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A WEIGHTED HYPERPLANE MEAN ASSOCIATED WITH
HARMONIC MAJORIZATION IN HALF-SPACES

by D. H. ARMITAGE
(Received 12th December 1984)

1. Introduction and main results

The purpose of this paper is to introduce a new kind of weighted hyperplane mean
for subharmonic functions and to use this mean in giving results on the harmonic
majorization of subharmonic functions of restricted growth in half-spaces.

An arbitrary point of the Euclidean space R***, where n > 1, will be denoted by M =(X, y)
where X =(x,,...,x,)eR" and yeR. We write

| X|=Cd+--+xDE, M| =(X]+y7)?

and, in the sense of Lebesgue, dX =dx,...dx,. Throughout this paper a and b will be
real numbers such that 0<a<b and

D,={MeR""1:y>a}, Q,,={MeR"*la<y<b}.
If f is a non-negative Lebesgue measurable function on R” x {y}, where y>a, let

Y (f0)=(y—a)™" " | {1+|X[[(y—a)}* " e XVOTIf(X, y) dX.

If f takes values of both signs, we write

lPa(f; y)=lPa(f+’ y) —‘Pa(f_s .V),

provided at least one of the terms on the right-hand side is finite.

The weighted mean ¥, is related to the mean introduced by Brawn in his study of
subharmonic functions in strips [4], and this paper depends upon his work. Our
theorems, however, are more closely analogous to those of Kuran [9] on half-spherical
means. Other hyperplane means which have been studied in relation to subharmonic
functions in half-spaces are

{ f(X, ) dX (M
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(see [1] and the papers cited there for a sample of the literature) and

JA+]|X|) 01X, y)dX )

[9, 11, 12, 15]. An advantage of working with the mean ¥, is that ¥, (f,) is finite on
(a, o) for a large class of functions f, whereas the means (1) and (2) are finite for
comparatively small classes of functions. However, in order to obtain interesting
conclusions from hypotheses concerning the behaviour of ¥,(s,¢) for a subharmonic
function s in D,, it is necessary to impose a general restriction on the growth of s*. We
shall say that a subharmonic function s in D, belongs to the class %, if for each b>a
and each positive number 4

lims*(M)e~*Ml=0 (3)

as M tends to the Alexandroff point .o/ (at infinity) from inside Q, ,.
We denote the closure and boundary in R"*! of a set E by E and JE.

Theorem 1. Let s be a non-negative function in D, such that se &,,

s(N)=lim sup s(M) < 0 (NedD,), 4)
]
and
[ (1+]X|» ¥+ Ug(X, a) dX < c0. (5)

Then W, (s,y) is real-valued on (a,0) and tends to a limit Y (s) as y— oo such that
0=y (s) = o0

This theorem is of the same type as [10], Theorem 2 and [12], Theorem 2, which
deal with the limiting behaviour of half-spherical means and certain weighted
hyperplane means, respectively.

Before giving our results on harmonic majorization, we need a brief discussion of
Poisson integrals in strips and half-spaces. Let f and g be extended real-valued
functions defined on R” x {a} and R" x {b}, respectively, such that

J1f(X, a)|eXVE=D X < 0. (6)

and

| |g(X, b)| e M09 gX < o0, 0
R’l

Then the Poisson integral in Q, , of the function equal to f on R”x {a} and equal to 0
on R"x {b} exists and is harmonic in Q,, (see [3], pp. 747, 748, 758). We denote this
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Poisson integral by I, , ;. Similarly, the Poisson integral in Q, , of the function equal to
g on R"x {b} and equal to 0 on R" x {a} exists and is harmonic in Q, ,. We denote this
Poisson integral by J,, .. If F is defined on 0Q, , and if I, , r and J,, ; exist and are
harmonic in Q, ,, we write

H,pr=145r+Jap

Further details of Poisson integrals in strips are given in Sections 2 and 3.
A necessary and sufficient condition for the Poisson integral of f in D, to exist and to
be harmonic in D, is

Uf(x’ a|(1+|X|?)~#*+VdX < oo (8)

