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Abstract

We present PHANTOM, a fast, parallel, modular, and low-memory smoothed particle hydrodynamics and magnetohy-
drodynamics code developed over the last decade for astrophysical applications in three dimensions. The code has been
developed with a focus on stellar, galactic, planetary, and high energy astrophysics, and has already been used widely
for studies of accretion discs and turbulence, from the birth of planets to how black holes accrete. Here we describe
and test the core algorithms as well as modules for magnetohydrodynamics, self-gravity, sink particles, dust–gas mix-
tures, H2 chemistry, physical viscosity, external forces including numerous galactic potentials, Lense–Thirring precession,
Poynting–Robertson drag, and stochastic turbulent driving. PHANTOM is hereby made publicly available.

Keywords: accretion, accretion disks – hydrodynamics – ISM: general – magnetohydrodynamics (MHD) – methods:
numerical

1 INTRODUCTION

Numerical simulations are the ‘third pillar’ of astrophysics,
standing alongside observations and analytic theory. Since it
is difficult to perform laboratory experiments in the relevant
physical regimes and over the correct range of length and
timescales involved in most astrophysical problems, we turn
instead to ‘numerical experiments’ in the computer for un-
derstanding and insight. As algorithms and simulation codes
become ever more sophisticated, the public availability of

simulation codes has become crucial to ensure that these ex-
periments can be both verified and reproduced.

PHANTOM is a smoothed particle hydrodynamics (SPH)
code developed over the last decade. It has been used widely
for studies of turbulence (e.g. Kitsionas et al. 2009; Price
& Federrath 2010; Price, Federrath, & Brunt 2011), accre-
tion (e.g. Lodato & Price 2010; Nixon, King, & Price 2012a;
Rosotti, Lodato, & Price 2012), star formation including
non-ideal magnetohydrodynamics (MHD) (e.g. Wurster et al.
2016, Wurster, Price, & Bate 2017), star cluster formation
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(Liptai et al. 2017), and for studies of the Galaxy (Pettitt et al.
2014; Dobbs et al. 2016), as well as for simulating dust–gas
mixtures (e.g. Dipierro et al. 2015; Ragusa et al. 2017; Tricco,
Price, & Laibe 2017). Although the initial applications and
some details of the basic algorithm were described in Price &
Federrath (2010), Lodato & Price (2010), and Price (2012a),
the code itself has never been described in detail and, until
now, has remained closed source.

One of the initial design goals of PHANTOM was to have a
low memory footprint. A secondary motivation was the need
for a public SPH code that is not primarily focused on cos-
mology, as in the highly successful GADGET code (Springel,
Yoshida, & White 2001; Springel 2005). The needs of dif-
ferent communities produce rather different outcomes in the
code. For cosmology, the main focus is on simulating the
gravitational collapse of dark matter in large volumes of the
universe, with gas having only a secondary effect. This is re-
flected in the ability of the public GADGET-2 code to scale
to exceedingly large numbers of dark matter particles, yet
neglecting elements of the core SPH algorithm that are es-
sential for stellar and planetary problems, such as the Morris
& Monaghan (1997) artificial viscosity switch [c.f. the de-
bate between Bauer & Springel (2012) and Price (2012b)], the
ability to use a spatially variable gravitational force softening
(Bate & Burkert 1997; Price & Monaghan 2007) or any kind
of artificial conductivity, necessary for the correct treatment
of contact discontinuities (Chow & Monaghan 1997; Price
& Monaghan 2005; Rosswog & Price 2007; Price 2008).
Almost all of these have since been implemented in develop-
ment versions of GADGET-3 (e.g. Iannuzzi & Dolag 2011;
Beck et al. 2016; see recent comparison project by Sembolini
et al. 2016) but remain unavailable or unused in the pub-
lic version. Likewise, the implementation of dust, non-ideal
MHD, and other physics relevant to star and planet formation
is unlikely to be high priority in a code designed for studying
cosmology or galaxy formation.

Similarly, the SPHNG code (Benz et al. 1990; Bate 1995)
has been a workhorse for our group for simulations of star
formation (e.g. Price & Bate 2007, 2009; Price, Tricco, &
Bate 2012; Lewis, Bate, & Price 2015) and accretion discs
(e.g. Lodato & Rice 2004; Cossins, Lodato, & Clarke 2009),
contains a rich array of physics necessary for star and planet
formation including all of the above algorithms, but the legacy
nature of the code makes it difficult to modify or debug and
there are no plans to make it public.

GASOLINE (Wadsley, Stadel, & Quinn 2004) is another
code that has been widely and successfully used for galaxy
formation simulations, with its successor, GASOLINE 2
(Wadsley et al. 2017), recently publicly released. Hubber
et al. (2011) have developed SEREN with similar goals to
PHANTOM, focused on star cluster simulations. SEREN thus
presents more advanced N-body algorithms compared to
what is in PHANTOM but does not yet include magnetic fields,
dust, or H2 chemistry.

A third motivation was the need to distinguish between
the ‘high performance’ code used for 3D simulations from

simpler codes used to develop and test algorithms, such as our
already-public NDSPMHD code (Price 2012a). PHANTOM is
designed to ‘take what works and make it fast’, rather than
containing options for every possible variation on the SPH
algorithm. Obsolete options are actively deleted.

The initial release of PHANTOM has been developed with a
focus on stellar, planetary, and Galactic astrophysics, as well
as accretion discs. In this first paper, coinciding with the first
stable public release, we describe and validate the core algo-
rithms as well as some example applications. Various novel
aspects and optimisation strategies are also presented. This
paper is an attempt to document in detail what is currently
available in the code, which include modules for MHD, dust–
gas mixtures, self-gravity, and a range of other physics. The
paper is also designed to serve as guide to the correct use
of the various algorithms. Stable releases of PHANTOM are
posted on the web1, while the development version and wiki
documentation are available on the BITBUCKET platform2.

The paper is organised as follows: We describe the nu-
merical methods in Section 2 with corresponding numer-
ical tests in Section 5. We cover SPH basics (Section
2.1), our implementation of hydrodynamics (Sections 2.2
and 5.1), the timestepping algorithm (Section 2.3), exter-
nal forces (Sections 2.4 and 5.2), turbulent forcing (Sections
2.5 and 6.1), accretion disc viscosity (Sections 2.6 and 5.3),
Navier–Stokes viscosity (Sections 2.7 and 5.4), sink parti-
cles (Sections 2.8 and 5.5), stellar physics (Section 2.9),
MHD (Sections 2.10 and 5.6), non-ideal MHD (Sections 2.11
and 5.7), self-gravity (Sections 2.12 and 5.8), dust–gas mix-
tures (Sections 2.13 and 5.9), ISM chemistry and cooling
(Sections 2.14 and 5.10), and particle injection (Section 2.15).
We present the algorithms for generating initial conditions in
Section 3. Our approach to software engineering is described
in Section 4. We give five examples of recent applications
highlighting different aspects of PHANTOM in Section 6. We
summarise in Section 7.

2 NUMERICAL METHOD

PHANTOM is based on the SPH technique, invented by Lucy
(1977) and Gingold & Monaghan (1977) and the subject of
numerous reviews (Benz 1990; Monaghan 1992, 2005, 2012;
Rosswog 2009; Springel 2010; Price 2012a).

