
CONVOLUTION TRANSFORMS RELATED TO 
NON-HARMONIC FOURIER SERIES 

D. B. SUMNER 

1. Introduction. Widder has pointed out (2, p. 219) in connection with 
Wiener's fundamental work on the operational calculus (1, pp. 557-584), that 
the convolution transform 

X oo 

G(x - t) 0(/) dt 
-oo 

will be inverted by the operator DE (D), where D — d/dx, and 

l/wE(w) = I exp(—xw) G(x) dx, 
J - o o 

where a suitable interpretation must be found for E(D). Cases where E(w) is 
entire have been considered by Widder (2, pp. 217-249; 3, pp. 7-60), Hirsch-
man and Widder (4, pp. 659-696; 8, pp. 135-201), and the author (5). 

The most general method of interpreting E(D) is as UmPn(D), where 
W-»co 

Pn(w) is a polynomial of degree n, the method requiring a knowledge of f(x) 
only for real values of its argument. However in cases where more is known 
about E(w) (4, p. 692; 5, pp. 174-183; 6, p. 219), it is possible to represent 
E{w) as an integral, when the computations are simpler, but it is necessary to 
have f(x) defined for complex arguments. 

The purpose of this article is to consider convolution transforms for which 
the invertor function E(w) is entire, is not necessarily even, and can be 
represented by a Fourier-Lebesgue integral. The real numbers which are 
taken to be the zeros of E (w) are a generalization of the non-harmonic Fourier 
exponents discussed by Levinson (7, pp. 47-57). The classical Stieltjes trans­
form (3), and the generalized form of it (5), are particular cases. The assump­
tions made about the zeros of E(w) are sufficient to establish all properties 
needed, and no integrability condition is postulated for E(u). 

2. Definitions. We suppose throughout that 

(2.1) Xn = p + n - Ô + 28an, fxn = n - 8 + 25& (n = 1, 2, . . .), 

0 < a „ , / 3 M <1 , 0<8<h 0 < p < l - 2 5 ; 

(2.2) E(w) = ft (1 - w/X»)(l + w/Vn)\ 
i 

Ji c+ iR 

exp(zw) dw/wE{w), 0 < c < Xi. 
_. , _ c—iR 

The symbols At Ak denote absolute constants throughout. 
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3. Some properties of E(w). The numbers Xn, Mn are those used by Levinson 
(7, pp. 47-57) in his work on non-harmonic Fourier series. With the notation 
w = u + iv = r exp (i<£), Levinson's methods may be used to establish the 
following inequalities: 

(3.1) |£(w)| < A exp 0rM)/r'+1-48, (r > 1) ; 

(3.2) |JE(W)| > 4̂ exp (TTH)/;"*1-4*, provided that 

(3.21) r > 1, |w - r„| > A > 0, rn = X, or - M „ ; 

(3.3) \E'(rn)\~i <Ar>+^; 

(3.4) /^ere #m/s a constant q, 1 < g < 2, swc/z / t o £(w) G Lff(— a>, a>). 

For the behaviour of E(w) along the imaginary axis, we establish the more 
precise inequalities 

(3.5) \E(iv)\ < A e x p ^ D / H » * 1 - 2 5 , \E(iv)\ > A exp{ir\v\)/\v\^l^\ 

(3.6) |amp E(iv6)/E(iv)\ < A{\ - 6), 

where 0 < 6 < 1, a^J /Ae constant is independent of v; 

(3.7) |E(w0)/E(iz;)| w a decreasing function of \v\, 0 < 6 < 1. 

Proo/ o/(3.1). Let 9?(w) > 0, and N be the integer defined by 

(3.8) (p + N -±) cost <r < (p + N + ±) cos </>• 

On considering separately the factors in (2.2) for which 1 *C n < N, n = N 
and n > iV + 1, as Levinson does, we get 

T(p + N + 1 + 8) T(p + N + 1 - 8 - w)\ 
T(p + N + 1 - 8) T(p + N + 1 + 8 - w)\ 

r (p + 1 -8) r ( l - fi)Qw-TO) 

(3.9) | £ W | < 

r(p + l - Ô - w) r(i - 5 + w)(P + N - Ô - w) 
By Stirling's theorem the first factor in (3.9) does not exceed 