(compare [7], Theorem 6). We denote this half-space Poisson integral by I, ., ,. We
shall also need, more generally, half-space Poisson integrals of measures. If y is a signed
measure on R” such that

J (1+| X%~ ¥+ D g p|(X) < oo, 9
2

then the half-space Poisson integral of u in D, is given by
Lo o (M) =(2/5p4,) | 9= {|X —Z|* +(y—a)?} """ Vdy(2)
R'l

and is harmonic in D,. Here s, ., is the surface area of the unit sphere in R**!,
Theorem 2. Let s be a function in D, such that se &,, (4) holds, and

f(1+]|X)~ ¥+ Ds*(X, @) dX < 0. (10)

Then W, (s,") and W (s*,*) are real-valued on (a, c0) and ¥ (s*,y) tends to a limit
Y (s*) as y— oo such that 0y (s*) < 0.

For s to have a positive harmonic majorant in D, it is necessary and sufficient that
Ya(sT)<o0.

If Y(s*)< o0, then

(i) W,(s,y) tends to a finite limit Y (s) as y— o0,

(i) | (1+|X[»)~**V|s(X, a)|dX < oo,

RII

(“l) hm Ia.b,.!(M) =Ia.cu.s(M) (ME Da)’
b=+
(iv) ,,lf.m Jos (M)=(c) W()y—a)  (MeD,),

where
= [ (1+]|Z|)}t e 2l 4z,

R
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(v) the function hg ,, defined in D, by writing

hs,a(M)=Ia,co,s(M) +(c,,)_ll//s(s)(y—a), (11)
is a harmonic majorant of s in D,.

Corollary. If se %, and

limsup s(M) <0 (NedD,)
M-N
MeD,

and Y (s*)=0, then s<0, in D,.

Under the hypotheses of Theorem 2 it is possible that the function h; ,, defined by
(11), is a harmonic majorant of s in D, but is not the least such majorant. However, the
following theorem gives sufficient conditions for h; , to be the least harmonic majorant
of sin D,.

Theorem 3. Suppose that a>0 and that s€ ¥, Then s has a positive harmonic
majorant in D, if and only if (10) holds and ,(s*) <oo. Further, if these conditions are
satisfied, then the least harmonic majorant of s in D, is the function h , given by (11).

The example s(M)=—\/(y—a) shows that the conditions in Theorem 3 are not
necessary for its final conclusion; this function is subharmonic in D, but has no
subharmonic extension to D,,.

Finally, we consider y,(s) as a function of a.

Theorem 4. Let s be defined in D,. If s€¥, and s satisfies (4) and (10) and if
Y(s*)< oo, then . (s) is constant on [a, ).

A similar result for half-spherical means is given in [12], Theorem 1.

2. Preliminaries on Poisson integrals in strips

We recapitulate some of Brawn’s results.
Let ®:]0, o0) x (0, 2)—R be defined by

®(0, ) =(2n) " #"21 ~#{Tdm)} | £~ sinh{(1 — y)¢}(sinh 1)~ dt
[}

®(r, y)=(Q2n) " [ 1371 307, _ () sinh{(1—y)t}(sinh )~ de  (r>0),
0

where J,,_, denotes the Bessel function of the first kind of order jn—1 ([14], p. 40).
Then @ is positive and continuous on [0, 0) x (0, 1). If f and g are functions satisfying
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(6) and (7), then I, , , and J, , , are given by

Ly, ((M)=(b—0) ™" | (X —Z|{(b—a), (y— a)(b—a))f(Z,a) dZ

and
Jas,fM)=(b—a)™" | ®(|X — Z|/(b—a),(b—y)/(b—a)g(Z,b) dZ.
R'I
Lemma A. If f is a function on R" x {a} satisfying (6) then I, , , is harmonic in Q,
and

lim I, , [(M)=0 ' (NeR"x {b}).
M-N

If, further, f is continuous at a point P of R" x {a}, then

lim I, , (M)=f(P).
M-P

If f has compact support, then '
llm Ia,b.f(M) = 0
M A

The same results, with R" x {a} and R" x {b} interchanged, hold for J,, ,, where g is a
Sunction on R" x {b} satisfying (7).