In the following, we adopt the convention that a, b, and c
refer to particle indices; i, j, and k refer to vector or tensor
indices; and n and m refer to indexing of nodes in the treecode.

2.1. Fundamentals

2.1.1. Lagrangian hydrodynamics

SPH solves the equations of hydrodynamics in Lagrangian
form. The fluid is discretised onto a set of ‘particles’ of mass
m that are moved with the local fluid velocity v. Hence, the

1 https://phantomsph.bitbucket.io/
2 https://bitbucket.org/danielprice/phantom
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two basic equations common to all physics in PHANTOM are

dr
dt

= v, (1)

dρ

dt
= −ρ(∇ · v), (2)

where r is the particle position and ρ is the density. These
equations use the Lagrangian time derivative, d/dt ≡ ∂/∂t +
v · ∇, and are the Lagrangian update of the particle position
and the continuity equation (expressing the conservation of
mass), respectively.

2.1.2. Conservation of mass in SPH

The density is computed in PHANTOM using the usual SPH
density sum

ρa =
∑

b

mbW (|ra − rb|, ha ), (3)

where a and b are particle labels, m is the mass of the par-
ticle, W is the smoothing kernel, h is the smoothing length,
and the sum is over neighbouring particles (i.e. those within
Rkernh, where Rkern is the dimensionless cut-off radius of the
smoothing kernel). Taking the Lagrangian time derivative of
(3), one obtains the discrete form of (2) in SPH

dρa

dt
= 1

�a

∑
b

mb(va − vb) · ∇aWab(ha), (4)

where Wab(ha) ≡ W (|ra − rb|, ha) and �a is a term related to
the gradient of the smoothing length (Springel & Hernquist
2002; Monaghan 2002) given by

�a ≡ 1 − ∂ha

∂ρa

∑
b

mb
∂Wab(ha)

∂ha
. (5)

Equation (4) is not used directly to compute the density in
PHANTOM, since evaluating (3) provides a time-independent
solution to (2) (see e.g. Monaghan 1992; Price 2012a for de-
tails). The time-dependent version (4) is equivalent to (3)
up to a boundary term (see Price 2008) but is only used in
PHANTOM to predict the smoothing length at the next
timestep in order to reduce the number of iterations required
to evaluate the density (see below).

Since (3)–(5) all depend on the kernel evaluated on neigh-
bours within Rkern times ha, all three of these summations
may be computed simultaneously using a single loop over
the same set of neighbours. Details of the neighbour finding
procedure are given in Section 2.1.7.

2.1.3. Setting the smoothing length

The smoothing length itself is specified as a function of the
particle number density, n, via

ha = hfactn
−1/3
a = hfact

(
ma

ρa

)1/3

, (6)

where hfact is the proportionality factor specifying the
smoothing length in terms of the mean local particle spac-
ing and the second equality holds only for equal mass par-

Table 1. Compact support radii, variance, standard deviation, rec-
ommended ranges of hfact, and recommended default hfact settings
(hd

fact) for the kernel functions available in PHANTOM.

Kernel Rkern σ 2/h2 σ /h hfact hd
fact Nneigh

M4 2.0 9/10 0.95 1.0–1.2 1.2 57.9
M5 2.5 23/20 1.07 1.0–1.2 1.2 113
M6 3.0 7/5 1.18 1.0–1.1 1.0 113
C2 2.0 4/5 0.89 �1.35 1.4 92
C4 2.0 8/13 0.78 �1.55 1.6 137
C6 2.0 1/2 0.71 �1.7 2.2 356

ticles, which are enforced in PHANTOM. The restriction to
equal mass particles means that the resolution strictly fol-
lows mass, which may be restrictive for problems involving
large density contrasts (e.g. Hutchison et al. 2016). However,
our view is that the potential pitfalls of unequal mass particles
(see e.g. Monaghan & Price 2006) are currently too great to
allow for a robust implementation in a public code.

As described in Price (2012a), the proportionality constant
hfact can be related to the mean neighbour number according
to

Nneigh = 4

3
π (Rkernhfact )

3, (7)

however, this is only equal to the actual neighbour number
for particles in a uniform density distribution (more specif-
ically, for a density distribution with no second derivative),
meaning that the actual neighbour number varies. The de-
fault setting for hfact is 1.2, corresponding to an average of
57.9 neighbours for a kernel truncated at 2h (i.e. for Rkern = 2)
in three dimensions. Table 1 lists the settings recommended
for different choices of kernel. The derivative required in (5)
is given by

∂ha

∂ρa
= −3ha

ρa
. (8)

2.1.4. Iterations for h and ρ

The mutual dependence of ρ and h means that a rootfind-
ing procedure is necessary to solve both (3) and (6) simulta-
neously. The procedure implemented in PHANTOM follows
Price & Monaghan (2004b, 2007), solving, for each particle,
the equation

f (ha ) = ρsum(ha ) − ρ(ha) = 0, (9)

where ρsum is the density computed from (3) and

ρ(ha) = ma(hfact/ha)3, (10)

from (6). Equation (9) is solved with Newton–Raphson iter-
ations:

ha,new = ha − f (ha )

f ′(ha)
, (11)
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where the derivative is given by

f ′(ha) =
∑

b

mb
∂Wab(ha)

∂ha
− ∂ρa

∂ha
= −3ρa

ha
�a. (12)

The iterations proceed until |ha, new − ha|/ha, 0 < εh, where
ha, 0 is the smoothing length of particle a at the start of the
iteration procedure and εh is the tolerance. The convergence
with Newton–Raphson is fast, with a quadratic reduction in
the error at each iteration, meaning that no more than 2–3
iterations are required even with a rapidly changing density
field. We avoid further iterations by predicting the smoothing
length from the previous timestep according to

h0
a = ha + �t

dha

dt
= ha + �t

∂ha

∂ρa

dρa

dt
, (13)

where dρa/dt is evaluated from (4).
Since h and ρ are mutually dependent, we store only the

smoothing length, from which the density can be obtained at
any time via a function call evaluating ρ(h). The default value
of εh is 10−4 so that h and ρ can be used interchangeably. Set-
ting a small tolerance does not significantly change the com-
putational cost, as the iterations quickly fall below a tolerance
of ‘one neighbour’ according to (7), so any iterations beyond
this refer to loops over the same set of neighbours which can
be efficiently cached. However, it is important that the toler-
ance may be enforced to arbitrary precision rather than being
an integer as implemented in the public version of GADGET,
since (9) expresses a mathematical relationship between h
and ρ that is assumed throughout the derivation of the SPH
algorithm (see discussion in Price 2012a). The precision to
which this is enforced places a lower limit on the total energy
conservation. Fortunately, floating point neighbour numbers
are now default in most GADGET-3 variants also.

2.1.5. Kernel functions

We write the kernel function in the form

Wab(r, h) ≡ Cnorm

h3
f (q), (14)

where Cnorm is a normalisation constant, the factor of h3 gives
the dimensions of inverse volume, and f(q) is a dimensionless
function of q ≡ |ra − rb|/h. Various relations for kernels in
this form are given in Morris (1996a) and in Appendix B of
Price (2010). Those used in PHANTOM are the kernel gradi-
ent

∇aWab = r̂abFab, where Fab ≡ Cnorm

h4
f ′(q), (15)

and the derivative of the kernel with respect to h,

∂Wab(r, h)

∂h
= −Cnorm

h4

[
3 f (q) + q f ′(q)

]
. (16)

Notice that the ∂W/∂h term in particular can be evaluated

simply from the functions needed to compute the density
and kernel gradient and hence does not need to be derived
separately if a different kernel is used.

