ' . Hence for m £ tn we

have min max ||<?a.|| 2 t~ , which proves (8). For m - tn , (9)
l£<?<m ISiSn ^

follows from (8) and (2) . Thus (9) shows that for each n , (2) holds with

equali ty for in f in i t e ly many values of m .

Our las t theorem proves a conjecture of Mahler [ 3 ] , which i s an

extension of the case n = 1 of Theorem 1.

THEOREM 3. For any given positive integers m, n such that 2m £ n ,
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we have

(10) sup min ll<7a|| = rm ,
ot

where the supremum is taken over all real a .

Proof. The proof is a variation of the "box principle" argument which

can be used to prove Dirichlet's theorem. The left-hand side of (10) is

clearly greater than or equal to mn (take ex = n ) , so we need only

prove that the left-hand side of (10) is less than or equal to m . W e

divide the interval [0, l) into the n boxes \in , (i+l)n )

(0 £ i £ n-l) , and we say that the 2m boxes containing those x such

that ||x|| £ rm are "special" boxes. Now take any real a and consider

the n - 2m + 1 points ja (m £ j £ n-m) mod 1 . If one of these points

is in one of the special boxes, we are finished. If not, then one of the

n - 2m nonspecial boxes contains at least two of these points, say ja

and ka , j < k . We then have ||(fc-j)a|| £ n'1 with 1 5 f e - j S n - 2 m .

If in fact m £ k-j , we are finished. If not, we choose an integer a

satisfying m £ a(k-j) £ n-m and 1 < a £ m . This is possible since

{n-m){k-j)~1 - mik-aT1 > 1 . Now ||(fe-j)o|| £ n'1 implies

||a(fe-j)a|| £ an~ £ nm~ , which proves (10).

Mahler [3] stated his conjecture in the more general form

sup inf ||eot|| = rm~ ,
a s

where the supremum is taken over all real a and the infimum is taken over

all s in any set S (finite or infinite) of positive integers which

contains m, m+1, ..., n-m and has the property that every element s of

S satisfies \\sn~ \\ 5 rm~ . But this more general result follows from

the proof of Theorem 3.

https://doi.org/10.1017/S0004972700023224 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023224


2 2 4 T.W. C u s i c k

References

[ / ] H. Davenport and Wolfgang M. Schmidt, " D i r i c h l e t ' s theorem on

diophantine approximation", Symposia Mathematiax, Volume IV:

Teoria dei nvmeri, 113-132 (INDAM, Roma, 1968/1969. Academic

Press , London and New York, 1970).

[2] H. Davenport and W.M. Schmidt, "Dir ichlet ' s theorem on diophantine

approximation. I I " , Acta Arith. 16 (1969/70), 1U3-U21*.

[3] Kurt Mahler, "A theorem on diophantine approximations", Bull. Austral.

Math. Soa. 14 (1976), U63-h65.

Department of Mathematics,

State University of New York at Buf fa lo,

Amherst,

New York,

USA.

https://doi.org/10.1017/S0004972700023224 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023224