The results for I, , , are contained in [3] (Theorem 1, Lemmas 1, 2) in the case where
a=0 and b=1. For an indication of the modifications required to pass to the general
case, see [3], p. 758. It is easy to see that the corresponding results hold for J, ; ,.

Next, we give the results on harmonic majorization in strips that we shall need.

Lemma B. If s is defined in Q, , and is subharmonic in Q, , and satisfies

lim sup s(M) =s(N) < o (NedQ, ),
M-N

Meﬁa_b

f {Is(Z, a)| +|s(Z, b)|} e **V~9dZ < 0
R’l

and

lim s+(M) e—anl/(b—a)]XIﬂn-— 1) =0,
M- of

Meﬂa'b

then H,, , is a harmonic majorant of s in Q_ ;.

Lemma C. If 0<a<a<b<p and s is subharmonic in Q,,; and has a positive
harmonic majorant there, then the least harmonic majorant of s in Q, , is H

a,b,s-
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In the case where a=0 and b=1 Lemma B is [3], Theorem 2, and in the case where
a=0 and =1 Lemma C is [4], Theorem 2. The stated generalizations are easily
obtained from the cited cases.

3. Further results on Poisson integrals in strips

We use A to denote a finite positive constant depending at most on n, not necessarily
the same on any two occurrences.

Lemma 1. If 0<a<c=<¥a+b) and if g is a non-negative function on R"x {b} such
that

fa(X,b)e ™ XNt-agx < o,
Rll

then
AJ ;5. ,0,...,0,0)S(c—a)¥,(g, b) £ 4J,,40,...,0,0).

We start by showing that
Asin(zy) (1412 " e ™ <d(r, y) S Asin(my)(1 +r)3 "M e™™ (12)
whenever r=>0 and $<y<1. A similar but slightly less general result than (12) is given

in [4], Lemma 1. Our proof of (12) for large r is modelled on the proof in [4]. We start
from the equation

O(r, y)=02r' Z # sin(mny)K 4, - ,(mnr) (r>0,0<y<1),

where K,,_, denotes the Bessel function of the third kind of order in—1 ([14], p. 78).
For this equation, see [2], formula (22) and note that ® is normalized in accordance
with [4] and not [2]. Hence when r=1and O<y<1

|©(r, y)—(2r)! ~#"sin(ny)K 4, - 1 ()]

—@)t | S mbsin(may)K - y(mar)

m=2

<(2r)! *sin(ny) m¥ 1K, (mnr)

3
18
[ 8]

< Ar* "sin(ny) mirt1) g—mar

fon

]
éAr}(l—n)sin(ny)e—an Z mi-(n+l)e—(m—2)
m=2

=Ar*! ""gin(ny) e ™, (13)
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The first of the above inequalities follows from the inequalities
K;n-1()>0 (£>0) |sin(m7ty)| Smsin(ny) O<y<l,m=1,2,..),

and the second follows from the inequality
Kyn-1(§)AE7%e7¢ (E21)  ([14], p. 219).
Since as r— oo
Kyp-y(nr)=(2r)"te™™(1+0(1))  ([14], p. 219),
it follows from (13) that
®(r, y) =(2r)* "M sin(ny) e "™ (1 4+ 0(1))
=230 ""gin(ny)(1 +r) " e ™™ (1 +o(1)).

Hence (12) holds when r is larger than some positive number ro=ry{n) and 0<y< 1.
Now define a function h, in Q, , by writing

Then h, is harmonic in Q, , and vanishes on R” x {1}. (It is the Poisson kernel of Q, ,
with pole at the origin, see [2]). Hence [0h,/dy|< A in the set {(X,y):|X|Sro,i<y<1}
and therefore if 0<r<r, and 4<y<1, then by the mean value theorem, there exists

y €(y, 1) such that

|®(r, y)|=|hy(r,0,...,0,y) = hy(r,0,...,0,1)|
oh ,
=(1—y)’-a—y(r,0,...,0,y)i

S A(1—y) s Asin(ny),
and it now follows that the right-hand inequality in (12) holds whenever r=0 and
3<y<l
Next define h, in R"*! by writing
hy(X, y) =cos(nx, /4ro) ...cos(mx,/4ro) sinh(n,/n(1 — y)/dro).

