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Abstract

Motivated by the local theory of Banach spaces, we introduce a notion of finite representability for metric
spaces. This allows us to develop a new technique for comparing the generalised roundness of metric
spaces. We illustrate this technique by applying it to Banach spaces and metric trees. In the realm of
Banach spaces we obtain results such as the following: (1) if U is any ultrafilter and X is any Banach
space, then the second dual X∗∗ and the ultrapower (X)U have the same generalised roundness as X, and
(2) no Banach space of positive generalised roundness is uniformly homeomorphic to c0 or `p, 2 < p <∞.
For metric trees, we give the first examples of metric trees of generalised roundness one that have finite
diameter. In addition, we show that metric trees of generalised roundness one possess special Euclidean
embedding properties that distinguish them from all other metric trees.
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Keywords and phrases: generalised roundness, negative type, uniform homeomorphism, scale
isomorphism.

1. Introduction

Direct calculation of the generalised roundness of an infinite metric space is, in
general, a difficult task. In this paper we develop a versatile technique for comparing
the generalised roundness of metric spaces. This leads to substantial new insights into
the generalised roundness of Banach spaces and metric trees.

Definition 1.1. The generalised roundness of a metric space (X, d), denoted by ℘(X,d)
or simply ℘X , is the supremum of the set of all p ≥ 0 that satisfy the following
condition: for all integers k ≥ 2 and all choices of (not necessarily distinct) points
a1, . . . , ak, b1, . . . , bk ∈ X,∑

1≤i< j≤k

{d(ai, a j)p + d(bi, b j)p} ≤
∑

1≤i, j≤k

d(ai, b j)p. (1.1)
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The configuration of points Dk = [a1, . . . , ak; b1, . . . , bk] ⊆ X underlying (1.1) will be
called a simplex in X. We will say that p ≥ 0 is a generalised roundness exponent for
(X, d) if (1.1) holds for every simplex in X.

The notion of generalised roundness was introduced by Enflo [8] to study universal
uniform embedding spaces. By showing that such spaces must have generalised
roundness zero, Enflo was able to prove that Hilbert spaces are not universal uniform
embedding spaces. This resolved a prominent question of Smirnov. Some time later,
Lennard et al. [25] exhibited an important connection between generalised roundness
and the classical isometric embedding notion of negative type. Lafont and Prassidis
[23] used this connection to show that if a finitely generated group Γ has a Cayley
graph of positive generalised roundness, then Γ must satisfy the coarse Baum–Connes
conjecture and hence the strong Novikov conjecture. The interplay between these
notions has a very interesting history (see Prassidis and Weston [30]).

The set of generalised roundness exponents of a given metric space (X,d) is always a
closed interval of the form [0, ℘] or [0,∞), including the possibility that ℘ = 0, in which
case the interval degenerates to {0}. This result is a direct consequence of Schoenberg
[34, Theorem 2.7] and Lennard et al. [25, Theorem 2.4]. Faver et al. [10] have shown
that the interval [0,∞) arises if and only if d is an ultrametric. For finite metric spaces
it is always the case that ℘ > 0. This is the main result in Weston [36].

Enflo [8] constructed a separable metric space that is not uniformly embeddable
in any metric space of positive generalised roundness. Dranishnikov et al. [7]
modified Enflo’s example to construct a locally finite metric space that is not coarsely
embeddable in any Hilbert space, thereby settling a prominent question of Gromov.
Kelleher et al. [19] unified these examples to construct a locally finite metric space that
is not uniformly or coarsely embeddable in any metric space of positive generalised
roundness. One may also use generalised roundness as a highly effective isometric
invariant by exploiting the connection between generalised roundness and negative
type due to Lennard et al. [25]. A general principle for using generalised roundness
as an isometric invariant was recently isolated by Kelleher et al. [20, Theorem 3.24].
It is therefore a matter of great utility to be able to calculate the generalised roundness
of certain metric spaces.

In recent work, Sánchez [33] has provided a method of calculating, at least
numerically, the generalised roundness of a given finite metric space (X, d). However,
as the size of the space grows, Sánchez’ method rapidly becomes computationally
intensive. Nevertheless, the method is an important tool for the analysis of the
generalised roundness of finite metric spaces. In [33], the method is used to
calculate the generalised roundness of certain finite graphs endowed with the usual
combinatorial metric. The metric graphs that we consider in this paper are countable
metric trees and so we are unable to use Sánchez’ method.

It is prudent at this point to pin down some basic definitions pertaining to metric
graphs. A graph G is connected if there is a (finite) path between any two vertices of
G. A tree is an undirected, connected, locally finite graph without cycles. These
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definitions imply that the vertex and edge sets of a tree are at most countable.
Assigning a positive length to each edge of a given tree T induces a shortest-path
metric d on the vertices of the tree. The resulting metric space is denoted by (T, d) and
is called a metric tree.