2.1.6. Choice of smoothing kernel

The default kernel function in SPH for the last 30 yr (since
Monaghan & Lattanzio 1985) has been the M4 cubic spline
from the Schoenberg (1946) B-spline family, given by

f (q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 3

2
q2 + 3

4
q3, 0 ≤ q < 1;

1

4
(2 − q)3, 1 ≤ q < 2;

0. q ≥ 2,

(17)

where the normalisation constant Cnorm = 1/π in 3D and the
compact support of the function implies that Rkern = 2. While
the cubic spline kernel is satisfactory for many applications,
it is not always the best choice. Most SPH kernels are based
on approximating the Gaussian, but with compact support to
avoid the O(N2) computational cost. Convergence in SPH is
guaranteed to be second order (∝h2) to the degree that the
finite summations over neighbouring particles approximate
integrals (e.g. Monaghan 1992, 2005; Price 2012a). Hence,
the choice of kernel and the effect that a given kernel has on
the particle distribution are important considerations.

In general, more accurate results will be obtained with
a kernel with a larger compact support radius, since it will
better approximate the Gaussian which has excellent conver-
gence and stability properties (Morris 1996a; Price 2012a;
Dehnen & Aly 2012). However, care is required. One should
not simply increase hfact for the cubic spline kernel because
even though this implies more neighbours [via (7)], it in-
creases the resolution length. For the B-splines, it also leads
to the onset of the ‘pairing instability’ where the particle dis-
tribution becomes unstable to transverse modes, leading to
particles forming close pairs (Thomas & Couchman 1992;
Morris 1996a, 1996b; Børve, Omang, & Trulsen 2004; Price
2012a; Dehnen & Aly 2012). This is the motivation of our
default choice of hfact = 1.2 for the cubic spline kernel, since
it is just short of the maximum neighbour number that can be
used while remaining stable to the pairing instability.

A better approach to reducing kernel bias is to keep the
same resolution length3 but to use a kernel that has a larger
compact support radius. The traditional approach (e.g. Morris
1996a, 1996b; Børve et al. 2004; Price 2012a) has been to use
the higher kernels in the B-spline series, i.e. the M5 quartic

3 This leads to the question of what is the appropriate definition of the
‘smoothing length’ to use when comparing kernels with different com-
pact support radii. Recently, it has been shown convincingly by Dehnen &
Aly (2012) and Violeau & Leroy (2014) that the resolution length in SPH
is proportional to the standard deviation of W. Hence, the Gaussian has the
same resolution length as the M6 quintic with compact support radius of
3h with hfact = 1.2. Setting the number of neighbours, though related, is
not a good way of specifying the resolution length.
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which extends to 2.5h

f (q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
5

2
− q

)4

− 5

(
3

2
− q

)4

0 ≤ q <
1

2
,

+10

(
1

2
− q

)4

,(
5

2
− q

)4

− 5

(
3

2
− q

)4

,
1

2
≤ q <

3

2
,(

5

2
− q

)4

,
3

2
≤ q <

5

2
,

0, q ≥ 5
2 ,

(18)

where Cnorm = 1/(20π ), and the M6 quintic extending to 3h,

f (q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(3 − q)5 − 6(2 − q)5 + 15(1 − q)5, 0 ≤ q < 1,

(3 − q)5 − 6(2 − q)5, 1 ≤ q < 2,

(3 − q)5, 2 ≤ q < 3,

0, q ≥ 3,

(19)
where Cnorm = 1/(120π ) in 3D. The quintic in particular gives
results virtually indistinguishable from the Gaussian for most
problems.

Recently, there has been tremendous interest in the use
of the Wendland (1995) kernels, particularly since Dehnen &
Aly (2012) showed that they are stable to the pairing instabil-
ity at all neighbour numbers despite having a Gaussian-like
shape and compact support. These functions are constructed
as the unique polynomial functions with compact support
but with a positive Fourier transform, which turns out to be a
necessary condition for stability against the pairing instabil-
ity (Dehnen & Aly 2012). The 3D Wendland kernels scaled
to a radius of 2h are given by C2:

f (q) =
{(

1 − q

2

)4
(2q + 1) , q < 2,

0, q ≥ 2,
(20)

where Cnorm = 21/(16π ), the C4 kernel

f (q) =
⎧⎨
⎩
(

1 − q

2

)6
(

35q2

12
+ 3q + 1

)
, q < 2,

0, q ≥ 2,

(21)

where Cnorm = 495/(256π ), and the C6 kernel

f (q) =
⎧⎨
⎩
(

1 − q

2

)8
(

4q3 + 25q2

4
+ 4q + 1

)
, q < 2,

0, q ≥ 2,

(22)

where Cnorm = 1365/(512π ). Figure 1 graphs f(q) and its first
and second derivative for each of the kernels available in
PHANTOM.

Several authors have argued for use of the Wendland ker-
nels by default. For example, Rosswog (2015) found best
results on simple test problems using the C6 Wendland ker-
nel. However, ‘best’ in that case implied using an average
of 356 neighbours in 3D (i.e. hfact = 2.2 with Rkern = 2.0)

Figure 1. Smoothing kernels available in PHANTOM (solid lines) together
with their first (dashed lines) and second (dotted lines) derivatives. Wendland
kernels in PHANTOM (bottom row) are given compact support radii of 2,
whereas the B-spline kernels (top row) adopt the traditional practice where
the support radius increases by 0.5. Thus, use of alternative kernels requires
adjustment of hfact, the ratio of smoothing length to particle spacing (see
Table 1).

which is a factor of 6 more expensive than the standard ap-
proach. Similarly, Hu et al. (2014) recommend the C4 kernel
with 200 neighbours which is 3.5 times more expensive. The
large number of neighbours are needed because the Wend-
land kernels are always worse than the B-splines for a given
number of neighbours due to the positive Fourier transform,
meaning that the kernel bias (related to the Fourier trans-
form) is always positive where the B-spline errors oscillate
around zero (Dehnen & Aly 2012). Hence, whether or not this
additional cost is worthwhile depends on the application. A
more comprehensive analysis would be valuable here, as the
‘best’ choice of kernel remains an open question (see also the
kernels proposed by Cabezón, García-Senz, & Relaño 2008;
García-Senz et al. 2014). An even broader question regards
the kernel used for dissipation terms, for gravitational force
softening and for drag in two-fluid applications (discussed
further in Section 2.13). For example, Laibe & Price (2012a)
found that double-hump-shaped kernels led to more than an
order of magnitude improvement in accuracy when used for
drag terms.

A simple and practical approach to checking that kernel
bias does not affect the solution that we have used and ad-
vocate when using PHANTOM is to first attempt a simulation
with the cubic spline, but then to check the results with a low
resolution calculation using the quintic kernel. If the results
are identical, then it indicates that the kernel bias is not impor-
tant, but if not, then use of smoother but costlier kernels such
as M6 or C6 may be warranted. Wendland kernels are mainly
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Figure 2. Example of the kd-tree build. For illustrative purposes only, we
have constructed a 2D version of the tree on the projected particle distribution
in the x–y plane of the particle distribution from a polytrope test with 13 115
particles. Each level of the tree recursively splits the particle distribution
in half, bisecting the longest axis at the centre of mass until the number of
particles in a given cell is <Nmin. For clarity, we have used Nmin = 100 in
the above example, while Nmin = 10 by default.

useful for preventing the pairing instability and are necessary
if one desires to employ a large number of neighbours.

