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Drawing of fibres composed of shear-thinning
or shear-thickening fluid with internal holes
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We explore the drawing of a shear-thinning or shear-thickening thread with an
axisymmetric hole that evolves due to axial drawing, inertia and surface tension effects.
The stress is assumed to be proportional to the shear rate raised to the nth power.
The presence of non-Newtonian rheology and surface tension forces acting on the hole
introduces radial pressure gradients that make the derivation of long-wavelength equations
significantly more challenging than either a Newtonian thread with a hole or shear-thinning
and shear-thickening threads without a hole. In the case of weak surface tension, we
determine the steady-state profiles. Our results show that for negligible inertia the hole
size at the exit becomes smaller as n is decreased (i.e. strong shear-thinning effects) above
a critical draw ratio, but surprisingly the opposite is true below this critical draw ratio. We
determine an accurate estimate of the critical draw ratio and also discuss how inertia affects
this process. We further show that the dynamics of hole closure is dominated by a different
limit, and we determine the asymptotic forms of the hole closure process for shear-thinning
and shear-thickening fluids with inertia. A linear instability analysis is conducted to predict
the onset of draw resonance. We show that increased shear thinning, surface tension and
inlet hole size all act to destabilise the flow. We also show that increasing shear-thinning
effects reduce the critical Reynolds number required for unconditional stability. Our study
provides valuable insights into the drawing process and its dependence on the physical
effects.
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1. Introduction

There are a number of applications that require the fabrication of thin fibres with one
or more internal holes that run parallel to the axis of the fibre. A notable example is
microstructured optical fibres (MOFs), sometimes referred to as ‘holey’ fibres. MOFs
have attracted much attention during the past few decades due to their remarkable
advantages, such as highly customisable optical properties, small footprint, lightweight,
high physical flexibility and low cost (Pal 2010; Liu et al. 2017). This has resulted in
a wide and ever-expanding range of uses in communications, chemical and biological
sensing, medical diagnostics and other applications (Xue et al. 2023). MOFs are produced
by slowly feeding a macroscopic preform with a given hole structure through a nozzle
into a hot region, from which it is pulled at a faster speed onto a take-up roller. Another
example is the fabrication of microelectrodes that are formed by stretching a glass tube
until the desired geometry is achieved (Huang et al. 2007). One of the major issues
in such fabrication processes is that the relative sizes and shapes of the internal holes
can be dramatically affected by surface tension during the stretching process. This is of
particular importance in the above applications in which the optical properties can be very
sensitive to the hole geometry. One methodology for controlling the hole dynamics is to
pressurise the air in the holes (Chen et al. 2015). This has the effect of counteracting the
surface tension forces, but it can also raise problems of its own such as causing the holes
to burst. Another problem, known as draw resonance, is that the drawing process can
become unstable and lead to oscillations in the thread geometry that render the resulting
thread unsuitable in most applications (Denn 1980). Most MOFs are fabricated from glass
materials that are generally well-approximated as having a Newtonian rheology with a
viscosity that depends on temperature. Although polymers were used for some of the
first optical fibres, silica glasses became the preferred material when it was determined
how to reduce attenuation loss, which remains a problem for polymer fibres to this day
(Large et al. 2008; Gierej et al. 2022). Nevertheless, there has been ongoing interest in
polymer fibres because they have a number of advantages over glasses including lower
fragility, a variety of fabrication techniques and lower fabrication temperatures (Van
Eijkelenborg et al. 2001; Large et al. 2008) which ‘open up a range of applications that
silica fibres would probably never address’, including large core fibres that are cheap and
disposable (Large et al. 2008). In very recent work, Gierej et al. (2022) have investigated
the fabrication of biocompatible and bioresorbable polymer optical fibres (mbioPOFs) for
medical diagnosis and treatment from poly-D,L-lactic acid, and report investigations using
other synthetic polymer hydrogels.

These works naturally raise the question of how non-Newtonian rheology affects the
deformation of internal hole structures, and the stability of fibre drawing and whether
non-Newtonian fibres with high geometrical precision might be made and increase
flexibility in design above what glasses alone can offer. Many polymeric materials exhibit
viscoelasticity and have a viscosity that depends on the shear rate. In this paper, we focus
on the latter and consider the drawing of a thread that is composed of a shear-thinning or
shear-thickening fluid with an internal hole.

The drawing of threads has an extensive history dating back to Pearson & Matovich
(1969) and Matovich & Pearson (1969). They studied isothermal flows of a Newtonian
fluid in which inertia, gravity and surface tension are neglected, and investigated the
stability of the steady states to infinitesimal disturbances, showing that the onset of draw
resonance occurs if the ratio of the output speed to the input speed (known as the ‘draw
ratio’) is greater than a critical value of approximately 20.218 (Gelder 1971; Kase 1974).
Yeow (1974) conducted a similar analysis of Newtonian film casting, and showed that
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Drawing holey fibres from shear thinning/thickening fluids

the stability threshold is the same as for a solid Newtonian thread. Shah & Pearson
(1972) proposed a generalised theoretical model that considers the effects of inertia,
gravity, surface tension and thermal effects on the stability of the drawing process. They
showed that inertia, gravity and cooling have stabilising effects while surface tension has
a destabilising effect. It turns out that the interaction between these physical effects gives
rise to complicated and very rich dynamics that have been studied by a number of authors
(Geyling 1976; Geyling & GM 1980; Cummings & Howell 1999; Forest & Zhou 2001;
Wylie, Huang & Miura 2007; Suman & Kumar 2009; Taroni et al. 2013; Bechert & Scheid
2017; Philippi et al. 2022). All of these works considered solid threads with no internal
holes.

The dynamics of drawing solid threads composed of shear thinning fluids has also
been widely studied. Pearson & Shah (1974) proposed a one-dimensional model that
implicitly assumes that there are negligible pressure gradients in the radial direction.
They showed that the form of the equations is such that one can determine the steady
states and find the stability by applying similar mathematical techniques to those used in
the Newtonian case. The role played by shear thinning in the mechanism that underlies
the instability was explored by Hyun (1978). Van der Hout (2000) analysed the stability
using an approach based on complex analysis techniques and found similar behaviour to
Pearson & Shah (1974). Important results involving the role played by shear thinning in the
context of the stability of liquid jets were obtained by Uddin, Decent & Simmons (2006).
They considered a spiralling jet and used asymptotic techniques to derive the appropriate
long-wavelength equations. They showed that the leading-order pressure gradient in the
radial direction is zero and, thus, justified the model used by Pearson & Shah (1974), Hyun
(1978) and Van der Hout (2000). Mohsin et al. (2012) further investigated the role played
by shear thinning in droplet formation for a compound jet. A related study involving the
stability of the drawing of a shear thinning film was performed by Aird & Yeow (1983).
All of these studies involved fluid flows with no internal holes.