Generalised roundness properties of metric trees have been studied by several
authors. All additive metric spaces, and hence all metric trees, have generalised
roundness at least one. This fact is folklore and it may be derived in several different
ways (see Kelly [21, Theorem II] and Faver et al. [10, Proposition 4.1]). Examples of
Caffarelli et al. [2] show that some countable metric trees have generalised roundness
exactly one. The situation is different for finite metric trees. Indeed, Hjorth et al. [14]
have shown that all finite metric trees have strict 1-negative type, which ensures that all
finite metric trees have generalised roundness greater than one. (One way to see this is
to appeal to Lennard et al. [25, Theorem 2.4] and Li and Weston [27, Corollary 4.2].)
Hence, metric trees of generalised roundness one are necessarily countable. Simple
examples show that the converse of this statement is not true in general.

We conclude this introduction with some comments about the structure and main
results of this paper. In Section 2, motivated by the local theory of Banach spaces,
we introduce a notion of finite representability for metric spaces. Our purpose in
introducing such a notion is to provide a new technique for comparing the generalised
roundness of metric spaces. The remainder of Section 2 is then devoted to a
preliminary investigation of this technique in the context of infinite-dimensional
Banach spaces. We prove, for example, that if U is any ultrafilter and X is any
Banach space, then the second dual X∗∗ and the ultrapower (X)U have the same
generalised roundness as X. In other words, ℘X = ℘X∗∗ = ℘(X)U . It is also noted that no
Banach space of positive generalised roundness is uniformly homeomorphic to c0 or
`p, 2 < p <∞.

Caffarelli et al. [2] identified several classes of metric trees of generalised roundness
one. The types of trees studied in [2] were spherically symmetric, infinitely bifurcating
or comb-like trees endowed with the usual combinatorial path metric. In other
words, all edges in the trees were assumed to have length one and all other distances
were determined geodesically. In Sections 3 and 4 we relax this condition by
considering trees endowed with weighted path metrics. Section 3 focuses on trees
that resemble jagged combs. Section 4 deals with spherically symmetric trees that
have systematically weighted edges. We also make a distinction between convergent
and divergent spherically symmetric trees. In both cases we show that the generalised
roundness of such trees can easily be one. In particular, we identify a large class of
metric trees of generalised roundness one that have finite diameter.

In Section 5 we examine isometric embedding properties of metric trees of
generalised roundness one. We prove that all metric trees of generalised roundness
one possess the stronger property of strict 1-negative type. Due to the relationship
between generalised roundness and negative type, it also follows that no metric tree
of generalised roundness one has p-negative type for any p > 1. Taken together, these
facts imply the following embedding phase transition: if (T, d) is a metric tree of
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generalised roundness one, then (1) the metric transform (T,
√

d) is isometric to an
affinely independent subset of `2 and (2) the metric transform (T,

√
dp) does not embed

isometrically into `2 for any p, 1 < p ≤ 2. Moreover, the only metric trees that satisfy
condition (2) are those of generalised roundness one.

2. Comparing the generalised roundness of metric and Banach spaces

In this section we develop a technique for comparing the generalised roundness of
metric spaces. In order to do this we introduce a metric space version of the Banach
space notion of finite representability (introduced by James [16, 17]). Throughout this
section, all Banach spaces are assumed to be real and infinite dimensional unless noted
otherwise. The first and second duals of a Banach space X are denoted by X∗ and X∗∗,
respectively. All Lp-spaces are assumed to be commutative unless noted otherwise.

Definition 2.1. Let X and X′ be Banach spaces.

(1) X is crudely represented in X′ if there exists an ε0 > 0 such that for each finite-
dimensional subspace E ⊂ X there exist a finite-dimensional subspace F ⊂ X′

(with dim E = dim F) and a one-to-one linear mapping T : E → F that satisfies
‖T‖ ‖T−1‖ ≤ 1 + ε0.

(2) X is finitely represented in X′ if for each ε > 0 and each finite-dimensional
subspace E ⊂ X there exist a finite-dimensional subspace F ⊂ X′ (with dim E =

dim F) and a one-to-one linear mapping T : E → F that satisfies

(1 − ε)‖x‖ ≤ ‖T x‖ ≤ (1 + ε)‖x‖ for all x ∈ E. (2.1)

It is easy to see that an equivalent reformulation of the condition given in Definition
2.1 is the following: for each ε > 0 and each finite-dimensional subspace E ⊂ X there
exist a finite-dimensional subspace F ⊂ X′ (with dim E = dim F) and a one-to-one
linear mapping T : E → F with ‖T‖ ‖T−1‖ ≤ 1 + ε. While this reformulation makes
the relationship between crude and finite representability plain, the metric nature of
(2.1) suits our purposes and motivates Definitions 2.2 and 2.3 below.

The notion of crude representability is particularly important in the uniform theory
of Banach spaces. Recall that two Banach spaces X and X′ are said to be uniformly
homeomorphic if there exists a bijection f : X → X′ such that f and f −1 are both
uniformly continuous. A famous result of Ribe [31] asserts that if a Banach space X
is uniformly homeomorphic to a Banach space X′, then X is crudely represented in X′

and X′ is crudely represented in X (sometimes known as Ribe’s rigidity theorem).
A one-to-one linear mapping T : E → F that satisfies (2.1) is said to be a (1 + ε)-

isomorphism. A similar notion for metric spaces may be formulated as follows.