2.1.7. Neighbour finding

Finding neighbours is the main computational expense to any
SPH code. Earlier versions of PHANTOM contained three
different options for neighbour-finding: a Cartesian grid, a
cylindrical grid, and a kd-tree. This was because we wrote the
code originally with non-self-gravitating problems in mind,
for which the overhead associated with a treecode is unneces-
sary. Since the implementation of self-gravity in PHANTOM

the kd-tree has become the default, and is now sufficiently
well optimised that the fixed-grid modules are more efficient
only for simulations that do not employ either self-gravity or
individual particle timesteps, which are rare in astrophysics.

A key optimisation strategy employed in PHANTOM is to
perform the neighbour search for groups of particles. The
results of this search (i.e. positions of all trial neighbours) are
then cached and used to check for neighbours for individual
particles in the group. Our kd-tree algorithm closely follows
Gafton & Rosswog (2011), splitting the particles recursively
based on the centre of mass and bisecting the longest axis
at each level (Figure 2). The tree build is refined until a cell
contains less than Nmin particles, which is then referred to as
a ‘leaf node’. By default, Nmin = 10. The neighbour search is
then performed once for each leaf node. Further details are
given in Appendix A.3.1.

2.2. Hydrodynamics

2.2.1. Compressible hydrodynamics

The equations of compressible hydrodynamics are solved in
the form

dv

dt
= −∇P

ρ
+ 	shock + aext (r, t )

+ asink−gas + aselfgrav, (23)

du

dt
= −P

ρ
(∇ · v) + 
shock − 
cool

ρ
, (24)

where P is the pressure, u is the specific internal energy,
aext, asink−gas and aselfgrav refer to (optional) accelerations
from ‘external’ or ‘body’ forces (Section 2.4), sink particles
(Section 2.8), and self-gravity (Section 2.12), respectively.
	shock and 
shock are dissipation terms required to give the
correct entropy increase at a shock front, and 
cool is a cool-
ing term.

2.2.2. Equation of state

The equation set is closed by an equation of state (EOS)
relating the pressure to the density and/or internal energy.
For an ideal gas, this is given by

P = (γ − 1)ρu, (25)

where γ is the adiabatic index and the sound speed cs is given
by

cs =
√

γ P

ρ
. (26)

The internal energy, u, can be related to the gas temperature,
T, using

P = ρkBT

μmH
, (27)

giving

T = μmH

kB
(γ − 1)u, (28)

where kB is Boltzmann’s constant, μ is the mean molecular
weight, and mH is the mass of a hydrogen atom. Thus, to infer
the temperature, one needs to specify a composition, but only
the internal energy affects the gas dynamics. Equation (25)
with γ = 5/3 is the default EOS in PHANTOM.

In the case where shocks are assumed to radiate away all
of the heat generated at the shock front (i.e. 
shock = 0) and
there is no cooling (
cool = 0), (24) becomes simply, using
(2)

du

dt
= P

ρ2

dρ

dt
, (29)

which, using (25) can be integrated to give

P = Kργ , (30)

where K is the polytropic constant. Even more simply, in the
case where the temperature is assumed constant, or prescribed
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as a function of position, the EOS is simply

P = c2
s ρ. (31)

In both of these cases, (30) and (31), the internal energy does
not need to be stored. In this case, the temperature is ef-
fectively set by the value of K (and the density if γ �= 1).
Specifically,

T = μmH

kB
Kργ−1. (32)

2.2.3. Code units

For pure hydrodynamics, physical units are irrelevant to the
numerical results since (1)–(2) and (23)–(24) are scale free
to all but the Mach number. Hence, setting physical units is
only useful when comparing simulations with Nature, when
physical heating or cooling rates are applied via (24), or when
one wishes to interpret the results in terms of temperature
using (28) or (32).

In the case where gravitational forces are applied, either
using an external force (Section 2.4) or using self-gravity
(Section 2.12), we adopt the standard procedure of trans-
forming units such that G = 1 in code units, i.e.

utime =
√

u3
dist

Gumass
, (33)

where utime, udist, and umass are the units of time, length,
and mass, respectively. Additional constraints apply when
using relativistic terms (Section 2.4.5) or magnetic fields
(Section 2.10.3).

2.2.4. Equation of motion in SPH

We follow the variable smoothing length formulation de-
scribed by Price (2012a), Price & Federrath (2010), and
Lodato & Price (2010). We discretise (23) using

dva

dt
= −

∑
b

mb

[
Pa + qa

ab

ρ2
a�a

∇aWab(ha) + Pb + qb
ab

ρ2
b�b

∇aWab(hb)

]

+ aext (ra, t ) + aa
sink−gas + aa

selfgrav, (34)

where the qa
ab and qb

ab terms represent the artificial viscosity
(discussed in Section 2.2.7).

2.2.5. Internal energy equation

The internal energy equation (24) is discretised using the time
derivative of the density sum (c.f. 29), which from (4) gives

dua

dt
= Pa

ρ2
a�a

∑
b

mbvab · ∇aWab(ha) + 
shock − 
cool

ρ
, (35)

where vab ≡ va − vb. In the variational formulation of SPH
(e.g. Price 2012a), this expression is used as a constraint to
derive (34), which guarantees both the conservation of energy
and entropy (the latter in the absence of dissipation terms).
The shock capturing terms in the internal energy equation are
discussed below.

By default, we assume an adiabatic gas, meaning that PdV
work and shock heating terms contribute to the thermal en-

ergy of the gas, no energy is radiated to the environment, and
total energy is conserved. To approximate a radiative gas,
one may set one or both of these terms to zero. Neglecting
the shock heating term, 
shock, gives an approximation equiv-
alent to a polytropic EOS (30), as described in Section 2.2.2.
Setting both shock and work contributions to zero implies
that du/dt = 0, meaning that each particle will simply retain
its initial temperature.

2.2.6. Conservation of energy in SPH

Does evolving the internal energy equation imply that total
energy is not conserved? Wrong! Total energy in SPH, for
the case of hydrodynamics, is given by

E =
∑

a

ma

(
1

2
v2

a + ua

)
. (36)

Taking the (Lagrangian) time derivative, we find that conser-
vation of energy corresponds to

dE

dt
=
∑

a

ma

(
va · dva

dt
+ dua

dt

)
= 0. (37)

Inserting our expressions (34) and (35), and neglecting for
the moment dissipative terms and external forces, we find

dE

dt
= −

∑
a

∑
b

mamb

[
Pavb

ρ2
a�a

· ∇aWab(ha)

+ Pbva

ρ2
b�b

· ∇aWab(hb)

]
= 0. (38)

The double summation on the right-hand side equals zero
because the kernel gradient, and hence the overall sum, is
antisymmetric. That is, ∇aWab = −∇bWba. This means one
can relabel the summation indices arbitrarily in one half of
the sum, and add it to one half of the original sum to give
zero. One may straightforwardly verify that this remains true
when one includes the dissipative terms (see below).