(3.10) A,(p + N - | ) 2 V | P + N + 1 - Ô- w|25; 

while the second factor does not exceed 

(3 .11) Û+1-25 
Ai I (Xjy — w) smirjw + 8 — p) | 

7r(w + 5 — iV — p) 

Now when |w + 8 — N — p\ < \, \sin TT(W + 8 — p)/ir(w + 8 — N — p) <AZ; 
and by (2.1), IX^ - w\ < 1. When \w + 8 - N - p| > £, |sin ir(w + ô - p ) |< 
.44exp(7rM), and | (X^ - w)/(w + 8 - N - p)\ < 1 + 2ôo^/|w + 5 - iV-p | 
< 2. Thus in all cases the second factor in (3.9) does not exceed 

(3.12) ilBexp(irM)/r'+1-2a. 

We prove now that 

(3.13) bd{\p + N + 1 - 8 - w|cos0} > 0-

https://doi.org/10.4153/CJM-1955-012-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1955-012-9


CONVOLUTION TRANSFORMS 91 

For by (3.21), (3.8), when 0 < \cf>\ < TT/4, 

\p + N + 1 - Ô - w\ cos <t> > 2-^(p + N + 1 - 8 - u) > 
2-*[(p + iV + J) sinV + J - 8] > 2"*(J - 5); 

and when 7r/4 < |0| < 7r/2, 

|p + ^ + 1 - 5 w| cos 0 > (p + iV + 1 - 8 - u)/(P + N + J) 
> sin20 + (J - 5)/(p + N + J) > h 

by (3.8) and r > 1. 
From (3.9), (3.10), and (3.12), 

\E(w)\ < ^ 6 (p + N - i)2aexp(irW)/r'+1-2*|p + iV + 1 — 5 — w|25> 
< A7r

2'exp(ir\v\)/r'>+1-2'{\p + N + 1 - Ô - w\ cos 0}25, 
<^8exp(7r|z;|)/^+1-45 

by (3.13). This proves (3.1) for $t(w) > 0; and the assertion is seen to be 
true for dt(w) < 0 by applying the same argument to E( — w). 

Remark on the proof of (3.4). Levinson's method may be used to show that 
when p + 7 V < w < p + 2N, 

A9N
l 46-p - l 

(p + 2N + 1 - u) 
25 

22V 

n 
p + n — 8 + , u — 2i 

p + n — ô — u — 2i 

J *p+2N 

0 < 2q8 < 1. 

î (p + 1 - 25) > 1, 

(3.14) |£ («) | < 

(3.15) 

provided that 
(3.16) 
If in addition 
(3.17) 

it follows from (3.15) that E(u) Ç L(0, °°). The final conclusion follows by 
considering E( — u) in the same way. 

It is evident that there always exists a number q, 1 < q < 2, satisfying 
(3.16) and (3.17), for example q = (1 - A)"1, where 28 < A < 1 - 28, 

Proof of (3.5). Since 

IG-^Xi+^h l(>-£)(i+£)l 
< 

it follows that 

r ( p + l + 5 ) r ( l +5) 

fl È )(1+-ÈL\\ 
\ p + n- 8/\ ^ n- 8/\ ' 

r(P + l + 8 - iv) r(i + 8 + iv) 
< \E&)\ 

< 
r(p + i - 8) r q - s) 

T(p + 1 - 8 - w) r ( l - 5 + «>) 

and (3.5) then follows from a classical property (9, p. 259) of the T-function. 
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Proof of (3.6). We give details for the case v > 0. Writing 

4>n = amp{(l - iv6/Xn)(l + iv6/nn)/(l - w/X»)(l + iv/nn)}, 

and using the inequalities for Xni \xn and p in (2.1), we have 

<j>n = arctani ) 2 ; 2 - ) - a rc t an i - v
2 ,\~) , 

\ f l 0 + ( p + w — 5 ) / \ fl 0 + (w + 5) / 

/ + ^ ( 1 - f l ) ( » + l - s A , (v(l-d)(n-d)\ 
< arctani 2 \ - ^ — - 1 — arctani—2 / "T^T^J » 

v(l - 6){v2d + n2(l + 45) + 2n5(l - 25) + Ô2}  
- arctan ^ + ^ _ ^ - ^ + ^ + ^ + j ^ _ ^ + x _ 8 ) ( w __ 5 y 

On observing that 

0 < v2d + n2(l + 40) + 2»ô(l - 20) + Ô2 < 2[v2d + (n + Ô)2], 

we see that <t>n < arctan{2^(1 — 6)/[v26 + (n — à)2]}. A similar argument 
applied to — <f>n gives 

-<j>n < arctan{3z;(l - 6)/[v2d + (n - Ô)2]} ; 
and thus 

|0„| < arctan{Sv(l - B)/[v26 + (n - Ô)2]}. 