Even though we are focusing on fluids with shear-rate-dependent viscosity, it is worth
noting that the drawing of viscoelastic solid threads has a rich history. Denn, Petrie
& Avenas (1975) investigated the steady drawing of a thread composed of generalised
Maxwell material. Fisher & Denn (1976) extended this study by considering polymeric
materials with a viscosity that is deformation rate dependent. The mechanism for draw
resonance with viscoelastic effects was discussed by Hyun et al. (1999). Gupta & Chokshi
(2015) considered the weakly nonlinear stability of polymer fibre drawing. Zhou & Kumar
(2010) and Gupta & Chokshi (2018) studied the non-isothermal drawing of viscoelastic
fibres. Park (1990), Lee & Park (1995) and Gupta & Chokshi (2017) investigated the
drawing process for a compound fibre with a viscoelastic core. All of these studies are
for fibres without internal holes.

Early works on the drawing of threads with holes were performed by Pearson & Petrie
(1970a,b). An asymptotic derivation of a mathematical model for the drawing of threads
with internal holes was given by Fitt et al. (2001, 2002). They considered a Newtonian
fluid and used asymptotic techniques to derive the equations for an axisymmetric fibre
with a single circular hole. In this Newtonian case they showed that there are negligible
leading-order pressure gradients in the radial direction and so similar mathematical
techniques to those used in the case of a solid thread could be used. Motivated by the
production of non-axisymmetric fibres, Griffiths & Howell (2007, 2008) derived equations
for a non-axisymmetric capillary with a single hole. Stokes et al. (2014) presented
a general mathematical framework for modelling the pulling of fibres with a general
cross-sectional shape and multiple holes. This framework was generalised to consider the
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internal pressurisation of holes (Chen et al. 2015) and thermal effects (Stokes, Wylie &
Chen 2019). All of these works are for Newtonian fluids.

As stated previously, in this paper we consider the drawing of a thread that is composed
of a shear-thinning (or shear-thickening) fluid with an internal hole. At first sight, this
appears to be a straightforward extension that introduces the effects of a hole to the work
of Pearson & Shah (1974) for a shear-thinning solid thread, or an extension that introduces
shear-thinning effects to the work of Fitt et al. (2002) for a Newtonian thread with a hole.
However, we use asymptotic techniques to show that the surface tension acting on the
surface of the hole induces leading-order radial pressure gradients that are absent in both
Pearson & Shah (1974) and Fitt et al. (2002). This makes the problem significantly more
challenging since the mathematical techniques used in the previous literature to derive
the long-wavelength equations cannot be applied directly. Nevertheless, we introduce an
approximation technique based on limits in which the effective viscosity is dominated by
the axial or radial strain that allow us to derive approximate long-wavelength equations.
We solve these equations in both cases and discuss the validity of the approximation.
For sufficiently weak surface tension we show that the effects of shear thinning can
cause the hole to close more rapidly or more slowly depending on the draw ratio. We
explain the physical origin of this behaviour and derive an approximation of the draw
ratio that separates these two different behaviours. We further examine the role played by
inertia in determining the rate of hole closure and show that increasing inertia can cause
the hole to close more slowly for strong shear-thinning effects and close more rapidly
for weak shear-thinning effects or shear-thickening effects. We also explain the physical
original of this behaviour. We further consider how the various physical effects interact
to determine the overall stability of the drawing process. We also derive the equations for
which the radial strain dominates the effective viscosity. We show that these equations
will be valid either for large surface tension or for situations in which the hole is close
to closing. We hence derive the asymptotic form of the solutions as hole closure is
approached.

The paper is organised as follows. In § 2, we use asymptotic methods to derive the
long-wavelength nonlinear system which describes the drawing of a cylindrical tube
composed of a shear-thinning or shear-thickening fluid. In § 3, the steady-state profiles
are obtained and the effects of surface tension, inertia, draw ratio and power-law index on
the resulting hole size at the exit are examined. In § 4, the linear stability analysis is carried
out to determine how the critical draw ratio is affected by the various physical parameters.
Finally, the main conclusions are given in § 5.

2. Model formulation

We consider a slender axisymmetric tube of a non-Newtonian fluid with a viscosity that
depends on shear rate. This fluid is fed through an aperture of a drawing device with a
constant velocity Uin (see figure 1). At the aperture, the outer radius is denoted by Hin,
and the inner radius is denoted by hin. We define α to be the ratio of the inner to the outer
radius at the input aperture with 0 ≤ α < 1. At a distance L from the aperture, the tube
is pulled by a take-up roller such that the tube has a speed Uout. In what follows, z is
the distance measured along the axis of the tube and r is the distance measured radially
outward from the centre of the tube. The inner and outer radii of the tube are denoted by
h(z, t) and H(z, t), respectively.
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Uout

z = 0

z = L

Hh

Uin

Figure 1. Schematic of the tube-drawing process.

Assuming an incompressible fluid, the governing equations for the conversation of mass
and momentum are

∇ · u = 0, (2.1)

ρ(ut + u · ∇u) = −∇p + ∇ · τ , (2.2)

where ρ is the density of the fluid and p is the fluid pressure. We denote the velocity as
u = (v, 0, u), where v, 0 and u are the velocity components in the r, θ and z direction,
respectively. We adopt the rheological model in which the viscous stress tensor is given by

τ = μ(Γ )γ̇ with γ̇ = ∇u + (∇u)T, (2.3)

where the differential operator is given by ∇ = er∂r + eθ ∂θ/r + ez∂z, and er, eθ , ez denote
the unit vectors in cylindrical coordinates. The second invariant of the strain-rate tensor is
expressed as

Γ = 1
2 γ̇ : γ̇ , (2.4)

and the following power-law model is adopted

μ = KΓ (n−1)/2, (2.5)

where K is the flow consistency index and n is the power-law index that characterises the
fluid behaviour. The fluid is shear-thinning for n < 1, it is shear-thickening for n > 1 and
n = 1 corresponds to the Newtonian case in which the viscosity is independent of the
shear rate. On the inner and outer surfaces of the tube, the dynamic boundary conditions
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are given by

n1 · (−pI + τ ) · n1 = −γ κ1, t1 · (−pI + τ ) · n1 = 0 at r = h(z, t), (2.6)

n2 · (−pI + τ ) · n2 = −γ κ2, t2 · (−pI + τ ) · n2 = 0 at r = H(z, t). (2.7)

Here, γ is the surface tension, κ1 and κ2 are the mean curvatures of inner and outer
surfaces, given by

κ1 =
[

hzz

(1 + (hz)2)3/2 − 1
h(1 + (hz)2)1/2

]
, (2.8a)

κ2 = −
[

Hzz

(1 + (Hz)2)3/2 − 1
H(1 + (Hz)2)1/2

]
. (2.8b)

The vectors ni and ti (i = 1, 2) are the unit vectors on the inner and outer surfaces in the
outward and tangential directions, respectively, given by

n1 = 1√
1 + (hz)2

(−1, 0, hz), n2 = −1√
1 + (Hz)2

(−1, 0, Hz), (2.9a,b)

t1 = 1√
1 + (hz)2

(hz, 0, 1), t2 = −1√
1 + (Hz)2

(Hz, 0, 1). (2.10a,b)

The kinematic boundary conditions are

ht + uhz = v at r = h(z, t) and Ht + uHz = v at r = H(z, t). (2.11a,b)

At the entrance and exit, the boundary conditions are

u = Uin at z = 0 and u = Uout at z = L. (2.12a,b)

We adopt the following choices for the scales for non-dimensionalisation:

z = Lz′, r = εLr′, h = εLh′, H = εLH′, t = (L/Uin)t′,
u = Uinu′, v = εUinv

′, μ = K(Uin/L)n−1μ′, p = K(Uin/L)np′,

}
(2.13)

where ε = (Hin
√

1 − α2)/L. The quantity ε represents the square root of the
cross-sectional area at the aperture divided by the length of the device and, hence, is a
measure of the aspect ratio.