This means that even though we employ the internal en-
ergy equation, total energy remains conserved to machine
precision in the spatial discretisation. That is, energy is con-
served irrespective of the number of particles, the number of
neighbours or the choice of smoothing kernel. The only non-
conservation of energy arises from the ordinary differential
equation solver one employs to solve the left-hand side of
the equations. We thus employ a symplectic time integration
scheme in order to preserve the conservation properties as
accurately as possible (Section 2.3.1).

2.2.7. Shock capturing: momentum equation

The shock capturing dissipation terms are implemented fol-
lowing Monaghan (1997), derived by analogy with Riemann
solvers from the special relativistic dissipation terms pro-
posed by Chow & Monaghan (1997). These were extended
by Price & Monaghan (2004b, 2005) to MHD and recently to
dust–gas mixtures by Laibe & Price (2014b). In a recent pa-
per, Puri & Ramachandran (2014) found this approach, along
with the Morris & Monaghan (1997) switch (which they re-
ferred to as the ‘Monaghan–Price–Morris’ formulation) to be
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the most accurate and robust method for shock capturing in
SPH when compared to several other approaches, including
Godunov SPH (e.g. Inutsuka 2002; Cha & Whitworth 2003).

The formulation in PHANTOM differs from that given in
Price (2012a) only by the way that the density and signal
speed in the q terms are averaged, as described in Price &
Federrath (2010) and Lodato & Price (2010). That is, we
use

	a
shock ≡ −

∑
b

mb

[
qa

ab

ρ2
a�a

∇aWab(ha) + qb
ab

ρ2
b�b

∇aWab(hb)

]
,

(39)
where

qa
ab =

⎧⎨
⎩−1

2
ρavsig,avab · r̂ab, vab · r̂ab < 0

0 otherwise,
(40)

where vab ≡ va − vb, r̂ab ≡ (ra − rb)/|ra − rb| is the unit
vector along the line of sight between the particles, and vsig

is the maximum signal speed, which depends on the physics
implemented. For hydrodynamics, this is given by

vsig,a = αAV
a cs,a + βAV|vab · r̂ab|, (41)

where in general αAV
a ∈ [0, 1] is controlled by a switch (see

Section 2.2.9), while βAV = 2 by default.
Importantly, α does not multiply the βAV term. The βAV

term provides a second-order Von Neumann & Richtmyer-
like term that prevents particle interpenetration (e.g. Lat-
tanzio et al. 1986; Monaghan 1989), and thus βAV � 2 is
needed wherever particle penetration may occur. This is im-
portant in accretion disc simulations where use of a low α

may be acceptable in the absence of strong shocks, but a low
β will lead to particle penetration of the disc midplane, which
is the cause of a number of convergence issues (Meru & Bate
2011, 2012). Price & Federrath (2010) found that βAV = 4
was necessary at high Mach number (M � 5) to maintain a
sharp shock structure, which despite nominally increasing the
viscosity was found to give less dissipation overall because
particle penetration no longer occurred at shock fronts.

2.2.8. Shock capturing: internal energy equation

The key insight from Chow & Monaghan (1997) was that
shock capturing not only involves a viscosity term but in-
volves dissipating the jump in each component of the energy,
implying a conductivity term in hydrodynamics and resistive
dissipation in MHD (see Section 2.10.5). The resulting con-
tribution to the internal energy equation is given by (e.g. Price
2012a)


shock ≡ − 1

�aρa

∑
b

mbvsig,a
1

2
(vab · r̂ab)2Fab(ha)

+
∑

b

mbαuv
u
sig(ua − ub)

1

2

[
Fab(ha)

�aρa
+ Fab(hb)

�bρb

]

+ 
artres, (42)

where the first term provides the viscous shock heating, the
second term provides an artificial thermal conductivity, Fab

is defined as in (15), and 
artres is the heating due to artifi-
cial resistivity [Equation (182)]. The signal speed we use for
conductivity term differs from the one used for viscosity, as
discussed by Price (2008, 2012a). In PHANTOM, we use

vu
sig =

√
|Pa − Pb|

ρab

(43)

for simulations that do not involve self-gravity or external
body forces (Price 2008), and

vu
sig = |vab · r̂ab| (44)

for simulations that do (Wadsley, Veeravalli, & Couchman
2008). The importance of the conductivity term for treating
contact discontinuities was highlighted by Price (2008), ex-
plaining the poor results found by Agertz et al. (2007) in SPH
simulations of Kelvin–Helmholtz instabilities run across con-
tact discontinuities (discussed further in Section 5.1.4). With
(44), we have found there is no need for further switches to re-
duce conductivity (e.g. Price 2004; Price & Monaghan 2005;
Valdarnini 2016), since the effective thermal conductivity κ

is second order in the smoothing length (∝h2). PHANTOM

therefore uses αu = 1 by default in (42) and we have not yet
found a situation where this leads to excess smoothing.

It may be readily shown that the total energy remains con-
served in the presence of dissipation by combining (42) with
the corresponding dissipative terms in (34). The contribu-
tion to the entropy from both viscosity and conductivity is
also positive definite (see the appendix in Price & Monaghan
2004b for the mathematical proof in the case of conductivity).

2.2.9. Shock detection

The standard approach to reducing dissipation in SPH away
from shocks for the last 15 yr has been the switch proposed
by Morris & Monaghan (1997), where the dimensionless vis-
cosity parameter α is evolved for each particle a according
to

dαa

dt
= max(−∇ · va, 0) − (αa − αmin )

τa
, (45)

where τ ≡ h/(σ decayvsig) and σ decay = 0.1 by default. We set
vsig in the decay time equal to the sound speed to avoid the
need to store dα/dt, since ∇ · v is already stored in order to
compute (4). This is the switch used for numerous turbulence
applications with PHANTOM (e.g. Price & Federrath 2010;
Price et al. 2011; Tricco et al. 2016b) where it is important
to minimise numerical dissipation in order to maximise the
Reynolds number (e.g. Valdarnini 2011; Price 2012b).

More recently, Cullen & Dehnen (2010) proposed a more
advanced switch using the time derivative of the velocity di-
vergence. A modified version based on the gradient of the
velocity divergence was also proposed by Read & Hayfield
(2012). We implement a variation on the Cullen & Dehnen
(2010) switch, using a shock indicator of the form

Aa = ξa max

[
− d

dt
(∇ · va ), 0

]
, (46)
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where

ξ = |∇ · v|2
|∇ · v|2 + |∇ × v|2 (47)

is a modification of the Balsara (1995) viscosity limiter for
shear flows. We use this to set α according to

αloc,a = min

(
10h2

aAa

c2
s,a

, αmax

)
, (48)

where cs is the sound speed and αmax = 1. We use cs in the
expression for αloc also for MHD (Section 2.10) since we
found using the magnetosonic speed led to a poor treatment
of MHD shocks. If αloc, a > αa, we set αa = αloc, a, otherwise
we evolve αa according to

dαa

dt
= − (αa − αloc,a)

τa
, (49)

where τ is defined as in the Morris & Monaghan (1997) ver-
sion, above. We evolve α in the predictor part of the inte-
grator only, i.e. with a first-order time integration, to avoid
complications in the corrector step. However, we perform the
predictor step implicitly using a backward Euler method, i.e.

αn+1
a = αn

a + αloc,a�t/τa

1 + �t/τa
, (50)

which ensures that the decay is stable regardless of the
timestep (we do this for the Morris & Monaghan method
also).