Definition 2.2. Let (X, d) and (X′, ρ) be metric spaces and suppose that ε > 0. A
one-to-one mapping φ : X→ X′ : x 7→ x′ is called a (1 + ε)-scale isomorphism if there
exists a constant n = n(ε) > 0 such that

(1 − ε)nd(a, b) ≤ ρ(a′, b′) ≤ (1 + ε)nd(a, b) for all a, b ∈ X.
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It is worth noting that we will use the notation x′ to denote φ(x) throughout this
section.

Definition 2.3. A metric space (X, d) is said to be locally represented in a metric space
(X′, ρ) if for each ε > 0 and each nonempty finite set X] ⊆ X there exists a (1 + ε)-scale
isomorphism φ : (X], d)→ (X′, ρ).

The following lemma notes that for Banach spaces, finite representation implies
local representation.

Lemma 2.4. Let X and X′ be given Banach spaces. If X is finitely represented in X′,
then X is locally represented in X′.

Proof. Let X] be a given nonempty finite subset of X and suppose that ε > 0. Let E
denote the linear span of X] in X. Then E is a finite-dimensional subspace of X. As X
is finitely represented in X′, there exists a (1 + ε)-isomorphism T : E → X′. Setting φ
to be the restriction of T to X], we obtain a (1 + ε)-scale isomorphism X] → X′ (with
constant n = 1). Hence, X is locally represented in X′. �

We turn now to the main technical result of this section. It provides a new technique
for comparing the generalised roundness of metric spaces.

Theorem 2.5. If a metric space (X, d) is locally represented in a metric space (X′, ρ),
then every generalised roundness exponent of (X′, ρ) is a generalised roundness
exponent of (X, d). Hence, ℘X′ ≤ ℘X .

Proof. It suffices to prove that if p is not a generalised roundness exponent of (X, d),
then p is not a generalised roundness exponent of (X′, ρ).

Suppose that p ≥ 0 is not a generalised roundness exponent of (X, d). We
immediately have that p > 0 because 0 is a generalised roundness exponent of all
metric spaces. From our definition, there must be a simplex [ai; b j] ⊆ X such that∑

i< j

(d(ai, a j)p + d(bi, b j)p) >
∑
i, j

d(ai, b j)p

and so we may choose an ε > 0 so that

(1 − ε)p ·
∑
i< j

(d(ai, a j)p + d(bi, b j)p) > (1 + ε)p ·
∑
i, j

d(ai, b j)p. (2.2)

We now let X] denote the finite subset of X that consists of the simplex points
ai, b j. As (X, d) is locally represented in (X′, ρ) and ε > 0, there must exist an injection
φ : X] → X′ : x 7→ x′ and a constant n = n(ε) > 0 such that

(1 − ε)nd(a, b) ≤ ρ(a′, b′) ≤ (1 + ε)nd(a, b)

for all a, b ∈ X]. If we scale the metric on X′ by defining ω = ρ/n, we obtain

(1 − ε)d(a, b) ≤ ω(a′, b′) ≤ (1 + ε)d(a, b) (2.3)
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for all a, b ∈ X]. It now follows from (2.2) and (2.3) that p is not a generalised
roundness exponent for the scaled metric space (X′, ω). Indeed,∑

i< j

(ω(a′i , a
′
j)

p + ω(b′i , b
′
j)

p)≥ (1 − ε)p ·
∑
i< j

(d(ai, a j)p + d(bi, b j)p)

> (1 + ε)p ·
∑
i, j

d(ai, b j)p =
∑
i, j

((1 + ε)d(ai, b j))p

≥
∑
i, j

ω(a′i , b
′
j)

p.

This completes the proof because generalised roundness is preserved under any scaling
of the metric ρ. �

For the remainder of this section we will consider the application of Theorem 2.5
to Banach spaces. It is germane to recall a few facts about the generalised roundness
of Lp-spaces. If X is an Lp-space, then ℘X = p if 1 ≤ p ≤ 2 and ℘X = 0 if p > 2. These
results are due to Enflo [8] in the case 1 ≤ p ≤ 2 and Lennard et al. [25] in the case
p > 2. With the exception of the Schatten p-classes Cp, the generalised roundness of
noncommutative Lp-spaces has not been widely studied. In [25], the authors noted that
℘Cp = 0 if p > 2. It is only relatively recently that Dahma and Lennard [4] have shown
that ℘Cp = 0 if 0 < p < 2.

Corollary 2.6. If a Banach space X is finitely represented in a Banach space X′, then
℘X′ ≤ ℘X . In particular, if ℘X = 0, then ℘X′ = 0.

Proof. Immediate from Lemma 2.4 and Theorem 2.5. �

Examples of Banach spaces that have generalised roundness zero include C[0, 1],
`∞, c0, `p if p > 2, and the Schatten p-class Cp if p , 2. For each Banach space X and
each integer n ≥ 2, Dineen [6] has shown that `∞ is finitely represented in the space
P(nX) of bounded n-homogeneous polynomials on X. Hence, P(nX) has generalised
roundness zero by Corollary 2.6. For each p ∈ (1,∞), c0 is finitely represented in the
quasi-reflexive James space Jp. (This result is due to Giesy and James [11] in the case
p = 2 and, for p , 2, it is due to Bird et al. [1].) Hence, for each p ∈ (1,∞), Jp has
generalised roundness zero by Corollary 2.6.