By substituting the scalings in (2.13) into the governing equations and boundary
conditions stated in (2.1)–(2.12), we obtain

uz + 1
r
(rv)r = 0, (2.14)

Re ε2(ut + uuz + vur) = −ε2pz + 2ε2(μuz)z + 1
r

[rμ(ur + ε2vz)]r, (2.15)

Re ε2(vt + uvz + vvr) = −pr + [μ(ur + ε2vz)]z + 2
r
(rμvr)r − 2μv

r2 , (2.16)
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Drawing holey fibres from shear thinning/thickening fluids

and

− p + 1
1 + ε2(hz)2 [2μvr − 2μhz(ur + ε2vz) + 2ε2(hz)

2μuz]

= 1
Ca

[
1

h(1 + ε2(hz)2)1/2 − ε2hzz

(1 + ε2(hz)2)3/2

]
at r = h(z, t), (2.17)

− p + 1
1 + ε2(Hz)2 [2μvr − 2μHz(ur + ε2vz) + 2ε2(Hz)

2μuz]

= − 1
Ca

[
1

H(1 + ε2(Hz)2)1/2 − ε2Hzz

(1 + ε2(Hz)2)3/2

]
at r = H(z, t), (2.18)

2ε2hzμvr − (hz)
2μ(ε2ur + ε4vz) + μ(ur + ε2vz) − 2ε2hzμuz = 0 at r = h(z, t),

(2.19)

2ε2Hzμvr − (Hz)
2μ(ε2ur + ε4vz) + μ(ur + ε2vz) − 2ε2Hzμuz = 0 at r = H(z, t).

(2.20)

The non-dimensional viscosity is as follows:

μ =
(

2u2
z + 1

ε2 u2
r + ε2v2

z + 2urvz + 2v2
r + 2

v2

r2

)(n−1)/2

. (2.21)

The dimensionless boundary conditions at the entrance and exit are given by

u = 1 at z = 0, (2.22)

u = D at z = 1. (2.23)

Here,

Re =
(

Uin

L

)1−n
ρUinL

K
, Ca =

(
Uin

L

)n−1 KUinε

γ
, D = Uout

Uin
, (2.24a–c)

where Re is the Reynolds number that compares the relative importance of inertial and
viscous effects, Ca is the capillary number, which quantifies the relative importance of
viscous and surface tension forces, and D is the draw ratio that represents the ratio of
output and input velocities. The kinematic boundary conditions (2.11) remain unchanged
under the scaling transformations.

Typical values of the parameters in such flows can vary dramatically depending on
the precise nature of the industrial process. This is because the speed of the flow and
the viscosity of the materials can vary over many orders of magnitude. In most cases ε

will be at most O(10−1) and can be much smaller. For drawing, D is often selected as
large as possible and may be of the order of O(103) or even larger. On the other hand,
extrusion flows may have effective values of D much closer to unity (Tronnolone, Stokes
& Ebendorff-Heidepriem 2017). Moreover, both small and large Re and Ca limits can be
important (Bechert & Scheid 2017). With these factors in mind we will study a broad range
of possible parameter values in this paper.

Following the approach used by many previous authors (Fitt et al. 2001; Wylie et al.
2007; Stokes, Bradshaw-Hajek & Tuck 2011; He et al. 2016; Wylie et al. 2023), we proceed
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by assuming ε � 1 and posing the following asymptotic expansions,

u = u0 + ε2u1 + O(ε4), (2.25)

v = v0 + ε2v1 + O(ε4), (2.26)

μ = μ0 + ε2μ1 + O(ε4), (2.27)

p = p0 + ε2p1 + O(ε4). (2.28)

For Newtonian fluids, the viscosity μ is an order-one quantity. However, in this case, the
size of the viscosity depends on the shear rate, as given by (2.21). We note that μ is O(ε−2)
if u0r �≡ 0 and O(1) if u0r ≡ 0. Nevertheless, one can readily show that assuming u0r �≡ 0
leads to a contradiction. Hence, u0 is independent of r and so we obtain u0 ≡ u0(z, t),
which is also the case for Newtonian fluids.

Substituting (2.25)–(2.27) into (2.21) and using the fact that u0r ≡ 0, we obtain

μ0 =
(

2u2
0z + 2v2

0
r2 + 2v2

0r

)(n−1)/2

. (2.29)

Furthermore, substituting (2.25)–(2.28) into (2.14) and integrating with respect to r, we
obtain the leading-order continuity equation

v0 = − r
2

u0z − C(z, t)
r

, (2.30)

where C(z, t) is to be determined.
Combining (2.29) with (2.30) yields

μ0 =
(

4C2

r4 + 3u2
0z

)(n−1)/2

, (2.31)

from which it is readily seen that μ0 depends on r if C is not identically zero.
The leading-order r-momentum equation (2.16) is

p0r = 2μ0rv0r. (2.32)

Again, we note that p0 depends on r if C is not identically zero.
At O(ε2), the tangential stress boundary conditions give

2hzμ0v0r + μ0v0z − 2hzμ0u0z + μ0u1r = 0 at r = h(z, t), (2.33)

2Hzμ0v0r + μ0v0z − 2Hzμ0u0z + μ0u1r = 0 at r = H(z, t). (2.34)

The leading-order normal stress boundary conditions give

−p0 + 2μ0v0r = 1
Ca

1
h

at r = h(z, t), (2.35)

−p0 + 2μ0v0r = − 1
Ca

1
H

at r = H(z, t). (2.36)

In addition, the second-order z-momentum equation (2.15) gives

Re(u0t + u0u0z) = −p0z + 2(μ0u0z)z + 1
r
(rμ0v0z)r + 1

r
(rμ0u1r)r. (2.37)

Substituting (2.30) and (2.31) into (2.32) and attempting to integrate with respect to r, we
see that p0 cannot be expressed in terms of elementary functions (Hazewinkel 1997) unless
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Drawing holey fibres from shear thinning/thickening fluids

C is identically zero. This is in direct contrast to the case of a Newtonian tube or the case of
a shear-thinning (or shear-thickening) thread with no hole. In both of these cases we obtain
C = 0 and, hence, one can use the fact that p0 and μ0 are independent of r to integrate
(2.37) and use (2.33)–(2.36) to obtain simple long-wavelength evolution equations. In
addition, due to the r-dependence of μ0 and p0, one cannot analytically integrate (2.37)
to remove the r-dependence from (2.37) and (2.33)–(2.36) and obtain leading-order
equations with only z and t dependence. This implies that the combination of the hole
and the non-Newtonian rheology makes the problem significantly more challenging than
the cases of a Newtonian tube or a power-law solid thread.