It is easy to check that h, is harmonic in R**!, Further, if

w={(Xsy):|xi|<2r0(i=1:---:")’ —%<y<1}’
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then h;,>A and h, §sinh(n\/n/8ro) on dwndD, and hy20=h, on dwnD,. Hence
hy = Ah, on dw, and it follows from the minimum principle that h, = 4h, in &. Hence if
0<r=<r,and $<y<1, then
(I)(r, y)=h1(ra 0, . --’O:y)gAhZ(r,Oy :O:y)
22" #sinh(n,/n(1 - y)/4r,)

227%(r) " 'my/n(1—y) 2 Asin(my).

It now follows that the left-hand inequality in (12) holds whenever r=0 and {<y<1,
and the proof of (12) is complete.

If a, b and c are as in the lemma, then £ <(b—c)/(b—a)<1. Hence, by (12), for each
ZeR"

(| Z|/(b—a), (b~ )/(b—a)) (14)

lies between positive multiples of
sin{n(b—c)/(b—a)}{1+|Z|/[(b—a)}}* "M e mlZlG-a)
(the implied constants depending only on n). Since, for such a, b and ¢,
2(c—a)/(b—a) <sin{n(b—c)/(b—a)} <n(c—a)/(b—a),
it follows that (14) lies between positive multiples of
(c—a)(b—a)" {1 +|Z|/(b—a)}*“’"’e”"z‘/""“’
(the implied constants again depending only on n). Hence the lemma follows.

We need some results on the Perron—Wiener-Brelot (PWB) solution of the Dirichlet
problem (see, for example, [8] for a general account). If Q is an unbounded domain in
R**!, we denote its compactified boundary dQu {2/} by 0*Q. A function F, defined at
least on 8*€, such that the PWB solution of the Dirichlet problem in Q with boundary

data F exists and is harmonic in Q is called resolutive, and we denote the PWB solution
by H(Q, F).

Lemma 2. Let f and g be functions on R" x {a} and R" x {b} respectively.
(i) Define Fy on 0*Q, , by writing

F(M)=f(M)(MeR"x{a}), F(M)=g(M)(MeR"x{b}), F(af)=0.

If f and g satisfy (6) and (7), then F is resolutive and H(Q, , F\) =1, 4 1+ Js b4 it Qe
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(i) Define F, on 0*D, by writing
Fy(M)=f(M)  (MedD,), Fy«)=0.

Then F, is resolutive if and only if (8) holds, and in this case H(D,, F;)=1, ;-

We prove only (i), the proof of (ii) being similar. If f and g are real-valued and
continuous in their domains of definition and have compact supports, then I, , (+J,; ,
is harmonic in Q, , and by Lemma A,

nlfl-rgv {La,p, (M) +J, 5 (M)} =F,(N) (Ned*Q, ).

It follows that I, , +J, 3 , is the classical solution and hence the PWB solution of the
Dirichlet problem in Q, , with boundary data F,. It follows from this special case that
the harmonic measure on 0*Q, , relative to a point (X, y) of Q, , is given on R" x {a} by

(b—a)""®(|X — Z|/(b—a),(y—a)/(b—a)) dZ
and on R" x {b} by
(b—a)"®(|X — Z|/(b—a), (b—y)/(b—a)) dZ,

whence the general result follows.

4. Means of half-space Poisson integrals and potentials

Lemma 3. Let u be a signed measure on R" such that (9) holds. Then ¥ (I, .., Y) is
finite on (a, 00) and tends to 0 as y— o0.