On the basis of existing theory and Corollary 2.6, we are able to isolate some
situations where generalised roundness functions as an invariant in the uniform theory
of Banach spaces. For instance, as the next corollary shows, no Banach space of
positive generalised roundness is uniformly homeomorphic to `p for any p > 2.

Corollary 2.7. If a Banach space X is uniformly homeomorphic to `p (1 ≤ p < ∞),
then ℘X ≤ ℘`p . In particular, if p > 2, then ℘X = 0.

Proof. Ribe’s rigidity theorem [31] implies that `p is crudely represented in X.
However, if `p is crudely represented in X, then `p is finitely represented in X. This
follows from Krivine’s theorem [22] (as noted by Rosenthal [32] and Lemberg [24]) if
1 < p <∞, and it is due to James [15] in the case p = 1. Thus, ℘X ≤ ℘`p by Corollary
2.6. Moreover, if p > 2, then ℘`p = 0. So, for p > 2, we deduce that ℘X = 0. �
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The uniform structure of `p, 1 < p < ∞, is particularly well understood. For
instance, if a Banach space X is uniformly homeomorphic to `p, 1 < p < ∞, then it
is linearly isomorphic to `p. This deep theorem is due to Enflo [9, Theorem 6.3.1] in
the case p = 2 and Johnson et al. [18, Theorem 2.1] when p , 2. So, if 1 < p <∞, one
may replace the phrase ‘uniformly homeomorphic’ in the statement of Corollary 2.7
with the phrase ‘linearly isomorphic’ without losing any generality. The situation for
c0 is somewhat similar.

Corollary 2.8. If a Banach space X is uniformly homeomorphic to c0, then ℘X =

0. In particular, no Banach space of positive generalised roundness is uniformly
homeomorphic to c0.

Proof. Ribe’s rigidity theorem [31] implies that c0 is crudely represented in X.
However, James [15] has shown that if c0 is crudely represented in X, then c0 is finitely
represented in X. Thus, ℘X ≤ ℘c0 by Corollary 2.6 and ℘c0 = 0 implies that ℘X = 0. �

The uniform structure of c0 is more beguiling and less well understood than that of
`p, 1 < p < ∞. Johnson et al. [18, Corollary 3.2] proved that if a complemented
subspace of a C(K) space is uniformly homeomorphic to c0, then it is linearly
isomorphic to c0. Godefroy et al. [12, Theorem 5.6] have shown that a Banach space
which is uniformly homeomorphic to c0 is an isomorphic predual of `1 with summable
Szlenk index. But it is not known whether a predual of `1 with summable Szlenk index
is linearly isomorphic to c0. Thus, unlike `p (1 < p < ∞), it remains unclear whether
c0 is determined by its uniform structure.

Corollary 2.9. If X is a Banach space, then ℘X = ℘X∗∗ and ℘X∗ = ℘X∗∗∗ .

Proof. As X embeds isometrically into X∗∗, we see that ℘X∗∗ ≤ ℘X . In addition, the
principle of local reflexivity (originally due to Lindenstrauss and Rosenthal [28])
implies that X∗∗ is finitely represented in X. Hence, ℘X ≤ ℘X∗∗ by Corollary 2.6. By
combining these two inequalities, we obtain ℘X = ℘X∗∗ . By replacing X with X∗, we
also see that ℘X∗ = ℘X∗∗∗ . �

Examples show that for a Banach space X we may have ℘X , ℘X∗ . Indeed, if
p ∈ [1, 2) and X = `p, then ℘X = p and ℘X∗ = 0. However, if p , 2 and X = Cp,
then ℘X = ℘X∗ = 0. Thus, given a Banach space X, the entries of the sequence
(℘X , ℘X∗ , ℘X∗∗ , . . .) take on at most two values (in the interval [0, 2]) by Corollary 2.9.

Intimately related to the concept of finite representability is the notion of an
ultrapower of a Banach space. Given an ultrafilter U on a set I and a Banach space
X, there is a canonical procedure to construct a large Banach space (X)U called the
ultrapower of X. Importantly, (X)U contains a natural isometric copy of X and it is
finitely represented in X. For a detailed construction of (X)U , and a discussion of the
interplay between finite representability and ultrapowers, see Hájek and Johanis [13].

Corollary 2.10. Let U be a given ultrafilter on a set I and let X be a Banach space.
Then ℘X = ℘(X)U .
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Proof. As X embeds isometrically into (X)U , we see that ℘(X)U ≤ ℘X . In addition,
(X)U is finitely represented in X by Stern [35, Theorem 6.6]. Hence, ℘X ≤ ℘(X)U by
Corollary 2.6. By combining these two inequalities, we obtain ℘X = ℘(X)U . �

Lennard et al. [26, Theorem 2.3] noticed that if the infimal cotype of a Banach space
X is greater than two, then X must have generalised roundness zero. By utilising deep
theory and Corollary 2.6, we are able to exhibit a more precise relationship between the
supremal type and the infimal cotype of a Banach space and its generalised roundness.
The notions of type and cotype have been paramount in the local theory of Banach
spaces for quite some time and are defined in the following manner.