We use the method outlined in Appendix B3 of Cullen
& Dehnen (2010) to compute d(∇ · va)/dt . That is, we first
compute the gradient tensors of the velocity, v, and accelera-
tion, a (used from the previous timestep), during the density
loop using an SPH derivative operator that is exact to lin-
ear order, that is, with the matrix correction outlined in Price
(2004, 2012a), namely

Ri j
a

∂vk
a

∂x j
a

=
∑

b

mb

(
vk

b − vk
a

) ∂Wab(ha)

∂xi
, (51)

where

Ri j
a =

∑
b

mb

(
xi

b − xi
a

) ∂Wab(ha)

∂x j
≈ δi j, (52)

and repeated tensor indices imply summation. Finally, we
construct the time derivative of the velocity divergence ac-
cording to

d

dt

(
∂v i

a

∂xi
a

)
= ∂ai

a

∂xi
a

− ∂v i
a

∂x j
a

∂v j
a

∂xi
a

, (53)

where, as previously, repeated i and j indices imply summa-
tion. In Cartesian coordinates, the last term in (53) can be

written out explicitly using

∂v i
a

∂x j
a

∂v j
a

∂xi
a

=
(

∂vx

∂x

)2

+
(

∂vy

∂y

)2

+
(

∂v z

∂z

)2

+ 2

[
∂vx

∂y

∂vy

∂x
+ ∂vx

∂z

∂v z

∂x
+ ∂v z

∂y

∂vy

∂z

]
. (54)

2.2.10. Cooling

The cooling term 
cool can be set either from detailed chem-
ical calculations (Section 2.14.1) or, for discs, by the simple
‘β-cooling’ prescription of Gammie (2001), namely


cool = ρu

tcool
, (55)

where

tcool ≡ �(R)

βcool
, (56)

with βcool an input parameter to the code specifying the cool-
ing timescale in terms of the local orbital time. We compute
� in (56) using � ≡ 1/(x2 + y2 + z2)3/2, i.e. assuming Keple-
rian rotation around a central object with mass equal to unity,
with G = 1 in code units.

2.2.11. Conservation of linear and angular momentum

The total linear momentum is given by

P =
∑

a

mava, (57)

such that conservation of momentum corresponds to

dP
dt

=
∑

a

ma
dva

dt
= 0. (58)

Inserting our discrete equation (34), we find

dP
dt

=
∑

a

∑
b

mamb

[
Pa + qa

ab

ρ2
a�a

∇aWab(ha)

+ Pb + qb
ab

ρ2
b�b

∇aWab(hb)

]
= 0, (59)

where, as for the total energy (Section 2.2.6), the double sum-
mation is zero because of the antisymmetry of the kernel
gradient. The same argument applies to the conservation of
angular momentum, ∑

a

mara × va (60)

(see e.g. Price 2012a for a detailed proof). As with total en-
ergy, this means linear and angular momentum are exactly
conserved by our SPH scheme to the accuracy with which
they are conserved by the timestepping scheme.

In PHANTOM, linear and angular momentum are both con-
served to round-off error (typically ∼10−16 in double pre-
cision) with global timestepping, but exact conservation is
violated when using individual particle timesteps or when
using the kd-tree to compute gravitational forces. The mag-
nitude of these quantities, as well as the total energy and the
individual components of energy (kinetic, internal, potential,
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and magnetic), should thus be monitored by the user at run-
time. Typically with individual timesteps, one should expect
energy conservation to �E/E ∼ 10−3 and linear and angular
momentum conservation to ∼10−6 with default code settings.
The code execution is aborted if conservation errors exceed
10%.

2.3. Time integration

2.3.1. Timestepping algorithm

We integrate the equations of motion using a generalisation of
the Leapfrog integrator which is reversible in the case of both
velocity dependent forces and derivatives which depend on
the velocity field. The basic integrator is the Leapfrog method
in ‘Kick–Drift–Kick’ or ‘Velocity Verlet’ form (Verlet 1967),
where the positions and velocities of particles are updated
from time tn to tn + 1 according to

vn+ 1
2 = vn + 1

2
�tan, (61)

rn+1 = rn + �tvn+ 1
2 , (62)

an+1 = a(rn+1), (63)

vn+1 = vn+ 1
2 + 1

2
�tan+1, (64)

where �t ≡ tn + 1 − tn. This is identical to the formulation of
Leapfrog used in other astrophysical SPH codes (e.g. Springel
2005; Wadsley et al. 2004). The Verlet scheme, being both
reversible and symplectic (e.g. Hairer, Lubich, & Wanner
2003), preserves the Hamiltonian nature of the SPH algo-
rithm (e.g. Gingold & Monaghan 1982b; Monaghan & Price
2001). In particular, both linear and angular momentum are
exactly conserved, there is no long-term energy drift, and
phase space volume is conserved (e.g. for orbital dynamics).
In SPH, this is complicated by velocity-dependent terms in
the acceleration from the shock-capturing dissipation terms.
In this case, the corrector step, (64), becomes implicit. The
approach we take is to notice that these terms are not usually
dominant over the position-dependent terms. Hence, we use
a first-order prediction of the velocity, as follows:

vn+ 1
2 = vn + 1

2
�tan, (65)

rn+1 = rn + �tvn+ 1
2 , (66)

v∗ = vn+ 1
2 + 1

2
�tan, (67)

an+1 = a(rn+1, v∗), (68)

vn+1 = v∗ + 1

2
�t
[
an+1 − an

]
. (69)

At the end of the step, we then check if the error in the first-
order prediction is less than some tolerance ε according to

e = |vn+1 − v∗|
|vmag| < εv, (70)

where vmag is the mean velocity on all SPH particles (we set
the error to zero if |vmag| = 0) and by default εv = 10−2.
If this criterion is violated, then we recompute the acceler-
ations by replacing v∗ with vn+1 and iterating (68) and (69)
until the criterion in (70) is satisfied. In practice, this happens
rarely, but occurs for example in the first few steps of the Se-
dov problem where the initial conditions are discontinuous
(Section 5.1.3). As each iteration is as expensive as halving
the timestep, we also constrain the subsequent timestep such
that iterations should not occur, i.e.

�t = min

(
�t,

�t√
emax/ε

)
, (71)

where emax = max (e) over all particles. A caveat to the above
is that velocity iterations are not currently implemented when
using individual particle timesteps.

Additional variables such as the internal energy, u, and
the magnetic field, B, are timestepped with a predictor and
trapezoidal corrector step in the same manner as the velocity,
following (65), (67) and (69).

Velocity-dependent external forces are treated separately,
as described in Section 2.4.

2.3.2. Timestep constraints

The timestep itself is determined at the end of each step, and
is constrained to be less than the maximum stable timestep.
For a given particle, a, this is given by (e.g. Lattanzio et al.
1986; Monaghan 1997)

�tC,a ≡ Ccour
ha

vdt
sig,a

, (72)

where Ccour = 0.3 by default (Lattanzio et al. 1986) and vdt
sig is

taken as the maximum of (41) over the particle’s neighbours
assuming αAV = max (αAV, 1). The criterion above differs
from the usual Courant–Friedrichs–Lewy condition used in
Eulerian codes (Courant, Friedrichs, & Lewy 1928) because
it depends only on the difference in velocity between neigh-
bouring particles, not the absolute value.

