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Dirichlet’s diophantine
approximation theorem

T.W. Cusick

One form of Dirichlet's theorem on simultaneous diophantine

approximation asserts that if Oys Oy =ees O

” are any real

numbers and m = 2 1is an integer, then there exist integers

-1/n
qs Py» Pps +-+» P, such that 1S¢g <m and |qai-pi| <mt/

holds for 1 =i =n . The paper considers the problem of the

extent to which this theorem can be improved by replacing m—l/n

by a smaller number. A general solution to this problem is
given. It is also shown that a recent result of Kurt Mahler
(Bull. Austral. Math. Soc. 14 (1976), 463-465] amounts to a
solution of the case n =1 of the above problem. A related

conjecture of Mahier is proved.

For any real number x , let x| denote the distance from & to the
nearest integer; thus % = |lz|| 2 0 for all x . The well-known theorem
of Dirichlet concerning simultaneous diophantine approximation can be

stated as follows: if ¢ a o] are any real numbers and m = 2

oy ces Oy

is an integer, then there exists an integer g such that

~1/n

(1) 1<qg<m eand aniH <m (L=Z=n).

It is natural to ask whether the result given in (1) can be improved,
and if so to what extent. In this paper we consider this guestion from the
following point of view: define the function f(m, n) for integers m = 2

Received 8 November 1976. [For a different proof of Mahler's

conjecture, see V.C. Dumir and R.J. Hans-Gill, "On a conjecture of Mahler",
Bull. Austral. Math. Soe. 16 (1977), 125-129. Editor.]
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and n 2 1 by

flm, n) = sup min max llqo | ,
1=g<m 1si<n
where the supremum is taken over all n-tuples of real numbers

«ev5 @& . Thus (1) can be restated as

o
1’ n

(2) flm, n) = m_l/n .

and (1) is improved for any pair m, m for which we can prove that strict
inequality holds in (2). We prove below that for fixed »n the upper bound

m_l/n in (2) cannot be decreased by more than 2(n—l)m_2/n for any m ,

and that for infinitely many m equality holds in (2). Thus (1) can never
be improved by very much, and infinitely often (1) actually gives the best
possible result of its type.

There is another way of looking at the question of improving (1). For

any #n-tuple of real numbers al, ey an , define
= 13 . 1/n
c(al, cees an] = lim sup min  max m ”qaiH .
me  1<g<m 1=i<n
Thus (1) says that c(al, cees an) < 1 for all real numbers Ops eees @ s
and (1) is improved for any n-tuple Urs wees @ for which we can prove

that e(a;, ..., @ ) <1 . Davenport and Schmidt [2] proved that for almost

all (in the sense of Lebesgue measure) n-tuples Ups vees @ 5 e have
c(al, e an) =1 . Thus, from this point of view, no improvement of (1)

is possible except on a set of zero measure. Some results on the nature of
the n-tuples that are in this set of zero measure were proved in an

earlier paper of Davenport and Schmidt [1].
THEOREM 1. For any given integers m=2 and n =1, let k be
an arbitrary integer such that K*+ K" —k=m holds. Then

-1 - 1
n 1m 1 /n

(3) k sflmyn) <m
holds.

Proof. We already have the right-hand inequality in (3). To prove

the left-hand inequality, we suppose m =2 and n =1 are given, and we
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define
(%) o = Wit (1= =n) .
Now we have
(5) Kt st s o & for Kt si=mo KL
n n-1 .
If m=zk +k - k (true by the hypothesis of the theorem), then
(6) Kt s iin s 1 - KW for KPP skt on .

n-1 _ kr

Similarly, for 2 <y <n-l , if m= k' + k (true by the

hypothesis of the theorem), then

(M Kt st s - ger KPRk o
Since for any integer a satisfying 1 <= a < m-1 we have
H(m—a)ajn = HaajH for each o defined in (k4), putting together (5), (6),

and (7) with » =2, 3, ..., n-1 gives

min  max Hquiﬂ > Lt
1=q<m 1<i<n
n-1 -1

This proves flm, n) =k m .