Definition 2.11. A Banach space X is said to have type p if there exists a constant
A ∈ (0,∞) such that for all integers n > 0 and for all finite sequences (x j)n

j=1 in X,

∑
ε∈{−1,+1}n

∥∥∥∥∥ n∑
j=1

ε jx j

2n

∥∥∥∥∥
X
≤A

( n∑
j=1

‖x j‖
p
X

)1/p
. (2.4)

Cotype p is defined similarly but with the inequality (2.4) reversed.

It is well known that no Banach space can have type p > 2 or cotype q < 2. We let
p(X) denote the supremum of all p such that X has type p and q(X) denote the infimum
of all q such that X has cotype q. For an overview of theory of type and cotype, we
refer the reader to Diestel et al. [5].

A famous theorem of Maurey and Pisier [29] states that `p(X) and `q(X) are finitely
represented in X. This provides an immediate link to generalised roundness.

Corollary 2.12. If X is a Banach space, then ℘X ≤ min{℘`p(X) , ℘`q(X)}. In particular, if
q(X) > 2, then ℘X = 0.

Proof. By the Maurey–Pisier theorem, `p(X) and `q(X) are finitely represented in X.
Hence, ℘X ≤ ℘`p(X) and ℘X ≤ ℘`q(X) by Corollary 2.6. In particular, if q(X) > 2, then
℘`q(X) = 0 and so ℘X = 0. �

There are some classical Banach spaces for which the inequality in Corollary 2.12 is
an equality. For example, if X is an Lp-space, 1 ≤ p <∞, then ℘X = min{℘`p(X) , ℘`q(X)}.
In this case, ℘X = p if 1 ≤ p ≤ 2 and ℘X = 0 if p > 2. Moreover, it is well known that
p(X) = min{p, 2} and q(X) = max{p, 2}. So, for example, if p > 2, then ℘X = 0 and
q(x) = p. Thus, ℘`q(X) = 0. On the other hand, if X = Cp, 1 ≤ p < ∞, then p(X) and
q(X) have the same values as any Lp-space but, by inspection, ℘X = min{℘`p(X) , ℘`q(X)}

if and only if p ≥ 2.

3. Comb-like graphs of generalised roundness one

In this section we apply Theorems 2.5 and 3.3 to analyse the generalised roundness
of countable metric trees that resemble combs. We first give sufficient conditions for
the existence of a (1 + ε)-scale isomorphism φ : (T, d)→ (T, ρ) under the assumption
that d and ρ are path-weighted metrics on a given finite tree T . In what follows, we let
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N denote the set of all nonnegative integers. Moreover, given a positive integer m, we
let [m] denote the segment {0, 1, 2, . . . ,m}.

Lemma 3.1. Let d and ρ be two path-weighted metrics on a given finite tree T . Let

m = max
{
ρ(a,b)
d(a,b)

: a,b ∈ T and a , b
}
.

Then there must be an edge {x, y} in T such that m = ρ(x, y)/d(x, y).

Proof. Suppose that a, c ∈ T are nonadjacent vertices such that m = ρ(a, c)/d(a, c).
Then we may choose a strictly intermediate vertex b ∈ T on the geodesic from a to
c. Now let q = ρ(a, b)/d(a, b) and r = ρ(b, c)/d(b, c). Without loss of generality, we
may assume that q ≥ r. Furthermore, as ρ and d are path metrics on T , we have
ρ(a, c) = ρ(a,b) + ρ(b, c) and d(a, c) = d(a,b) + d(b, c). In particular, it follows that

m =
ρ(a, c)
d(a, c)

=
ρ(a,b) + ρ(b, c)
d(a,b) + d(b, c)

=
qd(a,b) + rd(b, c)
d(a,b) + d(b, c)

≤
qd(a,b) + qd(b, c)

d(a,b) + d(b, c)
= q.

Therefore, by definition of m, it must be the case that m = q. This shows that we
can always pass to a pair of vertices connected by a geodesic with fewer edges and
preserve the ratio m. Applying this logic finitely many times gives the lemma. �

The following analogous lemma for minima may be proved in the same way.

Lemma 3.2. Let d and ρ be two path-weighted metrics on a given finite tree T . Let

m∗ = min
{
ρ(a,b)
d(a,b)

: a,b ∈ T and a , b
}
.

Then there must be an edge {x, y} in T such that m∗ = ρ(x, y)/d(x, y).

Theorem 3.3. Let ε > 0 be given. Let d and ρ be two path-weighted metrics on a given
finite tree T . If there exists a constant n = n(ε) > 0 such that

(1 − ε)n ≤
ρ(x, y)
d(x, y)

≤ n(1 + ε) (3.1)

for each edge {x, y} in T , then the identity map φ : (T, d)→ (T, ρ) : x 7→ x is a (1 + ε)-
scale isomorphism.

Proof. Using the notation of Lemmas 3.1 and 3.2, it follows from (3.1) that

(1 − ε)n ≤ m∗ ≤ m ≤ n(1 + ε).