We may suppose, without loss of generality, that a=0. Then

%sn-i-ll\PO(IO,ao,wy)I
_yn-t j-(1+|X|/y)§(1—n)e—nlxllyfy(yl+|X_Z|2)‘*("+”dy(2)dX
R® R®
<7 (X0 4 280D 80 X a2

R" R"

Sy [ J (P +|X =z et DemmIXW g X d|u|(Z). (15)

R” R"
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Now, for each ZeR", putting X =yX’ and Z=yZ’, we have

j’ (y2+IX_Z|2)-4}(n+l)e~nIXl/de
R’l
=y-l J‘(1+|X/_Zr|2)—§(n+1)e—ulx’|dX/
R"
<Ay~ {1 +|X -2+ | X Py et vax (16)
R'l

=Ay_1(4+|Z'|2)_ﬂ"+l)

= Ay +]Z[) a0, (17
To prove the last written equality, note that the integral in (16) is a constant positive
multiple of the value at (Z’,1) of the Poisson integral in D, of the function

(1+|X|®~#"*D and use the reproductive property of the Poisson kernel. From (15)
and (17) we obtain

[¥o(To, o, Y)| S 4 In(yz+|Z|2)”*‘"“’d|#|(l)- (18)

Since u satisfies (9), the right-hand side of (18) is finite for each positive y and tends to 0
as y— o0, by Lebesgue’s dominated convergence theorem.

Recall that a superharmonic function in a domain Q is called a potential if its greatest
harmonic minorant in Q is identially zero.

Lemma 4. If u is a potential in D,, then ¥ (u, y) is finite on (a, ) and tends to 0 as
y— 0.

Again it suffices to work with a=0. In [12], Theorem 3 it was shown that if u is a
- potential in Dy, then the function

K, y)=| {|X|2 +(y+ 1)} y(X, y)dX
_n

is real-valued for y>0 and tends to 0 as y—»o0. We use this result to prove Lemma 4.
Suppose that y,>0 and that (X, y)e D, . Then

|X|>+(y+1)* = Cly+|X|,
where C depends only on y,. Hence
YT THLHX |0 e X 4 (4 1)y
S CHO (] 4| X |yt D g mIX Iy

which is bounded on D, . It now follows that ¥y(u,-) is dominated by a constant
multiple of K(u, ) and, in view of the properties of K(, ), this proves the lemma.
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Lemma §. If
oM)=y—a (MeD,),
then ¥ (v, )=c, on (a, o).
This is the result of a simple calculation which we omit.
5. Proof of Theorem 1
The following lemmas will be useful in the proofs of Theorems 1 and 2.
Lemma 6. If f is a function on 6D, which satisfies (8), then for each M e D,

lim I, , [(M)=1, o, o(M). (19)
b—+

If, further, f =0 on 0D, then for each be(a, ), we have I, , <1, , in Q, ;.

Lemma 7. If s satisfies the hypotheses of Theorem 1, then for each M =(X, y)e D,, we
have that H, , (M) is increasing (in the wide sense) as a function of b on (y, o).

The proof of Lemma 6 depends on the following result.

Lemma D. Let Q, and Q be unbounded domains in R"*! such that Qc=Q,,. Let F be a
Sunction on Qy L 0*Qq such that F is resolutive on 0*Q, and F=H(Qq, F) in Q. Then F is
resolutive on 0*Q and F=H(Q, F) in Q.

See [5], p. 98, for the corresponding result in bounded domains.
To prove Lemma 6, define F in D,u d*D, by putting

F(M)=1, , (M) (MeD,), F(M)=f(M) (MedD,), F(s#)=0.
Then, by Lemma 2(ii), F is resolutive on 6*D, and F=H(D, F) in D,. Hence, by
Lemma D, F is resolutive on 0*Q, , and F=H(Q,;, F) in Q, ,. By Lemma 2(i), we also
have in Q, ,
H(Q, , F)=H, p r=10, 7+ Jos,r-
Hence
Ia,w,f=la.b.f+Ja.b,F

inQ,,. If f=z0o0n dD,, then FZ0 in D, and J,, r20 in Q, ;, so the inequality stated in

the lemma now follows. To prove (19), it now suffices to show that J,, ((M)—0 as
b—ooo for each MeD, Since F is a half-space Poisson integral in D, we have by
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Lemma 3, W, (F,b)—0 as b—oo. From Lemma 1 it now follows, in the case where f>0
on dD, that

lim J, , £0,...,0,y)=0
b=

for each y>a. In the case where f takes values of both signs, the same conclusion
follows by working with f* and f~. Since we may translate the origin parallel to the
Xy,..., X-axes, we find that J, , {(M)—0 as b— o for each M € D,, as required.