In order to proceed, we integrate (2.32) by parts to obtain

−p0 + 2μ0v0r = 2
∫

μ0v0rr dr + A(z, t), (2.38)

where A(z, t) is an integration function.
Subtracting (2.35) from (2.36) and eliminating p0 and v0 using (2.30) and (2.38), we

obtain an implicit integral equation for C

4C
∫ H

h

1
r3

(
3u2

0z + 4
C2

r4

)(n−1)/2

dr = 1
Ca

(
1
h

+ 1
H

)
. (2.39)

From (2.30) we see that the radial velocity has two components. The first component
−ru0z/2 is induced by the axial stretching and the conservation of mass. The second
component −C/r represents a radial strain that is induced by the difference between the
surface tension forces on the inner and outer surfaces. In the case of zero surface tension
(Ca = ∞), this term will be zero. This is clearly reflected in (2.39). In order to proceed
further, we consider two approximations of (2.39) that allow us to derive long-wavelength
equations.

2.1. Viscosity dominated by the axial strain
Observing (2.39) in the case where the surface tension is weak (Ca 	 1) we expect that
C will be small. This means that 3u2

0z 	 4C2/r4 and, hence, the viscosity μ0 will be
dominated by axial strain. This will be valid as long as r is not too small and we will
return to the validity of the assumption later in § 3. We proceed by posing an asymptotic
form

C = 1
Ca

C(1) + 1
Ca3 C(3) + · · · . (2.40)

On substituting (2.40) into (2.39), using the binomial expansion on the bracket in the
integral and equating the powers of 1/Ca, we obtain

C(1) = 3(1−n)/2u1−n
0z hH

2(H − h)
, (2.41)

C(3) = −2(n − 1)C(1)3

9u2
0z

(
1
h4 + 1

H4 + 1
h2H2

)
. (2.42)
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D. Gu, J.J. Wylie and Y.M. Stokes

On substituting (2.40) into (2.31) and (2.32), using (2.35)–(2.36), and expanding to order
O(1/Ca3), we obtain

p0 = −3(1−n)/2un
0z + 1

Ca(H − h)
− 2(n − 1)3(n−3)/2un−2

0z C(1)2

Ca2r4

− 4(n − 1)3(n−5)/2un−3
0z C(1)3

Ca3

(
h2 + H2

h4H4 − 2
r6

)
. (2.43)

Furthermore, multiplying (2.37) by r, integrating over r, using (2.33)–(2.34), (2.40)–(2.43)
and expanding to O(1/Ca3), the following momentum equation is obtained:

Re(H2 − h2)(u0t + u0u0z) = 3(n+1)/2[(H2 − h2)un
0z]z + 1

Ca
(h + H)z

+ 1
Ca2

[
3(1−n)/2u−n

0z (n − 1)(H + h)

2(H − h)

]
z

− 4(n − 1)3(n−5)/2

Ca3 (un−3
0z C(1)3)z

[
H4 − h4

h4H4 − (H2 − h2)

(
h2 + H2

h4H4

)
z

]

− 4
Ca3

(
Hz

H
− hz

h

)
[3(n−1)/2un−1

0z C(3) + 2(n − 1)3(n−3)/2un−3
0z C(1)3]. (2.44)

Moreover, by substituting (2.30) into the kinematic boundary conditions (2.11) and
retaining terms up to O(1/Ca3), we have

(h2)t + (h2u0)z = −2C(1)

Ca
− 2C(3)

Ca3 , (2.45)

(H2)t + (H2u0)z = −2C(1)

Ca
− 2C(3)

Ca3 . (2.46)

The boundary conditions for u0, h and H are

u0 = 1, h = α√
1 − α2

, H = 1√
1 − α2

at z = 0, (2.47)

u0 = D at z = 1. (2.48)

The above system of equations represents a one-dimensional model for a power-law fluid
tube, which can be used to study the steady-state profiles and their stability. From (2.45)
and (2.46), we see that there is no O(1/Ca2) correction for h and H. Hence, the error in
only keeping the O(1/Ca) terms is of O(1/Ca3). In addition, we note that for the leading
order of the asymptotic expansions (2.25)–(2.28) to be consistent with (2.40), we require
that 1/Ca 	 ε2.

We note that for a Newtonian fluid (n = 1), (2.44)–(2.46) agree with the equations
derived by Fitt et al. (2001). Moreover, in this case, one can readily see that our expansion
is valid for arbitrary Ca. On the other hand, for a solid thread in which h(z, t) ≡ 0, we
obtain C(z, t) ≡ 0, and hence μ0 and p0 in (2.31)–(2.32) will be independent of r. We can
therefore set h = 0 in (2.44)–(2.46), to obtain the equations for a solid thread that are given
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Drawing holey fibres from shear thinning/thickening fluids

by

Re H2(u0t + u0u0z) = 1
Ca

∂zH + 3(n+1)/2(H2un
0z)z, (2.49)

(H2)t + (H2u0)z = 0. (2.50)

The boundary conditions for u0, h and H are

u0 = 1, H = 1 at z = 0, (2.51)

u0 = D at z = 1. (2.52)

In this case, one can also readily see that our expansion is also valid for arbitrary Ca.
Equations (2.49)–(2.52) represent a generalisation that introduces inertial and surface
tension effects to the system used by Pearson & Shah (1974) and Van der Hout (2000)
for an inertialess solid thread with zero surface tension, which has not, to the best of the
authors’ knowledge, been considered before.

2.2. Viscosity dominated by the radial strain
We now consider the case in which the radial strain induced by the surface tension will
be sufficiently large that the integral in (2.39) will be dominated by the second term in
the bracket inside the integral. This will be valid if 4C2/r4 	 3u2

0z. From (2.39) we see
that this will be the case if either Ca � 1 or if the hole is sufficiently close to closing. We
return to the validity of this assumption in § 3.

Since the viscosity is dominated by the radial strain, from (2.29) we obtain the
approximation

μ0 = (2C)n−1r2−2n. (2.53)

By substituting (2.53) into (2.32) and integrating, we can determine the expression for p0
involving an undetermined function of z and t. Subsequently, we utilise (2.35) and (2.36)
to uniquely determine p0 and C, which are given by

p0 = −(2C)n−1r2−2nu0z + 2n

n
(1 − n)Cnr−2n + h2n−1 + H2n−1

Ca(H2n − h2n)
, (2.54)

C = 1
2

[
n(h + H)h2n−1H2n−1

Ca(H2n − h2n)

]1/n

. (2.55)

Furthermore, following a procedure similar to that used in the derivation of (2.44)–(2.46),
we obtain

Re(H2 − h2)(u0t + u0u0z) = 2n

n
(H2−2n − h2−2n)(Cn)z + 2n[3(H4−2n − h4−2n)Cn−1u0z]z

− (H2 − h2)

Ca

(
h2n−1 + H2n−1

H2n − h2n

)
z
− 2n+1(H1−2nHz − h1−2nhz)Cn, (2.56)

and

(h2)t + (h2u0)z = − 1
Ca1/n

[
n(h + H)h2n−1H2n−1

(H2n − h2n)

]1/n

, (2.57)

(H2)t + (H2u0)z = − 1
Ca1/n

[
n(h + H)h2n−1H2n−1

(H2n − h2n)

]1/n

. (2.58)
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D. Gu, J.J. Wylie and Y.M. Stokes

Remark. In this case, the resulting system (2.56)–(2.58) cannot reduce to the equations
for a solid thread. This is because setting h = 0 leads to C(0) = 0, which makes the
term 3u2

0z dominant. Therefore, even for strong surface tension, the reduced equations
of (2.44)–(2.46) are still applicable to a solid thread. On the other hand, we note that for
a Newtonian fluid (n = 1), (2.56)–(2.58) agree with the equations derived by Fitt et al.
(2001).