An additional constraint is applied from the accelerations
(the ‘force condition’), where

�tf,a ≡ Cforce

√
ha

|aa| , (73)

where Cforce = 0.25 by default. A separate timestep constraint
is applied for external forces

�text,a ≡ Cforce

√
h

|aext,a| , (74)
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and for accelerations to SPH particles to/from sink particles
(Section 2.8)

�tsink−gas,a ≡ Cforce

√
ha

|asink−gas,a| . (75)

For external forces with potentials defined such that � → 0
as r → ∞, an additional constraint is applied using (Dehnen
& Read 2011)

�t�,a ≡ Cforceη�

√
|�a|

|∇�|2a
, (76)

where η� = 0.05 (see Section 2.8.5).
The timestep for particle a is then taken to be the minimum

of all of the above constraints, i.e.

�ta = min
(
�tC, �tf , �text, �tsink−gas, �t�

)
a
, (77)

with possible other constraints arising from additional
physics as described in their respective sections. With global
timestepping, the resulting timestep is the minimum over all
particles

�t = min
a

(�ta). (78)

2.3.3. Substepping of external forces

In the case where the timestep is dominated by any of the
external force timesteps, i.e. (74)–(76), we implement an op-
erator splitting approach implemented according to the re-
versible reference system propagator algorithm (RESPA) de-
rived by Tuckerman, Berne, & Martyna (1992) for molecular
dynamics. RESPA splits the acceleration into ‘long-range’
and ‘short-range’ contributions, which in PHANTOM are de-
fined to be the SPH and external/point-mass accelerations,
respectively.

Our implementation follows Tuckerman et al. (1992) (see
their Appendix B), where the velocity is first predicted to
the half step using the ‘long-range’ forces, followed by an
inner loop where the positions are updated with the current
velocity and the velocities are updated with the ‘short-range’
accelerations. Thus, the timestepping proceeds according to

v = v + �tsph

2
an

sph, (79)

v = v + �text

2
am

ext, (80)

r = r + �textv, (81)

get aext (r), (82)

v = v + �text

2
am+1

ext , (83)

over substeps

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

get asph(r), (84)

v = v + �tsph

2
an

sph, (85)

where asph indicates the SPH acceleration evaluated from
(34) and aext indicates the external forces. The SPH and

external accelerations are stored separately to enable this.
�text is the minimum of all timesteps relating to sink–gas
and external forces [equations (74)–(76)], while �tsph is the
timestep relating to the SPH forces [equations (72), (73), and
(288)]. �text is allowed to vary on each substep, so we take
as many steps as required such that

∑m−1
j �text, j + �text, f =

�tsph, where �text, f < �text, j is chosen so that the sum
will identically equal �tsph. The number of substeps is m
≈ int(�text, min/�tsph, min) + 1, where the minimum is taken
over all particles.

2.3.4. Individual particle timesteps

For simulations of stiff problems with a large range in
timestep over the domain, it is more efficient to allow each
particle to evolve on its own timestep independently (Bate
1995; Springel 2005; Saitoh & Makino 2010). This violates
all of the conservation properties of the Leapfrog integra-
tor [see Makino et al. (2006) for an attempt to solve this],
but can speed up the calculation by an order of magnitude
or more. We implement this in the usual blockstepped man-
ner by assigning timesteps in factor-of-two decrements from
some maximum timestep �tmax, which for convenience is set
equal to the time between output files.

We implement a timestep limiter where the timestep for
an active particle is constrained to be within a factor of 2
of its neighbours, similar to condition employed by Saitoh &
Makino (2009). Additionally, inactive particles will be woken
up as required to ensure that their timestep is within a factor
of 2 of its neighbours.

The practical side of individual timestepping is described
in Appendix A.6.

2.4. External forces

2.4.1. Point-mass potential

The simplest external force describes a point mass, M, at the
origin, which yields gravitational potential and acceleration:

�a = −GM

ra
, aext,a = −∇�a = − GM

|ra|3 ra, (86)

where ra ≡ |ra| ≡ √
ra · ra. When this potential is used, we

allow for particles within a certain radius, Racc, from the origin
to be accreted. This allows for a simple treatment of accretion
discs where the mass of the disc is assumed to be negligible
compared to the mass of the central object. The accreted mass
in this case is recorded but not added to the central mass. For
more massive discs, or when the accreted mass is significant
with respect to the central mass, it is better to model the
central star using a sink particle (Section 2.8) where there are
mutual gravitational forces between the star and the disc, and
any mass accreted is added to the point mass (Section 2.8.2).

2.4.2. Binary potential

We provide the option to model motion in binary systems
where the mass of the disc is negligible. In this case, the
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binary motion is prescribed using

r1 = [(1 − M ) cos(t ), (1 − M ) sin(t ), 0], (87)

r2 = [−M cos(t ),−M sin(t ), 0], (88)

where M is the mass ratio in units of the total mass (which is
therefore unity). For this potential, G and � are set to unity
in computational units, where � is the angular velocity of the
binary. Thus, only M needs to be specified to fix both m1 and
m2. Hence, the binary remains fixed on a circular orbit at r =
1. The binary potential is therefore

�a = − M

|ra − r1| − (1 − M )

|ra − r2| , (89)

such that the external acceleration is given by

aext,a = −∇�a = −M
(ra − r1)

|ra − r1|3 − (1 − M )
(ra − r2)

|ra − r2|3 . (90)

Again, there is an option to accrete particles that fall within a
certain radius from either star (Racc, 1 or Racc, 2, respectively).
For most binary accretion disc simulations (e.g. planet migra-
tion), it is better to use ‘live’ sink particles to represent the bi-
nary so that there is feedback between the binary and the disc
(we have used a live binary in all of our simulations to date,
e.g. Nixon, King, & Price 2013; Facchini, Lodato, & Price
2013; Martin et al. 2014a, 2014b; Doğan et al. 2015; Ragusa,
Lodato, & Price 2016; Ragusa et al. 2017), but the binary po-
tential remains useful under limited circumstances—in par-
ticular, when one wishes to turn off the feedback between the
disc and the binary.

Given that the binary potential is time-dependent, for ef-
ficiency, we compute the position of the binary only once at
the start of each timestep, and use these stored positions to
compute the accelerations of the SPH particles via (90).

2.4.3. Binary potential with gravitational wave decay

An alternative binary potential including the effects of grav-
itational wave decay was used by Cerioli, Lodato, & Price
(2016) to study the squeezing of discs during the merger of
supermassive black holes. Here the motion of the binary is
prescribed according to

r1 =
[
− m2

m1 + m2
a cos(θ ),− m2

m1 + m2
a sin(θ ), 0

]
,

r2 =
[

m1

m1 + m2
a cos(θ ),

m1

m1 + m2
a sin(θ ), 0

]
, (91)

where the semi-major axis, a, decays according to

a(t ) = a0

(
1 − t

τ

) 1
4

. (92)

The initial separation is a0, with τ defined as the time to
merger, given by the usual expression (e.g. Lodato et al.
2009)

τ ≡ 5

256

a4
0

μ12(m1 + m2)2
, (93)

where

μ12 ≡ m1m2

m1 + m2
. (94)

The angle θ is defined using

� ≡ dθ

dt
=
√

G(m1 + m2)

a3
. (95)

Inserting the expression for a and integrating gives (Cerioli
et al. 2016)

θ (t ) = −8τ

5

√
G(m1 + m2)

a3
0

(
1 − t

τ

)
. (96)

The positions of the binary, r1 and r2, can be inserted into
(89) to obtain the binary potential, with the acceleration as
given in (90). The above can be used as a simple example of
a time-dependent external potential.