To prove Lemma 7, suppose that a<b<b' and define w in D, to be equal to H, , , in
Q,., and equal to s elsewhere in D,. Then w=s in Q, , ([3], Theorem 2, interpreted for
Q, ;) and w is subharmonic in D, ([4], p. 280). It is easy to check that w satisfies the
conditions of [3], Theorem 2, interpreted for Q, ,.. Hence H, ,, ;2w=H,, ;in Q, ;.

Lemma E. If s is subharmonic in D, and s has a positive harmonic majorant in D,,
then s is expressible in the form

sSM)=1,, o, (M) +k(y—a)—u(M)  (MeD,), (20)

where p is a signed measure on R”" satisfying (9), k is a real number and u is a potential in
D,.
This result is essentially known. It can be deduced from [12], Theorem 5(ii) and the
Riesz decomposition theorem in the form given, for example, in [12], Theorem C.

We can now complete the proof of Theorem 1. Since se &, it is clear that W (s,) is
finite on (a, o0). Since, by Lemma 7, H, , , is an increasing function of b in D,, and since,
by Lemma 6, I, ; ;—1, . s in D, as b— oo, it follows that either J, , ;=0 in D, or J, ,
tends to a harmonic limit in D, as b—oo. In the former case, it follows from Lemma 1
that ¥,(s, b)— 00 as b—oo0. In the latter case, s has a harmonic majorant in D,, since, by
Lemma B, H,, ;25 in Q,, and since lim,_ ,, H, , , is harmonic in D,. Hence, in this
case, by Lemma E, s has the representation (20) in D,, so that

lI141(53 y)=‘Pa(Ia, 0, g3 y) +k‘ya(y_a’ y)_‘Pa(u9 y)
—0+c,k—0 (y— ),

by Lemmas 3, 4 and 5.

6. Proof of Theorem 2

Clearly, if s satisfies the hypotheses of Theorem 2, then s* satisfies the hypotheses of
Theorem 1, so that W, (s*, y) is finite on (g, o0) and tends to a limit y,(s*) as y— oo such
that 0<y (s*) < 0.

For.each positive integer m, define s, in Q, , to be max{—m, s}. Then each s,, satisfies
the hypotheses of Lemma B, so that H,, , is a harmonic majorant of s, in Q, ,. By
monotone convergence, H,, , —H,, in Q,, as m—oo. Hence H,,  is a harmonic
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majorant of s in , ;. In particular, this implies that
Jab.50,...,0,3(a+b))> — o,
so that
Jabs-(0,...,0,3(a+b)) < co.
Hence, by Lemma 1, W, (s~, b)< o0, and since W, (s*, b) < o0, it now follows that ¥ s, ")

is finite on (a, c0).
Now suppose that s has a positive harmonic majorant in D,. Then

FOXP+y?) 740 Ds* (X, y)dX
R’I

is bounded on (a+ 1, ) ([9], Theorem 4) and since W,(s*, y) is dominated by a positive
multiple of this integral for y>a+1 (cf. proof of Lemma 4 above), we have ¥ (s¥) < c0.

Conversely, suppose that y,(s*)<c. By Lemmas B and 7, H,, ,+ is a harmonic
majorant of s* in Q, , and increases with b. Hence it follows easily that as b— oo, either
H,, +—o in D, or H,, ;+ tends to a limit function which is a harmonic majorant of
s* in D,. To show that s has a positive harmonic majorant in D,, it now suffices to
prove that for some MeD,

lim H, , .+(M)< 0. 1)

b0
By Lemma 1, if b=a+ 2, then
Japs+(0,...,0,a+ 1) S AV (s7, b),
so that

lim supJ, ; ;+(0,...,0,a+1) < o0,

b—w
and by Lemma 6,
I p5+(0,...,0,a+ 1)1,  +(0,...,0,a+ 1)< 00.

Hence (21) holds with M =(0,...,0,a+1).

For the remainder of this section we suppose that Y, (s*)< oo and we show that (i)~
(v) hold.