3. Steady-state solutions and their validity

In this section we consider the steady-state solutions of the drawing problem. We note that
we have two opposing approximations, the validity of each approximation is considered
separately.

3.1. Steady-state solutions when viscosity is dominated by the axial strain
From (2.39) we immediately see that C will be small in the limit of Ca � 1. In this section
we focus on the production of a holey fibre which necessitates the presence of a hole at
the exit of the fibre. By evaluating (2.44)–(2.46) in the steady state and truncating the
equations at O(1/Ca2), this section provides a detailed analysis of the effects of Reynolds
number, capillary number, draw ratio and power-law index on the drawing process and the
resulting hole size.

Setting ∂t ≡ 0 in (2.44)–(2.46) and we obtain

Re u0z = 3(n+1)/2[(H2 − h2)un
0z]z + 1

Ca
(h + H)z, (3.1)

(h2u0)z = −3(1−n)/2u(1−n)
0z hH

Ca(H − h)
, (3.2)

(H2u0)z = −3(1−n)/2u(1−n)
0z hH

Ca(H − h)
, (3.3)

with

u0 = 1, h = α√
1 − α2

, H = 1√
1 − α2

at z = 0, (3.4)

u0 = D at z = 1. (3.5)

If we consider situations with negligible inertia, we can exploit the fact that we have weak
surface tension (1/Ca � 1) to apply a regular perturbation method and obtain explicit
solutions to the leading-order equations for h, H, and u0, which are given by

u0 = ((D(n−1)/n − 1)z + 1)n/(n−1) + O
(

1
Ca

)
, (3.6)

h = α
√

u0
√

1 − α2
+ O

(
1

Ca

)
, (3.7)

H = 1
√

u0
√

1 − α2
+ O

(
1

Ca

)
. (3.8)

For the sake of brevity, the details of this calculation, which are straightforward, are
omitted. If we take the limit as n → 1, we note that (3.6)–(3.8) recover the solutions
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Drawing holey fibres from shear thinning/thickening fluids

obtained by Fitt et al. (2001) in the case of zero surface tension for a tube composed
of Newtonian fluids. The solution at the next order cannot be obtained analytically, but
the leading-order solution can be used as part of a numerical shooting technique that we
describe in § 3.1.1. The leading-order expressions also provide us with a valuable tool to
consider the validity of the asymptotic techniques we applied to obtain the solution to
(2.39) for Ca 	 1.

In the derivation of (2.41)–(2.42) a binomial expansion was employed which required

4C2

3h4u2
0z

� 1. (3.9)

With the use of (2.41)–(2.42), (3.6)–(3.8) and (3.9), we can determine the values of Ca for
this expansion to remain valid. This requirement is given by

Ca 	
√

1 + α

3n/2α
√

1 − α

(
n − 1

(D1−1/n − 1)n

)n

. (3.10)

This shows that our approximation is difficult to satisfy if α is small (corresponding to a
small inlet hole size) or if α is close to unity (corresponding to a very thin-walled initial
tube). In both of these cases the radial strain induced by the surface tension is strong. It is
also difficult to satisfy if D is close to unity (which corresponds to a draw with minimal
stretching). In this case the strain rate associated with the extensional flow induced by the
pulling is weak and cannot easily dominate the strain rate associated with the radial strain
induced by the surface tension. On the other hand, the condition becomes increasingly less
restrictive as D becomes large.

3.1.1. Numerical method for steady-state problem
In order to numerically obtain the steady-state solutions, we note that (3.1) is a
second-order ordinary differential equation (ODE) for the quantity u0, and (3.2)–(3.3) are
two first-order ODEs for h and H. We have three boundary conditions at z = 0 and one
boundary conditions at z = 1. Therefore, this system can be readily solved using a shooting
method in which one needs to guess the value of u0z at z = 0, then numerically solve
(3.1)–(3.3) using a standard ‘initial’ value ODE solver (e.g. MATLAB function ‘ode45’)
subject to the ‘initial’ conditions (3.4). Then a root-finding technique (e.g. MATLAB
function ‘fsolve’) can be used to find u0z at z = 0 such that the condition (3.5) is satisfied.

3.1.2. Steady-state solutions with negligible inertia
In this section, we consider how the various parameters affect the steady-state solutions.
In figure 2, we show how surface tension affects the solution for a shear-thinning tube with
zero inertia and for two different values of D. In this case, the results show that the axial
velocity u0 is relatively insensitive to Ca. On the other hand, the outer radius and hole
size vary significantly with Ca and, as Ca decreases, both the outer radius and hole size
uniformly decrease. This reflects the fact that surface tension acts to close the hole.

In figure 3, we show the hole size at the exit, h(z = 1), plotted as a function of Ca for
various values of n. This behaviour can be explained by (3.2). As the capillary number
(Ca) increases, the term (h2u0) decreases with z at a slower rate. Consequently, hout
becomes bigger, given that u0 is an increasing function of z and u0 = D at the exit.
In comparison with Newtonian fluids, shear-thinning fluids exhibit greater sensitivity
to changes in surface tension, whereas shear-thickening fluids display less sensitivity.
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Figure 2. The steady-state profiles against z for different Ca with Re = 0, α = 0.5 and n = 0.6. The draw ratio
is D = 2.2 for (a–c), and D = 1.4 for (d,e); (a) and (d) are the axial velocity u0, (b) and (e) are the inner radius
and (c) and ( f ) are the outer radius.

As Ca → ∞ the curves for different values of n all asymptote to the same value that
coincides with the Newtonian case. We see that shear-thinning fluids require larger values
of Ca than shear-thickening fluids to approach the asymptote.

In figure 4, we plot the hole size at the exit as a function of draw ratio for different
values of n. Unsurprisingly, we see that the hole size at the exit decreases with increasing
draw ratio. However, surprisingly, for small values of D we see that the hole size at the exit
decreases with increasing n whereas the opposite occurs for larger values of D. Moreover,
there appears to be a special value of D for which the hole size at the exit is independent
of n. This special value is shown as a dashed vertical line. In order to understand this
surprising phenomenon, we plot the profiles of u0, h and H in figure 5 for negligible inertia.
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Figure 3. The hole size at the exit, denoted by hout, is plotted against the capillary number Ca on a logarithmic
scale with D = 5, Re = 0 and α = 0.6. The inlet hole size is 0.75. If Ca → ∞, hout is independent of n and is
given by hout = α/

√
D(1 − α2) ≈ 0.3354.

h o
ut
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0.65
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n = 1
n = 1.2

D

D = 1 + 1/�3

Figure 4. The hole size at the exit, denoted by hout, is plotted against the draw ratio D for different n,
Ca = 15, α = 0.6 and Re = 0. The inlet hole size is 0.75.