I t then follows easily that |amp[E(w0)/E(w)]| < i 4 ( l — 0), the constant 
being independent of v. 

Proof of (3.7). Let A be the region consisting of the w-pl&ne from which 
the points v = 0, |w| > 1 — ô have been removed. Then the series 

y* ( w _ 6w \ y* / w _ 0̂  \ 
1 \XW — W \ n — Bw) ' i V n ~ W M« — 0W/ 

converge absolutely and uniformly in any compact subset of A, and 

d. \ E(ivd)~\ . ^ (\n + iv e{\n±Jud)\ 
dvl°\ E{iv) J " %*t VxT+V ~ X2, + vV~) 

. ̂  //*„ - iv 6>(/Xn - wfl)\ 

^ V o g E{iv) j - " 4- L(x2 + ,2)(xf+W) + 04 + v2)U + v2e2)] < a 

It follows that \E(ivd)/E(iv)\ is a decreasing function of |A|. 

4. Representation of the operator. Let p be the index conjugate to q, so 
that p > 2. By (3.4), the function 

&(;y) = lim (2TT)~* I E(w) exp( — iwy) ^w 
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exists and belongs to Lp(—v>, » ) . On considering the contour integral 
JE(w) exp(—iyw) dw taken round the boundary of the semi-circular disc 
\w\ < R, v > 0, we see that the part of the integral taken round the arc of the 
semi-circle is 0(R~P), (R —> <») when \y\ > T, where 0 = p + 1 — 45 > 0 in 
(3.1). Thus 
(4.1) k(y) = 0 p.p. in \y\ > T. 

Since E(u) is continuous 

(4.2) E{u) = lim (27T)-1 f k(y)[l - |y|/-R] exp(wy) dy, 

= (2ir)~* I k(y) exp(iuy) dy, 

and k(y) e L2(-ir, TT) by (4.1) and p > 2. 
It is easily seen that for complex w, the integral 

(2T)~* I &(;y) exp(fyzez) dy 

defines an entire function, and by (4.2) we may write 

(4.3) E(w) = (271-)"* I k(y) exp(iyw) dy. 

In proving the inversion theorem we shall make use of the function E(0w), 
0 < 6 < 1, for which we prove 

(4.4) \E(6rn)\ <A(l-e)rn, 

where rn stands for \n or —/*w and the constant is independent of n. 
Let m(y, a) — exp(-iyad) — exp(-iya). Then for \y\ < T, and 0 < 0 < 1, 

< 4*1(1-0); exp(-ita) 

|E(-0/**) - £ ( - M * ) I = ( 2 T ) - * f *(y)wCy, / i*)^ 

by the Schwarz inequality. 
With the usual interpretation of exp(aD) as a shift operator, we have 

formally 
DE(D).f(x) = lim DE(dD)f(x), 

0->i 

= lim (2w)~h f k(y) exp(iy6D) dyf(x), 

= lim (27T)-* f k(y)f(x + iyO) dy. 
e^i J-IT 

We therefore define the operation DE(D).f(x) by 

(4.5) DE(D)f(x) = lim (2TT)^ f i f r ) / ' ( * + fy0) dy-

5. Properties of the nucleus. Denoting the strip \y\ < w of the s-plane 
by B, we prove the following propositions: 
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(5.1) the integral (2.3) defining G(z) converges absolutely when z £ B, converges 
uniformly when z belongs to a compact subset of B, and therefore defines a function 
analytic in B; 

/ l + 0[exp(—Xfii)], (x—> oo in B)> 
(5.2) 

(5.3) 

G{z) \<9[exp(xXi)], (*-

G (S) = W 
( x • 

exp(xX!)], (x-

(5.4) when z0 € -5, there is a constant i?o such that the integrals 

in B); 

in 5 ) , 
inJ3); 

I d G(z - t) dt, f d G(g - Q 
I dt G(z0 - t) I ""' J ^ I <ft G(z0 - t) 

converge uniformly when z belongs to any compact subset of B. 