Since s has a positive harmonic majorant in D,, by Lemma E, we can write s in the
form (20), so that, by Lemmas 3, 4 and 5

lim (s, y) =c,k. (22)

y-w
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To prove (ii), note that

f{p+1—a)?+]|X|?} ¥+ Vs~ (X, y)dX
Rll

is bounded for ye(q, o0), by {12], Theorem 5(i), interpreted for D,. Since s~ is lower
semi-continuous in D,, on letting y—a™*, we obtain, by Fatou’s lemma,

[ (1 4] X[~ 4+ D5~ (X, @) dX < o0,

R®

and this, with (10), gives the result.

Conclusion (iii) now. follows from Lemma 6.

To prove (iv), we use again the representation (20) of s. Writing H=1, , ,, we have
Jap,a—01in D, as b—co (cf. proof of Lemma 6). Also, by Lemmas 1 and 4, if y>a, then

Oé lim Ja,b,u(oy LR ] 0: y)

b—r o

<A(y—a) lim P (u, b) =0.
b—

Since we may translate the origin parallel to the x,,..., x,-axes, we find that J, , ,—0 in
D, as b—oo. It now follows that

lim J, ,, s(M) k 11m Ja b y-a(M) (MeD,).

b-
From Lemma 2(i) it is easy to see that J,, ,_,(M)=y—a when MeQ, ,. Hence

lim Ja,b,s(M)=k(y_a) (MEDG)’

b—

and since Y ,(s) =c,k (see (22)), the result follows.

The conclusion (v) now follows from (iii) and (iv), since, by Lemma B, H,, , is a
harmonic majorant of s in Q, ,.

To prove the corollary, first extend s to D, by writing

s(N)=Ilim sup s(M) (NedD,).
M-N
MeD,

Thus extended, s satisfies the hypotheses of Theorem 2, and therefore the function h, ,,
given by (11), is a harmonic majorant of s in D,. Since s<0 on dD,, we have I, ,, ;<0 in
D,. Since, also, Y (s) Sy, (s*)=0, it follows that h; ,<0in D,. Hence s<0in D,.

7. Proof of Theorem 3

If (10) holds and if Y ,(s*) <o, then it follows from Theorem 2 that s has a positive
harmonic majorant in D,.
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Conversely, if s has such a majorant, then s* has a harmonic majorant in D, and (10)
holds, by [9], Theorem 3 and ¥, (s*) <00 by Theorem 2.

To prove the last assertion in the theorem, suppose that O<a<a<b<f<y and
define hin R"*! by

h(X, y)=cosh(x,n/y./n) ...cosh(x,n/y\/n) sin(yn/y).

It is easy to check that h is harmonic in R***. Also, h(M)2=e™! when M eQ, ;, where
C is a positive constant depending only on «, 8, y and n. Since s€ %, it is clear that s is
majorized in Q, ; by some multiple of h. Hence, by Lemma C, the least harmonic
majorant of s in Q,, is H,, . If (10) holds and y(s*)<oo, then s has a harmonic
majorant in D, and it is now clear that the least such majorant is lim,_, H,, ;. By
Theorem 2 (iii), (iv), this limit is given by (11).

8. Proof of Theorem 4

If the hypotheses of Theorem 4 are satisfied, then, by Theorem 2, s has a positive
harmonic majorant in D,. Hence, by Lemma E, s has the representation (20) in D,, and
by Lemmas 3, 4 and 5, Y (s)=c,k. If we write H=1, ., , and if a’>a, then in D, we
have H=1I, . g, as is well known. Hence, by Lemma 3, ¢,(H)=0. Also y,(y—a)=
Yoy—a)+y (ad—a)y=c, by Lemma 5 and the special case of Lemma 3 in which the
Poisson integral is a constant function. Hence to show that ¢ ,(s)=c,k=y,(s), it remains
to prove that ¢,(u)=0. Since u is positive and superharmonic in D,, we can apply
Lemma E to —u to obtain the representation

u(M)=Ia’,oo.v(M)+l(y_a’)+w(M) (MGDa;),

where v is a non-negative measure on R” [ is a non-negative constant and w is a
potential in D,.. From Lemmas 3, 4 and 5, we have y,.(u)=c,l. Since (M)2I(y—a) in
D, it follows that v (u) =y (y—a)+ 1y (a—a’)=c,l, by Lemmas 5 and 3 (trivial case).
By Lemma 4, (1) =0. Hence /=0, and therefore ¢ ,.(u) =0, as required.