We choose two values of D, one above the special value of D (figure 5a–c) and one below
the special value of D (figure 5d–f ). This phenomenon can be elucidated by examination
of (3.2) and figure 5. In figure 5(a,d) we plot the velocity profile for different values of
n. We also plot a straight line passing through u0 = 1 at z = 0 and u0 = D at z = 1 with
slope of D − 1. We can see from these figures that for sufficiently small values of the
draw ratios, u0 can be roughly approximated by such a straight line (see figure 5d). Under
this rough approximation we obtain u0z = D − 1. By examining (3.2) we see that the only
dependence on n in closing of the hole appears as (

√
3u0z)

n−1 which we can approximate
as (

√
3(D − 1))n−1. Hence, there are two different types of behaviour depending on

whether
√

3(D − 1) is greater or less than unity. Hence, if D < 1 + 1/
√

3, h will decrease
with increasing n, as shown by figures 4 and 5(e). For D = 1.8, figure 5(b) shows that
h decreases with increasing n for sufficiently small z, but increases with increasing n for
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Figure 5. The steady-state profiles against z for different n with Re = 0, α = 0.5 and Ca = 15. The draw ratio
is D = 1.8 for (a–c), and D = 1.4 for (d–f ); (a) and (d) are the axial velocity u0, (b) and (e) are the inner radius
and (c) and ( f ) are the outer radius.

larger z. This is because u0z < D − 1 for sufficiently small z, whereas u0z > D − 1 for
larger z. The overall effect is that h increases with larger n near the exit, which is consistent
with the phenomenon observed by figure 4 above D = 1 + 1/

√
3. Despite the somewhat

rough nature of the approximation, we obtain remarkable agreement for the special value
of D = 1 + 1/

√
3 with numerical simulations. Similar arguments explain the phenomena

in figure 5(c, f ). This special value of D is much smaller than what is typically used for the
drawing of fibres, but is of comparable size to the values of D encountered in extrusion
flows.
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Figure 6. The steady-state profiles against z for different Re with n = 0.6, α = 0.6, Ca = 15 and D = 1.5:
(a) axial velocity u0; (b) inner radius; (c) outer radius.

3.1.3. Steady-state solutions with inertia
Figure 6 shows how inertia affects the behaviour of a tube. As the Reynolds number (Re)
increases the thinning of the tube becomes more localised towards the exit at z = 1. This
localisation near the pulled end at z = 1 occurs because inertia makes it more difficult for
the thread to accelerate (and, hence, thin) over the bulk of the device.

Figure 7 illustrates how the hole size h at the exit varies against n with the Reynolds
number. For sufficiently small values of n, hout at the exit increases as Re increases,
while for sufficiently large values of n, hout at the exit decreases with increasing Re.
This phenomenon can be explained by (3.2) and figure 6(a). As demonstrated in
figure 6(a), u0z first decreases with increasing Re for sufficiently small values of z, and
then increases with increasing Re for sufficiently large values of z. Consequently, based on
(3.2) and considering the characteristics of the shear-thinning fluid, we observe that h2u0
with Re = 2 decreases more slowly than h2u0 with Re = 0, and then h2u0 with Re = 2
decreases more rapidly than h2u0 with Re = 0. The combined effect of these two trends for
h2u0 determines the hole size at the exit. When n is smaller than the value corresponding to
the intersection point of the lines with Re = 0 and Re = 2 in figure 7, the first trend exerts
a dominant influence on the hole size at the exit, as depicted in figure 8(a). However,
as n increases, the second trend becomes dominant in determining hout, as illustrated in
figure 8(b). Furthermore, in the case of larger n (shear-thickening behaviour), the value of
hout with Re = 0 is consistently smaller than that with non-zero Re.
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Figure 7. The hole size at the exit, denoted by hout, plotted against n for different Re, Ca = 15, α = 0.6 and
D = 1.5. The inlet hole size is 0.75.
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Figure 8. Plot of h2u0 against z for different Re, Ca = 15, α = 0.6 and D = 1.5: (a) n = 0.6 and (b) n = 0.9.

3.2. Steady-state solutions when viscosity is dominated by the radial strain
We now consider the steady-state solutions of (2.56)–(2.58). At first glance this appears
to be a complicated nonlinear coupled system of ODEs. However, it can be dramatically
simplified using the following transformations. In the steady state, we can use (2.57) and
(2.58) along with the boundary conditions (2.47) to see that

(H2 − h2)u0 ≡ 1. (3.11)

Taking P = h2u0, and defining a new independent variable η using

dη

dz
= Ca−1/nh(2n−1)/n with η(0) = 0, (3.12)
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we can represent (2.57) in the form

dP
dη

= −n1/nF(P) with P(0) = α2

1 − α2 , (3.13)

where

F(P) =
[

(
√

1 + P + √
P)(1 + P)n−1/2

(1 + P)n − Pn

]1/n

. (3.14)

Equation (3.13) is a separable equation for P(η) that is decoupled from the velocity. It can
be seen that P starts from α2/(1 − α2) at η = 0 and decreases since the right-hand side
of (3.13) is negative. Moreover, physical constraints imply that P is always positive. Thus,
F(P) in (3.14) is always bounded and tends to 1 when P → 0.

We next make the transformation

q = u−1/2
0 , (3.15)

under which the steady-state version of (2.56) is given by

Re Ca(q−2)η = [(1 + P)1−n − P1−n][(FnP(2n−1)/2)ηq − 2FnP(2n−1)/2qη]

− 4n(n−1)/n[3((1 + P)2−n − P2−n)Fn−1P(2n−1)/2qη]η

− q

[
P(2n−1)/2 + (1 − P)(2n−1)/2

(1 + P)n − Pn

]
η

+ qη

[
P(2n−1)/2 + (1 − P)(2n−1)/2

(1 + P)n − Pn

]

− FnP(2n−1)/2
[

2n((1 + P)1−n − P1−n)qη − n
1 − n

((1 + P)1−n − P1−n)ηq
]

. (3.16)

We note that the product Re Ca represents the relative importance of inertial to surface
tension forces. Moreover, in the limit Re Ca → 0, (3.16) is a linear ODE for q.

We next consider the process of hole closure represented by h → 0 or P → 0. By
employing separation of variables and integrating (3.13), we can obtain the location of
hole closure, denoted as η0. Next, we focus on the behaviour of P and u0 near η0. As η

approaches η0, F → 1 and P → 0, and we can see from (3.13) that

P = n1/n(η0 − η) as η → η0. (3.17)

By substituting (3.17) into (3.16), we can derive the following approximate equations for
different ranges of n when η is near η0.