COROLLARY 1. PFor each m= 2 , we have f(m, 1) = mt

This corollary is the theorem given by Mahler in [3]. Mahler stated

the result in the more general form

sup inf |lsa = m T,

o s
where the supremum is taken over all real o and the infimum is taken over
all s in any set S (finite or infinite) of positive integers which
contains 1, 2, ..., m=1 but not Zm for < =1, 2, ... . However, as
Mahler points out, it is easily seen that the more general result follows

from the special case in which S = {1, 2, ..., m-1} .

COROLLARY 2. For each m= 2 , we have f(m, 2) > ¥ mt and

m—l/n -2/n

- 2(n-L)m

v

(n=3).

flm, n) >
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Proof. Theorem 1 gives f(m, 2) 2 k™t

with Xk satisfying
2 2 . % % . . ..
kK =m < (k+1)° ; that is, m" -1 <k <m° . This gives the first part

of the corollary. Similarly, for n = 3 , the theorem gives

flm, n) = & with k satisfying
n n-1 n n-1
K+ k -k =m<(k#1)” + (k+1) -k-1.
. . . . . n 1/n .
This last inequality implies m < (k+2) ; thus k > m - 2, which
implies kn'lm—l > m_l/n - 2(n—l)m-2/n . This gives the second part of the

corollary.

Our next theorem shows that the lower bound in (3) can sometimes be

improved.
THEOREM 2. For any given integers m= 2 and n= 1, if t 8 an

integer satisfying m < & s then

(8) £t < flm, n)
In particular, for each t = 2 we have

-1

(9) ™ = £, n)

Proof. Suppose m= 2 , n =1, and ¢t satisfying m = tn are

given, and define

a.=t7 (Ls4=n)

Now Ilqalll > £ oir q$O0Omodt ,and for j=2,3,...,n,

IIqajll = ¢t ir g =0 mod 971 put g }0moa t7 . Hence for m =< ¢" we

have min max “qai” > ¢t , which proves (8). For m = t" , (9)

1=q<m 1=<i<n
follows from (8) and (2). Thus (9) shows that for each n , (2) holds with
equality for infinitely many values of m .

Our last theorem proves a conjecture of Mahler [3], which is an

extension of the case n =1 of Theorem 1.

THEOREM 3. For any given positive integers m, n such that 2m s n,
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we have

i -1
(10) sup min [lqull =,

o rmEqEn-m
where the supremum is taken over all real o .

Proof. The proof is a variation of the "box principle" argument which
can be used to prove Dirichlet's theorem. The left-hand side of (10) is

1 (take o =n"1), so we need only

prove that the left-hand side of (10) is less than or equal to m™t . Ve

clearly greater than or equal to m~

divide the interval [0, 1) into the n boxes (}n_l, (i+l)n_l)

(0 =7 £ n-1) , and we say that the 2m boxes containing those x such

that [z = m™L  are "special"™ boxes. Now take any real o and consider
the n-2n+ 1 points Jjo (m < J <n-m) mod 1 . If one of these points
is in one of the special boxes, we are finished. If not, then one of the

n - 2m nonspecial boxes contains at least two of these points, say Jjo

and ka , § <k . We then have |(k-jlall =n™' with 1=k -j=n-om.
If in fact m < k-j , we are finished. If not, we choose an integer a

satisfying m < a(k-j) <n-m and 1 <a =m . This is possible since

(nm) (k=)L - m(k=g)L 2 1 . Wow [(k-glall =n ' implies

1 1

flalk-7)all = an”~ = mn™~ , which proves (10).

Mahler [3] stated his conjecture in the more general form

sup inf [sal = m*

a s
wvhere the supremum is taken over all real o and the infimum is taken over
all g in any set S (finite or infinite) of positive integers which
contains m, m+¥l, ..., n-m and has the property that every element s of
ll 1

S satisfies |lsn || = mm ~ . But this more general result follows from

the proof of Theorem 3.
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