9. Examples
We give two examples to show how our theorems break down if the condition on the
growth of s is relaxed. For simplicity, we work only with n=1 and a=0. A point of R?
is denoted by (x, y). Let ¢ be a positive number and define h, in R? by
h,(x, y)=e**sin(ey).

Then h, is harmonic in R2. Define functions s, and s, in D, by writing s, =|h,| and

sa(x, y)=ha(x’ y) (O§y<7z/£), sa(x, .V)=0 (y=n/e).
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Then s, and s, are subharmonic in Dy and vanish on dD,. Also,

lim s{M)e *™M =0 (j=1,2)
M-

for any A>e. (Recall that if se %, then (3) holds for all positive 1) Straightforward
calculations give

Wo(s1, ) =Pols2, Y) =my~ 'sin(ey)(n® —e?y®) ™' (O<y<m/e),
Wols,, y)=o00(y>mn/e, y£n/e, 2nfe,...), Polsy,y)=0 (y=m/e,2n/e,...),
Wolsz: »)=0  (y2mn/e).

Hence Wy(s,, y) takes both finite and infinite values on (0, co) and has no limit as y—oo.
Thus the conclusions of Theorem 1 fail for s;. On the other hand, W(s,, y) is real-
valued on (0, ®w) and possesses a finite limit as y—co, but s, does not possess a
harmonic majorant in any half-space D, with 0<a<n/e. (If s, had a harmonic majorant
in D, with 0 <a< /e, then we would have

T (1+x) 1s(x, @) dx < 0

— 00

([9], Theorem 3, which is false). Thus Theorem 2 fails with s=s,.

REFERENCES

1. D. H. ArMITAGE, On hyperplane mean.values of subharmonic functions, J. London Math. Soc.
(2) 22 (1980), 99-109.

2. F. T. Brawn, The Green and Poisson kernels for the strip R*x ]0, 1[, J. London Math. Soc.
(2) 2 (1970), 439-454.

3. F. T. Brawn, The Poisson integral and harmonic majorization in R" x ]0, 1[, J. London Math.
Soc. (2) 3 (1971), 747-760.

4. F. T. Brawn, Positive harmonic majorization of subharmonic functions in strips, Proc.
London Math. Soc. (3) 27 (1973), 261-289.

5. M. Brevor, Eléments de la théorie classique du potentiel (C.D.U., Paris, 1965).

6. A. DincHas, Uber positive harmonische Funktionen in einen Halbraum, Math. Z. 46 (1940),
559-570.

7. T. M. FLETT, On the rate of growth of mean values of holomorphic and harmonic functions,
Proc. London Math. Soc. (3) 20 (1970), 749-768.

8. L. L. Hewwms, Introduction to Potential Theory (Wiley-Interscience, New York, 1969).

9. U. Kuran, Harmonic majorization in half-balls and half-spaces, Proc. London Math. Soc. (3)
21 (1970), 614-636. :

https://doi.org/10.1017/50013091500017430 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500017430

HARMONIC MAJORIZATION IN HALF-SPACES 91

10. U. Kuran, On the half-spherical means of subharmonic functions in half-spaces, J. London
Math. Soc. (2) 2 (1970), 305-317.

11. U. Kuran, A criterion of harmonic majorization in half-spaces, Bull. London Math. Soc. 3
(1971), 21-22.

12. S. NuaLTARANEE, On least harmonic majorants in half-spaces, Proc. London Math. Soc. (3)
22 (1973), 243-260.

13. M. Tsun, Potential Theory in Modern Function Theory (Maruzen, Tokyo, 1959).

14. G. N. Wartson, A Treatise on the Theory of Bessel Functions (C.U.P., Cambridge, 1922).

15. N. A. Warson, A limit function associated with harmonic majorization on half-spaces, J.
London Math. Soc. (2) 9 (1974), 229-238.

THe QuEEN's UNIVERSITY
BeLrast BT7 INN

https://doi.org/10.1017/50013091500017430 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500017430