If n < 3/2, (3.16) can be approximated by

Re Can3/(2n)−2(η0 − η)3/2−n(q−2)η = 12(n − 1
2 )qη − 12(η0 − η)qηη. (3.18)

When Re = 0, the exact solution to (3.18) is

q = B1(η0 − η)3/2−n + B2 as η → η0, (3.19)

where B1 and B2 are constants to be determined. Upon substituting (3.19) into the inertial
term of (3.18), we find that the inertial term remains negligible. Thus, the asymptotic hole
closure behaviour described by (3.19) is valid even for non-zero Re.
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Near η0, the expression for u0 can be obtained by using (3.15) and (3.19) and expanding
with respect to (η0 − η), to give

u0 = B3(η0 − η)3/2−n + B4 as η → η0, (3.20)

where B3 and B4 are the constants that depend on B1 and B2.
Further, using (3.20) and the fact that P = h2u0, we obtain

h2 ∼ (η0 − η) as η → η0, (3.21)

where the symbol ‘∼’ represents the same order.
Substituting (3.21) into (3.12) and integrating, we obtain

z − z0 ∼ −Ca1/n(η0 − η)1/(2n). (3.22)

Here, z0 is the location of hole closure and depends on η0. In addition, we assume that 0 <

z0 < 1, meaning that hole closure occurs within the physical size of the device. Combining
(3.21) and (3.22), we obtain

h ∼ 1
Ca

(z0 − z)n. (3.23)

Combining (3.20) and (3.22), we obtain

u0 ∼ B3

Ca3−2n (z0 − z)3−2n + B4. (3.24)

We recall that the derivation of (2.56)–(3.13) requires that the viscosity is dominated by
the radial strain and, hence, 4C2/r4 	 3u2

0z. In the limit h → 0, C can be approximated
by

C = n1/nh2−1/n

2Ca1/n . (3.25)

Thus, the validity of this approximation (2.53) requires

h � n
3n/2un

0zCa
. (3.26)

Using (3.23) and (3.24) it is straightforward to check that this will be satisfied for n < 3/2
as hole closure is approached. Therefore, (2.56)–(2.58) will be valid in the limit h → 0 for
n < 3/2 and automatically violated if n ≥ 3/2. On the other hand, if we do not consider
hole closure, then (3.26) simply requires that Ca � 1.

For n ≥ 3/2, the details are complicated, but one can show that the solution of (3.16)
gives a velocity that diverges to infinity as hole closure is approached. This behaviour
occurs for both Re Ca = 0 and Re Ca /= 0. In this case, the assumption that the viscosity
is dominated by radial strain fails and, hence, this solution is not appropriate to describe
hole closure. For n ≥ 3/2, it hence seems natural to consider hole closure in the opposite
limit in which the viscosity is dominated by axial strain and we obtain (2.44)–(2.46).
Nevertheless, one can show that the assumption 2C/(

√
3h2u0z) � 1 used to derive

(2.44)–(2.46) is also invalid in the limit as hole closure occurs. Since hole closure cannot
occur in either of the two limits, we postulate that hole closure cannot occur for n ≥ 3/2.
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4. Linear stability

In this section, we carry out linear stability analysis to determine the critical value of the
draw ratio (that we denote by Dc) for which draw resonance instability occurs. We also
determine how the instability is affected by inertia, surface tension, the power-law index
and the inlet hole size. In § 2 we derived two different sets of equations: (2.44)–(2.46) that
are valid for Ca 	 1 as long as the hole does not approach closure; and (2.56)–(2.58)
that are valid near hole closure. Since (2.56)–(2.58) mainly describe the hole closure
phenomenon, they will typically not be able to describe the full stretching dynamics. We
therefore only focus on the stability of (2.44)–(2.46). To investigate the linear stability, we
denote the steady-state profiles in § 3 as û0(z), ĥ(z) and Ĥ(z) and add small perturbations
of the form eλtũ0(z), eλth̃(z) and eλtH̃(z) to obtain

u0(t, z) = û0(z) + exp(λt)ũ0(z), (4.1)

h(t, z) = ĥ(z) + exp(λt)h̃(z), (4.2)

H(t, z) = Ĥ(z) + exp(λt)H̃(z), (4.3)

where λ denotes the growth rate of perturbations.
After substituting into (2.44)–(2.46) with a truncation error of O(1/Ca2) and linearising

in the small perturbations, we obtain

Re(Ĥ2 − ĥ2)[λũ0 + û0zũ0 + û0ũ0z] − 3(n+1)/2n

[
ûn−1

0z

û0
ũ0z

]
z

+ 2Re[û0û0z(ĤH̃ − ĥh̃)]

− 1
Ca

(h̃z + H̃z) − 3(n+1)/2[û0z(2ĤH̃ − 2ĥh̃)]z = 0, (4.4)

2λĥh̃ + (ĥ2ũ0)z + 2(ĥû0h̃)z − (1 − n)3(1−n)/2

Ca(ĥ − Ĥ)
ĥĤû−n

0z ũ0z − 3(1−n)/2

Ca(ĥ − Ĥ)
û1−n

0z (ĥH̃ + Ĥh̃)

+ (1 − n)3(1−n)/2

Ca(ĥ − Ĥ)2
ĥĤû1−n

0z (h̃ − H̃) = 0, (4.5)

2λĤH̃ + (Ĥ2ũ0)z + 2(Ĥû0H̃)z − (1 − n)3(1−n)/2

Ca(ĥ − Ĥ)
ĥĤû−n

0z ũ0z

− 3(1−n)/2

Ca(ĥ − Ĥ)
û1−n

0z (ĥH̃ + Ĥh̃) + (1 − n)3(1−n)/2

Ca(ĥ − Ĥ)2
ĥĤû1−n

0z (h̃ − H̃) = 0. (4.6)

The boundary conditions are given by ũ0 = 0, h̃ = 0, H̃ = 0 at z = 0 and ũ0 = 0 at z = 1.
Equations (4.4)–(4.6) represent an eigenvalue problem for the growth rate λ.

4.1. Numerical method for linear stability
In order to solve the above problem, we applied central finite differences to discretise
(4.4)–(4.6). This reduces the stability problem to a matrix eigenvalue problem (Wylie
et al. 2023) that can be solved by standard linear algebra routines. Given a sufficiently
large number of grid points, this provides a good estimate for the eigenvalue spectrum
of the operator. We are only interested in the eigenvalue with the largest real part and
the corresponding eigenfunction. In order to verify the results of our finite difference
method, we also applied a shooting technique by guessing the complex value of λ.
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Figure 9. The critical draw ratio as a function of Ca for Re = 0 and α = 0.6: (a) n = 0.6, (b) n = 1 and
(c) n = 1.2.

For shooting, one has to be careful in ensuring that one has a good initial guess for λ. We
can obtain an excellent guess from our finite difference method. Using a standard ODE
solver (e.g. MATLAB function ‘ode45’), we numerically solved the eigenvalue problem
(4.4)–(4.6) subject to the ‘initial’ conditions ũ0 = 0, h̃ = 0, H̃ = 0 and ũ0z = 1 at z = 0.
We then used a rooting-finding technique (e.g. MATLAB function ‘fsolve’) to select λ such
that the result can match the boundary condition ũ0 = 0 at z = 1. Note that the condition
ũ0z = 1 is arbitrary since the eigenvalue problem is linear.