Proof of (5.1). By (2.3), (3.2), 

dt 

I iri J c 

c+Zco exp(zw) dw 

c-ioo wE(w) Joo 

exp[— yv— (w — e)|z;|] dv 
-oo 

< ^42exp(cx), 
since \y\ < 7r in B. This inequality is sufficient to establish the assertions of 
(5.1). 

Proof of (5.2), (5.3). On account of the classical properties of Dirichlet 
series it is sufficient to show that 

(^) G{z) = 
1 - J2 exp(-zvn)/fxnE'(-nn), 

i 
oo 

- X exp(2Xw)/XwE'(Xn), 

(x > 0, \y\ < TT), 

(x < 0, \y\ < TT), 

the Dirichlet series converging absolutely in the indicated regions. 
Details are given for the case x < 0. Designating the points c — iR, 

c + R cot p - iR, c + R cot 0 + iR and c + £R by A, B, C and D re­
spectively, where 0 < ($ < \ir, let L be the contour formed by the linear 
segments AB and CD and the circular arc \w — c\ = R joining to B to C. 
Consider 

= I exp(zw) dw/wE(w). 

By using (3.2) and x < 0, 0 < /3 < ^w, \y\ < T, and estimating the integrals 
along AB, BC and CD separately, we see that / = o(l) as R —> œ. The 
second equation in (5.5) then follows from the definition of G(z) and the calculus 
of residues. 

Proof of (5.4). When x ^ 0 , G(z) is represented by the absolutely conver­
gent Dirichlet series (5.5), and it is well known that functions so defined 
can have but a finite number of zeros. Since z0 is given, and X\ < x < X 2 
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in the compact subset of B, we may choose R0 so that G (z0 ~ t) does not 
vanish for |/| > R. It then follows easily that 

A G(z ~ l) 1 = /0[exp(/jui)] (/-> - » ), 
* GOo - 01 lO{exp[-/(X2 - Xi)]} (f-> oo), 

where the constants are independent of z. These estimates are sufficient for 
the proof. 

6. Properties of the transform. The following theorem gives properties 
of the functions/(x) and <j>(t) in (1.1) which will be used later. 

THEOREM I. Let <j>(t) Ç L(0,R) for any R and be such that the integral 
(1.1) converges for at least one z in B, and let <£(/) = §l<f>(u)du: then 
(6.1) the integral (1.1) converges for all z in B, and defines a function analytic 
in B; r 

(6.2) *« = r e x p ' X i L „('-*"' 
V0(exp — /A) (t—>— co), 

for any positive A. 
Proof of (6.1). On account of (5.4), the method of Widder-Hirschmann 

may be used (4, pp. 691-692). 
Proof of (6.2). It follows from the representation (5.5) of G(z) for x ^ 0 

that G(z) and G' (z) have at most a finite number of zeros. Let A be a positive 
number such that neither G(z) nor G'(z) vanishes for \x\ > A. To prove the 
first assertion, define \f/(t) = jl

0G( — A — u) d$(u). Then by hypothesis, 
^(oo) is finite, and 

$(/) e x p ( - A i ) = exp(-ZXi) J d$(u)/G(-A-u), 

_ P Y n r n J ° *(f) r*{u)G'(-A-u)dul 
~ e x p ( - / X 1 ) [ _ G ( ^ _ / ) ~ J o G 2 ( - 4 - « r J ' 

as / —» oo by l'Hopital's rule, and (5.5). 
To prove the second assertion, write \f/(t) = JQG(A — u) d$(u)\ and in the 

same way, <£(/) exp(/A) = 0(1), (/—> — oo). 
It is convenient at this point to establish some properties of the function 

(6.3) K(x, 6) = 0(2TT)-* f k(y) G'(x + iyd) dy. 

These properties are: 

with similar estimates for K'(x, 0); 

(6.5) K(x, 0) = 0[(1 — 6)~ ] uniformly in x as 0 —* 1 ; 

K(t, 0) dt = J = lim I K(t, 0) dt. 
- ,- 0 d-±l J-x 
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Proof of (6.4). Details are given for the case x > 0. 