Thus, given any two distinct vertices a, b ∈ T , the definitions of m and m∗ give
(1 − ε)n ≤ ρ(a,b)/d(a,b) ≤ n(1 + ε). Hence, the identity map φ : (T, d)→ (T, ρ) : x 7→
x is a (1 + ε)-scale isomorphism. �

We now apply Theorems 2.5 and 3.3 to analyse the generalised roundness of certain
countable metric trees that resemble combs.
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Definition 3.4. The vertex set V of the infinite comb C consists of the points x0, xk and
yk, where k is any positive integer. The edge set E of C consists of the unordered pairs
{xk−1, xk} and {xk, yk}, where k is any positive integer.

For each positive integer m, the m-comb, denoted by Cm, is the finite subtree of C
with vertex set {x1+k, y1+k | k ∈ [m]}.

We are interested in placing various path metrics on the infinite comb C and the
m-comb Cm. One way to do this is to adopt the following canonical procedure.

Definition 3.5. Let f : N→ (0,∞) be a function. We define a path metric ρ f on the
infinite comb C in the following manner:

(1) ρ f (xk−1, xk) = f (k − 1); and
(2) ρ f (xk, yk) = f (k) for each positive integer k.

All other distances in C are then determined geodesically. The resulting metric tree
will be denoted by C( f ). If, moreover, we restrict ρ f to the m-comb, the resulting
metric tree will be denoted by Cm( f ).

There are some special cases of Definition 3.5 worth highlighting. If f (k) = 1 for
all k ≥ 0, the resulting metric trees C( f ) and Cm( f ) will be denoted by C(1) and Cm(1),
respectively. In other words, C(1) and Cm(1) are the combs C and Cm endowed with
the usual combinatorial path metric δ. Caffarelli et al. [2] have shown that ℘Cm(1) → 1
as m→∞. Hence, ℘C(1) = 1. We will see presently that by placing mild assumptions
on the function f it follows that ℘C( f ) = 1.

Lemma 3.6. If the m-comb Cm(1) is locally represented in a metric tree (T, d) for all
integers m > 0, then ℘(T,d) = 1.

Proof. All metric trees have generalised roundness at least one. By Theorem 2.5,
℘(T,d) ≤ ℘Cm(1) for all m > 0. Since ℘Cm(1) → 1 as m→∞ by [2], ℘(T,d) = 1. �

Definition 3.7. A function f : N→ (0,∞) is said to be additively subexponential if
limn→∞ f (n + m)/ f (n) = 1 for each integer m > 0.

The class of additively subexponential functions f : N→ (0,∞) is very large. For
instance, f could be any rational function that takes positive values on N. Other
interesting possibilities for f include inverse tangent, logarithmic functions (translated
suitably) and classically subexponential functions such as e

√
n. Furthermore, note that

if f : N→ (0,∞) is an additively subexponential function, then so is 1/ f .

Theorem 3.8. Suppose f : N→ (0,∞) is an additively subexponential function. Then
℘C( f ) = 1.

Proof. By Lemma 3.6, it suffices to prove that Cm(1) is locally represented in C( f )
for all m > 0. Let m > 0 be a given integer. Let ε > 0 be given. As f is additively
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subexponential, we may choose an integer n0 > 0 so that 1 − ε ≤ f (n + k)/ f (n) ≤ 1 + ε
for each k ∈ [m] and all n ≥ n0. In particular,

1 − ε ≤
f (n0 + k)

f (n0)
≤ 1 + ε

for each k ∈ [m]. Consider the subtree Y ′ of C( f ) that has vertices xn0+k and yn0+k for
all k ∈ [m]. As simple (unweighted) graphs, Y ′ and Cm(1) are one and the same graph,
namely, Cm. Let φ : Cm(1)→ Y ′ denote this natural identification. Let ρ denote the
path metric that Y ′ inherits from C( f ). We may regard the metrics on Y ′ and Cm(1) as
path metrics on Cm. For each edge {s, t} in Cm, we have, by choice of n0,

f (n0)(1 − ε) ≤ min
k∈[m]

f (n0 + k) ≤
ρ(φ(s), φ(t))

δ(s, t)
≤ max

k∈[m]
f (n0 + k) < f (n0)(1 + ε).

It follows from Theorem 3.3 that φ : Cm(1)→ Y ′ is a (1 + ε)-scale isomorphism. As
Cm(1) is a finite metric space and as ε > 0 was arbitrary, we conclude that Cm(1) is
locally represented in C( f ). �

It also follows from Theorem 3.8 that if f is an additively subexponential function,
then ℘C( f ) = ℘C(1/ f ).

4. Convergent and divergent spherically symmetric trees of generalised
roundness one

Caffarelli et al. [2] considered the generalised roundness of spherically symmetric
trees endowed with the usual combinatorial path metric (wherein all edges in the
tree are assumed to have unit length). In this section we consider a broader class of
spherically symmetric trees by relaxing the requirement that all edges have unit length.
This allows us to make a distinction between convergent and divergent spherically
symmetric trees.