4.2. Results of linear stability
The effect of surface tension on the stability is depicted by figure 9, which shows that
smaller surface tension (larger Ca) makes the flow more stable for all three types of fluid
(shear-thinning, Newtonian and shear-thickening fluid). We observe that changes in Ca
have a weaker relative effect on Dc for the shear-thinning case than the shear-thickening
case.

We further examine the role played by the inlet hole size and n in figure 10. It shows
that the larger the inlet hole size, the more unstable the flow for finite Ca. In addition, the
fluid becomes more stable as n increases. However, in figure 11 we see that the stability is
completely independent of the inlet hole size in the limit Ca → ∞, the results of Ca = 10
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Figure 10. The critical draw ratio as a function of n for various α with Re = 0 and Ca = 10. Note that α = 0
corresponds to a solid thread.
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Figure 11. The critical draw ratio as a function of α for various Ca with Re = 0 and n = 0.6.

are also presented for comparison. The stability results for the tube are identical to the
stability ones in the limit in which surface tension is negligible.

In figure 12, for three types of fluid (shear-thinning fluid, Newtonian fluid and
shear-thickening fluid), we examine the role played by inertia on draw resonance for a solid
thread and an axisymmetric tube. For all three fluid types, and for both a thread and a tube,
increasing the Reynolds number stabilises the flow. In addition, in all cases, for a large
enough Reynolds number, the flow becomes unconditionally stable, that is, it is stable for
all values of the draw ratio D. As n increases, a larger Re is needed to achieve unconditional
stability. For Newtonian fluids, this instability mechanism has been investigated carefully
by Bechert & Scheid (2017) for a solid thread, and by Wylie et al. (2023) for threads
with internal holes. They argued that the instability is driven by a mechanism in which a
small increase in the cross-sectional area near the exit leads to an increase in the tension
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Figure 12. The real part of the most unstable eigenvalue as a function of the draw ratio D for a tube
with α = 0.6 (solid line) and a solid thread (dashed line): (a) shear-thinning n = 0.6, (b) Newtonian n = 1,
(c) shear-thickening n = 1.2, for various values of Re and Ca = 10.

in the thread. This increased tension is transmitted upstream and causes the thread to
thin more rapidly near the entrance. This thinner portion of the thread is then advected
towards the exit and, hence, causes a decrease in the cross-sectional area near the exit.
This represents a half-cycle of the instability. Here, we explore how shear-thinning and
shear-thickening affect this instability mechanism. By integrating (2.44), we observe that
the effects of inertia reduce the transmission of the tension force upstream towards the
entrance. Consequently, inertia has the effect of making flows more stable. This can be
seen in the eigenfunctions for Re = 0 and Re = 0.4 that are plotted in figure 13. We have
normalised the eigenfunctions so that the perturbation to the cross-sectional area at the
exit is unity. In the case with larger inertia, the perturbation to the cross-sectional area at
the exit leads to less thinning near the entrance and so the inertia has acted to stabilise
the flow. In addition, the eigenfunctions for different n are shown in figure 14. For n = 0.9
we get less thinning throughout the device and, hence, the mechanism of advecting the
disturbance is less effective than for n = 0.6, which explains the behaviour we observed
in figure 10.
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Figure 13. The eigenfunction for different Re with Ca = 15, α = 0.6, n = 0.9 and D = 20: (a) Re = 0 (blue
lines); (b) Re = 0.4 (red lines). The dashed line represents the imaginary part, whereas the solid line represents
the real part.
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Figure 14. The eigenfunction for different n with Re = 0, Ca = 10, α = 0.5, and D = 5: (a) n = 0.6 (blue
lines); (b) n = 0.9 (red lines). The dashed line represents the imaginary part, whereas the solid line represents
the real part.

5. Conclusions

In this paper, we have investigated the steady-state behaviour and stability analysis of the
drawing process for a slender tube composed of either shear-thinning or shear-thickening
fluid with n as the power-law index. Our analysis takes into account surface tension and
inertial effects. Despite the inherent complexity of this problem, we have demonstrated
that by employing asymptotic techniques and making appropriate assumptions, we can
dramatically simplify the problem. Specifically, we have obtained a one-dimensional
leading-order system for the case of weak surface tension as long as the hole does not
approach closure. Using these equations, we have obtained steady-state profiles that reveal
several noteworthy phenomena. First, in the case of negligible inertia and a fixed hole
size, the hole size at the exit increases with decreasing n when D < 1 + 1/

√
3 and
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decreases with decreasing n when D > 1 + 1/
√

3. Second, for a fixed input hole size, the
relationship between the hole size at the exit is an increasing function of Re for sufficiently
large n and a decreasing function of Re for sufficiently small n. Third, for shear-thinning
fluids, the hole size at the exit is more sensitive to changes in surface tension than the
Newtonian case. For shear-thickening fluids, the hole size at the exit is less sensitive to
changes in surface tension. Most polymeric materials that can be used in applications
of this type are shear-thinning. Hence, for the large values of D that are typical in fibre
drawing, the shear-thinning behaviour will cause the hole to close more rapidly than for
Newtonian fluids. This is typically deemed to be undesirable and so this can be regarded as
a disadvantage of shear-thinning fluids when compared with Newtonian fluids in the case
of rapid drawing. On the other hand, for extrusional flows in which the values of D are
much lower, shear-thinning behaviour may be able to make the hole at the exit larger than
the comparable Newtonian flows. This represents an important finding especially because
capillary effects tend to be more important in extrusional flows than drawing flows.

We also derived an alternative set of equations that describe hole closure. We obtained
the asymptotic forms for the hole size and velocity as closure is approached for n < 3/2.
On the other hand, if n ≥ 3/2 the equations become invalid as hole closure is approached,
because the axial strain dominates the radial strain in the viscosity. However, if we use
the equations for which the axial strain dominates the viscosity, we also found that these
equations are invalid as hole closure is approached. We therefore postulate that hole
closure cannot occur if n ≥ 3/2.

Furthermore, we performed a linear stability analysis, which provides insights into
the relationship between the critical draw ratio and various factors, including inertia,
surface tension, inlet hole size and n. Decreasing surface tension, reducing the hole size
and increasing the Reynolds number act to stabilise the flow. Moreover, compared with
shear-thinning fluids, Newtonian fluids exhibit greater stability, whereas shear-thickening
fluids are even more stable. Consequently, the shear-thinning fluids require a lower
Reynolds number to achieve unconditional stability, the shear-thickening fluids require a
higher Reynolds number to achieve unconditional stability. In applications, shear thinning
is therefore unhelpful in that it makes the critical draw ratio smaller. This will certainly
be important for the drawing of optical fibres for which one typically wants to choose
D to be as large as possible. On the other hand, for extrusional flows the typical values
of D used are still below the critical D we find. Therefore, stability issues are unlikely
to be problematic. Overall, shear-thinning materials hence offer some important potential
advantages over Newtonian fluids for extrusional flow with sufficiently small D.
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