[K(x,6)\ 
/**• pc+ioo 

6(2ir)~h k(y) dy {2iri)~l exp[w(x + iyO)] dw/E(w) 
J—T J C-ica 

J *c+icx> 

E(0w) exp(xw) dw/E(w) 
C—ÏCX3 

oo 

£ E(-d»n) exp(-Xfxn)/E
f(-fjin) , 

i I 
oo 

< 4 i ( l - 0 ) X / ^ e x p ( - ^ ) / | £ ' ( - / z w ) | , 

^ ( 4 . 3 ) ; 

^ (4 .4 ) ; 

and as x > 0 and (3.3) guarantee the convergence of this series, our assertion 
is proved. 

Proof of (6.5). By (4.3), (6.3) and Cauchy's theorem, 

JT /» ico 

k(y) dy (2Tri)"1 exp[w(* + iyO)]dw/E(w), 
-T J-ÎOO 

Xoo 

exp(ixv) E{ivd) dv/E(iv). 
-oo 

Using the fact that for 0 < 6 < 1, 

|(1 - ivd/\n)/{l - iv\n)\ and |(1 + ivB/fjtn)/(l + w / / 0 | 

are less than unity, we have 
1 - iv6/(p + n - 6) 
1 — iv/(p + n — 5) < 

1 — ivd/Xn 
1 — iv/\n 

with similar inequalities involving nn. Hence 

r (p + 1 - 8 - w) r ( l - g + w ) I 

< 

< 

1 - iv6/(P + n + Ô 
1 — iv/(p + n + ô 

\E(iv8) 
r (p + 1 - ô - ii/0) r ( l - 3 + ivO) I I E(iv) 

r(p + l + 5 - w) r(i + 5 + w) 
r(P + l + Ô - ivs) r(i + 5 + w0) < 

and by (9, p. 259), 

(6.7) \E{ivd)/E{iv)\ ~ A exp[-7i>|( l - $)] (\v\ -> oo). 

Since 0 < 6 < 1, this is sufficient to prove our result. 

Proof of (6.6). Write I = Jx
0K(t, B) dt, where x ^ 0. Then 

dt k{y)G'{t + iy6)dy, 
0 J-T 

= 0(2*-)-* f *O0[G(* + iyg) - G(iyd)] dy, 

the interchange of the integrations being justified, since k(y) Ç L2( —7r, ?r) 
and 
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exp[w(t + iyd)] dw/E(w)\, 
C— Zoo 

/»00 

= I (2 TT)-1 exp ( -vyd + ivi) dv/E(iv) |, 
• / -oo 

= r e x p [ - x H ( l - 0)] 0[\v\"+1+n]dv, by (3.5), 
«'-co 

= 0[(1 - 0)~p-2-25]. 
Thus 

7 = 0(27r)~* I k(y)dy(2Tri)~1 I {exp[w(x + iyd)] — exp(iydw)}dw/wE(w). 
•J—ic *J C—iœ 

Again by (4.3) and the absolute convergence of the inner integral for \y\ < T, 
we may interchange the integrations, and get 

d f°° [exp(mQ -l]E(ivO) 
(6'8) J ~ 2Ï J_œ Wfr) dv> 
the application of Cauchy's theorem being justified by the analyticity of 
[exp(x^) — l]/w at the origin. 

We observe next that E(dw)/E(w) is real when w is real. Hence I = P — Q, 
where 

^ 27TJO » LE(w) J 

2 X Jo z> L-E(w) J 

It is then sufficient to show that 

(6.9) Q -» 0, 0 -* 1, 
(6.10) P - > J f $->l. 