Given a vertex v0 in a tree T , we let r(T, v0) = sup{δ(v0, v) : v ∈ T }, where δ denotes
the usual combinatorial path metric on T . We call r(T, v0) the v0-depth of T . Naturally
included here is the possibility that the v0-depth of T may be infinite. A vertex v of T
is a level-k vertex of T if δ(v0, v) = k. The children of a level-k vertex v ∈ T consist of
all level-(k + 1) vertices w ∈ T such that δ(v,w) = 1. We let dk(v) denote the number
of children of v.

Definition 4.1. A tree T is said to be spherically symmetric if we can choose a vertex
v0 ∈ T so that for any k, all level-k vertices of T have the same number of children.
Such a pair (T, v0) will be called a spherically symmetric tree (SST).

Notice that if v is a level-k vertex in a given SST (T, v0), then dk = dk(v) depends
only upon k. Thus, dk is the number of children of any level-k vertex in T . We
call the (possibly finite) sequence (dk)0≤k<r(T,v0) the downward degree sequence of
(T, v0). We will say that (dk) is nontrivial provided dk > 1 for at least one k such
that 0 ≤ k < r(T, v0).
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Now suppose that (T, v0) is a given SST with downward degree sequence (dk).
If, for each k such that 0 ≤ k < r(T, v0), lk is a positive real number, we will call
` = (l0, l1, l2, . . .) a downward length sequence for (T, v0). Given such a sequence `,
we may define a path metric ρ` on T in the following manner. For any k such that
0 ≤ k < r(T, v0), if w is a child of a level-k vertex v ∈ T , we define ρ`(v,w) = lk. All
other ρ`-distances in T are then determined geodesically. The resulting metric tree
(T, ρ`) is said to be convergent if

∑
lk <∞ and divergent if

∑
lk =∞. One significance

of convergent SSTs is that they have finite diameter.
We proceed to show that large classes of divergent and convergent SSTs have

generalised roundness one. The following lemma is a variation of [2, Theorem 2.1].
As the statement of the lemma is complicated, we will comment on the intuition behind
this result. Among all n-point metric trees endowed with the usual combinatorial path
metric, the complete bipartite graph K1,n−1 has the smallest generalised roundness.
Moreover, as n→∞, the generalised roundness of K1,n−1 tends to one. The conditions
placed on the SST in the statement of the following lemma ensure that it contains a
star-like structure that resembles K1,q, q = d0d1 · · · dk, modulo scaling. Such an SST
must have generalised roundness relatively close to one.

Lemma 4.2. Let (T, v0) be a finite SST with a nontrivial downward degree sequence
(d0, d1, . . . , dn−1). Suppose that ` = (l0, l1, . . . , ln−1) is a downward length sequence for
(T, v0) that satisfies 2l0 < l0 + l1 + · · · + ln−1. For each k, 1 ≤ k ≤ n, set Mk =

∑k−1
i=0 li

and let m be the largest integer k such that Mk <
1
2 Mn. Then, for each nonnegative

integer k ≤ m such that d0d1 · · · dk > 1,

℘(T,ρ`) ≤
ln

(
2 + 2

(d0d1···dk)−1
)

ln
(
2 − 2Mk

Mn

) .

If d0d1 · · · dm = 1, then we have the trivial bound ℘(T,ρ`) ≤ 2.

Proof. Let (T, v0) be a finite SST that satisfies the hypotheses of the lemma. Because
at least one d j > 1, there must exist at least one vertex z ∈ T with at least two children
x, y ∈ T . As children in T are ρ`-equidistant from their parents, we see that

ρ`(x, z) =
ρ`(x, y)

2
= ρ`(z, y).

The existence of such a metric mid point in (T, ρ`) ensures that ℘(T,ρ`) ≤ 2.
Now assume that d0d1 · · · dm > 1 and consider any nonnegative integer k ≤ m such

that d0d1 · · · dk > 1. Then there are d0d1 · · · dk−1 vertices at distance Mk from v0. For
each of the dk children of such a vertex, choose a leaf which is a descendant of that
child (or the child itself if it is a leaf). This results in a total of q = d0d1 · · · dk > 1
distinct leaves, which we label a1, a2, . . . , aq. Set b j = v0 for all j such that 1 ≤ j ≤ q.
For all i and j, we have ρ`(ai, b j) = Mn. Moreover, for all i , j, we have ρ`(ai, a j) ≥
2(Mn − Mk) and ρ`(bi, b j) = 0. It follows that any generalised roundness exponent p
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of (T, ρ`) must satisfy

1
2

q(q − 1)(2(Mn − Mk))p ≤
∑
i< j

{ρ`(ai, a j)p + ρ`(bi,b j)p} ≤
∑
i, j

ρ`(ai,b j)p = q2Mp
n .

(4.1)

By comparing the left- and right-hand sides of (4.1), it follows that p must satisfy

p ≤
ln

(
2 + 2

(d0d1···dk)−1
)

ln
(
2 − 2Mk

Mn

) .

As p was an arbitrary generalised roundness exponent of (T, ρ`), we conclude that the
lemma holds. �

Theorem 4.3. Let (T, v0) be a countable SST with downward degree sequence
(d0, d1, d2, . . .) and downward length sequence ` = (l0, l1, l2, . . .). If di > 1 for infinitely
many i and

∑
li =∞, then ℘(T,ρ`) = 1.