To prove (6.9), it is sufficient to consider 

We then have 

, - , I f00 1 - cosxz; I E ( W 0 ) | . [E(iv6)~] _ I 
1 I J i v I E(w) I ^ LE(tv) J | 

/»oo 

< Axil - 0) J ^_ 1exp[- *v(l - 0)] dv, by (3.6) anrf (6.7), 

= ^ i ( l - 0) f °° f^expC-O * < i4,(l - 0)*T(i). 
JT(1-6) 

Thus Ci, and consequently Q tends to zero as 0 tends to unity. 
To prove (6.10), we observe that on account of (3.7), 

f°°sinsp |g(wfl)| , 
Jo v I E(iv) I 

converges uniformly in J < 0 < 1; and from (3.6), that (8t[E(iv6)/E(iv)] is 
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positive when 6 is close to unity. It is therefore sufficient to prove that 
C(0)-»O ( 0 - > l ) , where 

But 
Jo » I I E(tv) | L£(w) J ; 

I^/,M ^ r\E(wd)\j^ [E(we)~\\, 
|c(e)l < J„ Imo\v -cosH_£w"Jr*-

Xco 

e x p [ - w ( l -0)]<fo, 
= O [ ( l - 0 ) ] , ' 6y(3.6). 

7. The inversion theorems. The main result is 

THEOREM II. Let <f>(t) £ L(0, i?) for any R and be such that the integral 
(1.1) converges for at least one z in the strip B: then if f{z) is defined by (1.1) 
and DE{D)f(x) by (4.5), 

DE(D)f(x) = *[*(*+) + * ( * - ) ] , 

whenever the right-hand side has a meaning. 

For 

DE(D)J(x) = lim (2 *•)""* f *(?) ^ Ç~ G'(x-t + iyB) <t>(t) dt, 

J CO /»*" 

0(0 <ft (27r)"è fe(y) G'(x - t + iyd) dy, 

XOO 

K{x - t, 6) <j>{t) dt, 
-co 

the interchange of the integrations being justified by the uniform convergence 
of (1.1) in any compact subset of B, and the fact that k(y) G L2( —7r, IT). 
It is sufficient to prove 
(7.1) I K(x - t, 6) 4>(f)dt->%<l>(x-), 

J — oo 

XOO 

K(x-t,0) *(0 * - » * * ( * + ) , 
aS0—> 1. 

We give details for (7.1). Let T > 0, and write 

f K(x-t, 6)[<l>(t)-<l>(x-)]dt = f X(^ ,6>)[</ ) (x-0-*(x- ) ]^ = 7(0, T). 
•J x—T *s 0 Then 

|/[0, TT(1 - 0 ) ] | < f | * ( * - 0 - * ( * - ) l l # M ) l * 
/nr( l -0) 

< ,4(1 - 0)_1 I |</)(x - 0 - 4>{x-)\dt 

(7.3) = o(l), 
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as 0 -» 1, by (6.5). Next by (6.4), 

(7.4) | J [ T ( 1 - 6), T)\ <A(l-6) f \4>(x - 0 - * ( * - ) | e x p ( - f o i ) < « 

= 0(1 - 6). 

Thus by (6.6), (7.3) and (7.4) 

lim I K(x - t, 6) 4>(t) dt = £«(*-) . 
0->l J x—T 

It remains to prove that jxJ^ K(x — t, 6) </>(t) dt -> 0 as 6 -> 1. As this 
integral need not converge absolutely, we write it as 

[K'(x-t,e)Q(t)]Tm+ f K'(x-t,0)$(t)dt. 
« J - c o 

By (6.2) and (6.4) the integrated term = 0(1); and for the same reason 

f K'(pc - t, 6) $(/) dt = fV(^, )̂ $(x - /) 
«/-co I I JT 

dt = 0(1 - 0). 

Since (7.2) may be proved in the same way, the theorem is complete. 

The proof of the following theorem is similar: 

THEOREM III. Let f(z) = J^œG(z — t) da(t), where a(t) is a normalized 
function of bounded variation in any finite interval: then if this integral converges 
for any z in B, it converges for all such zf converges uniformly in any compact 
subset of B, and defines a function analytic in B. Also 

J *X2 fn 

dx I k(y)f'(x + iyff) dy = a(x2) — a(xi). 
- . - Xi *S —TT 

8. Remarks. In the proof of (5.4) we have used the fact that from its 
representation (5.5) as a Dirichlet series, the nucleus G(z) has but a finite 
number of zeros. Hirschmann and Widder (8, p. 159) have shown that a more 
general nucleus has no zeros on the real axis, and it is certainly true that 
G(iy) 9^ 0 for \y\ < w. The proof that G(z) does not vanish in B seems to be 
connected with properties of functions defined by Dirichlet series with 
coefficients of alternating sign, and will be dealt with elsewhere. 
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