Proof. For each positive integer n, let (Tn, v0) denote the finite SST with downward
degree sequence (d0, d1, . . . , dn−1) and downward length sequence ` = (l0, l1, . . . , ln−1).
For each k, 1 ≤ k ≤ n, set Mk =

∑k−1
i=0 li. As

∑
li =∞, we have 2l0 < l0 + l1 + · · · + ln−1

provided n is sufficiently large. Moreover, for each such integer n, we may choose the
largest integer k = k(n) such that Mk ≤ ln Mn. As n→∞, the quantities k, Mk, Mn and
d0d1 · · · dk all tend to ∞. However, by construction, (2Mk)/Mn → 0 as n→∞. Thus,
by Lemma 4.2, ℘(Tn,ρ`) → 1 as n→∞ and so we conclude that ℘(T,ρ`) = 1. �

Theorem 4.4. Let f : N→ (0,∞) be an additively subexponential function. Let (T, v0)
be a countable SST with downward degree sequence (dk). Let ` denote the downward
length sequence ( f (k)). If dk > 1 for each integer k ≥ 0, then ℘(T,ρ`) = 1.

Proof. The condition dk > 1 for each integer k ≥ 0 ensures that the infinite comb C( f )
is isometric to a metric subspace of (T, ρ`). Thus, ℘(T,ρ`) ≤ ℘C( f ). Moreover, ℘C( f ) = 1
by Theorem 3.8 and ℘(T,ρ`) ≥ 1, thereby forcing ℘(T,ρ`) = 1. �

Theorem 4.4 provides examples of convergent SSTs with generalised roundness
one. For instance, we may simply set dk = 2 and f (k) = (k + 1)−2 for all k ≥ 0 to obtain
a countable SST that is convergent and has generalised roundness one. In particular,
such SSTs have finite diameter.

5. Embedding properties of metric trees of generalised roundness one

We conclude this paper with some comments on the special Euclidean embedding
properties of metric trees of generalised roundness one that set them apart from all
other metric trees. As noted already, the notions of generalised roundness and negative
type are equivalent. To make this statement more precise, we recall the following
definition, the roots of which can be traced back to an 1841 paper of Cayley [3].

Definition 5.1. Let p ≥ 0 and let (X, d) be a metric space. Then:
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(1) (X, d) has p-negative type if and only if, for all integers k ≥ 2, all finite subsets
{x1, . . . , xk} ⊆ X and all choices of real numbers η1, . . . , ηk with η1 + · · · + ηk = 0,∑

1≤i, j≤k

d(xi, x j)pηiη j ≤ 0; (5.1)

(2) (X, d) has strict p-negative type if and only if it has p-negative type and the
inequalities (5.1) are all strict except in the trivial case (η1, . . . , ηk) = (0, . . . , 0).

Lennard et al. [25] proved that for all p ≥ 0, a metric space (X, d) has p-negative
type if and only if p is a generalised roundness exponent of (X, d). The significance of
this result is that it builds a bridge between Enflo’s [8] notion of generalised roundness
and classical isometric embedding theory. These connections, in conjunction with
contemporary results on strict negative type, yield the following theorem.

Theorem 5.2. If (T, d) is a metric tree of generalised roundness one, then:

(1) the metric transform (T,
√

d) is isometric to an affinely independent subset of `2;
(2) the metric transform (T,

√
dp) does not embed isometrically into `2 for any p,

1 < p ≤ 2.

The only metric trees that satisfy condition (2) are those of generalised roundness one.

Proof. The vertex set of (T, d) is countable because it is a metric tree of generalised
roundness one. Our definitions imply that each finite subset of T is contained in a
finite subtree of T . Hjorth et al. [14] have shown that all finite metric trees have strict
1-negative type. Hence, each finite metric subspace of (T, d) has strict 1-negative
type. This ensures that (T, d) has strict 1-negative type. Equivalently, the metric
transform (T,

√
d) has strict 2-negative type. Therefore, (T,

√
d) is isometric to an

affinely independent subset of `2 by Kelleher et al. [20, Theorem 5.6]. This gives
condition (1).

If the metric transform (T,
√

dp) were to embed isometrically into `2 for some
p ∈ (1, 2], this would imply that (T, d) has p-negative type. But, by Lennard et al.
[25], this would mean that p is a generalised roundness exponent of (T, d), thereby
contradicting our assumption that ℘(T,d) = 1. This establishes condition (2).

On the other hand, if a metric tree (Z, d) is not of generalised roundness one, then it
must be the case that ℘(Z,d) > 1 (because 1 is a generalised roundness exponent of all
metric trees). By Lennard et al. [25], this implies that (Z, d) has p-negative type for
some p ∈ (1, 2]. Consequently, the metric transform (T,

√
dp) embeds isometrically

into `2 by Kelleher et al. [20, Theorem 5.6]. We conclude that the only metric trees
that satisfy condition (2) are those of generalised roundness one. �

The proof of Theorem 5.2 shows that all metric trees have strict 1-negative
type. Therefore, every metric tree satisfies Theorem 5.2(1) by the result of
Kelleher et al. [20].
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