2.4.4. Galactic potentials

We implement a range of external forces representing vari-
ous galactic potentials, as used in Pettitt et al. (2014). These
include arm, bar, halo, disc, and spheroidal components. We
refer the reader to the paper above for the actual forms of the
potentials.

For the non-axisymmetric potentials, a few important pa-
rameters that determine the morphology can be changed at
run time rather than compile time. These include the pattern
speed, arm number, arm pitch angle, and bar axis lengths
(where applicable). In the case of non-axisymmetric compo-
nents, the user should be aware that some will add mass to
the system, whereas others simply perturb the galactic disc.
These potentials can be used for any galactic system, but the
various default scale lengths and masses are chosen to match
the Milky Way’s rotation curve (Sofue 2012).

The most basic potential in PHANTOM is a simple loga-
rithmic potential from Binney & Tremaine (1987), which al-
lows for the reproduction of a purely flat rotation curve with
steep decrease at the galactic centre, and approximates the
halo, bulge, and disc contributions. Also included is the stan-
dard flattened disc potential of Miyamoto–Nagai (Miyamoto
& Nagai 1975) and an exponential profile disc, specifically
the form from Khoperskov et al. (2013). Several spheroidal
components are available, including the potentials of Plum-
mer (1911), Hernquist (1990), and Hubble (1930). These can
be used generally for bulges and halos if given suitable mass
and scale lengths. We also include a few halo-specific pro-
files; the NFW (Navarro, Frenk, & White 1996), Begeman,
Broeils, & Sanders (1991), Caldwell & Ostriker (1981), and
the Allen & Santillan (1991) potentials.

The arm potentials include some of the more complicated
profiles. The first is the potential of Cox & Gómez (2002),
which is a relatively straightforward superposition of three
sinusoidal-based spiral components to damp the potential
‘troughs’ in the inter-arm minima. The other spiral poten-
tial is from Pichardo et al. (2003), and is more complicated.
Here, the arms are constructed from a superposition of oblate
spheroids whose loci are placed along a standard logarithmic
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spiral. As the force from this potential is computationally ex-
pensive it is prudent to pre-compute a grid of potential/force
and read it at run time. The python code to generate the ap-
propriate grid files is distributed with the code.

Finally, the bar components: We include the bar potentials
of Dehnen (2000a), Wada & Koda (2001), the ‘S’ shaped bar
of Vogt & Letelier (2011), both biaxial and triaxial versions
provided in Long & Murali (1992), and the boxy-bulge bar
of Wang et al. (2012). This final bar contains both a small in-
ner non-axisymmetric bulge and longer bar component, with
the forces calculated by use of Hernquist–Ostriker expansion
coefficients of the bar density field. PHANTOM contains the
coefficients for several different forms of this bar potential.

2.4.5. Lense–Thirring precession

Lense–Thirring precession (Lense & Thirring 1918) from
a spinning black hole is implemented in a post-Newtonian
approximation following Nelson & Papaloizou (2000), which
has been used in Nixon et al. (2012b), Nealon, Price, & Nixon
(2015), and Nealon et al. (2016). In this case, the external
acceleration consists of a point-mass potential (Section 2.4.1)
and the Lense–Thirring term:

aext,a = −∇�a + va × �p,a, (97)

where �a is given by (86) and va × �p,a is the gravitomag-
netic acceleration. A dipole approximation is used, yielding

�p,a ≡ 2S
|ra|3 − 6(S · ra)ra

|ra|5 , (98)

with S = aspin(GM )2k/c3, where k is a unit vector in the di-
rection of the black hole spin. When using the Lense–Thirring
force, geometric units are assumed such that G = M = c =
1, as described in Section 2.2.3, but with the additional con-
straints on the unit system from M and c.

Since in this case the external force depends on velocity, it
cannot be implemented directly into Leapfrog. The method
we employ to achieve this is simpler than those proposed
elsewhere [c.f. attempts by Quinn et al. (2010) and Rein &
Tremaine (2011) to adapt the Leapfrog integrator to Hill’s
equations]. Our approach is to split the acceleration into po-
sition and velocity-dependent parts, i.e.

aext = aext,x(r) + aext,v(r, v). (99)

The position-dependent part [i.e. −∇�(r)] is integrated
as normal. The velocity-dependent Lense–Thirring term is
added to the predictor step, (66)–(67), as usual, but the cor-
rector step, (69), is written in the form

vn+1 = vn+ 1
2 + 1

2
�t
[
an+1

sph + an+1
ext,x + aext,v(rn+1, vn+1)

]
, (100)

where vn+ 1
2 ≡ vn + 1

2�tan as in (65). This equation is im-
plicit but the trick is to notice that it can be solved analytically
for simple forces4. In the case of Lense–Thirring precession,

4 The procedure for Hill’s equations would be identical to our method for
Lense–Thirring precession. The method we use is both simpler and more
direct than any of the schemes proposed by Quinn et al. (2010) and Rein

we have

vn+1 = ṽ + 1

2
�t
[
vn+1 × �p(rn+1)

]
, (101)

where ṽ ≡ vn+ 1
2 + 1

2�t (an+1
sph + an+1

ext,x). We therefore have a
matrix equation in the form

Rvn+1 = ṽ, (102)

where R is the 3 × 3 matrix given by

R ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −�t

2
�z

p

�t

2
�y

p

�t

2
�z

p 1 −�t

2
�x

p

−�t

2
�y

p

�t

2
�x

p 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (103)

Rearranging (102), vn+1 is obtained by using

vn+1 = R−1ṽ, (104)

where R−1 is the inverse of R, which we invert using the
analytic solution.

2.4.6. Generalised Newtonian potential

The generalised Newtonian potential described by Tejeda
& Rosswog (2013) is implemented, where the acceleration
terms are given by

aext,a = −GMra

|ra|3 f 2 + 2Rgva(va · ra)

|ra|3 f
− 3Rgra(va × ra )2

|ra|5 ,

(105)
with Rg ≡ GM/c3 and f ≡ (

1 − 2Rg/|ra|
)
. See Bonnerot et al.

(2016) for a recent application. This potential reproduces sev-
eral features of the Schwarzschild (1916) spacetime, in par-
ticular, reproducing the orbital and epicyclic frequencies to
better than 7% (Tejeda & Rosswog 2013). As the acceler-
ation involves velocity-dependent terms, it requires a semi-
implicit solution like Lense–Thirring precession. Since the
matrix equation is rather involved for this case, the corrector
step is iterated using fixed point iterations until the velocity
of each particle is converged to a tolerance of 1%.

2.4.7. Poynting–Robertson drag

The radiation drag from a central point-like, gravitating, radi-
ating, and non-rotating object may be applied as an external
force. The implementation is intended to be as general as pos-
sible. The acceleration of a particle subject to these external
forces is

aext,a = (k0βPR − 1)GM

|ra|3 ra

−βPR

(
k1

GM

|ra|3
vr

c
ra − k2

GM

|ra|2
va

c

)
, (106)

where vr is the component of the velocity in the radial di-
rection. The parameter βPR is the ratio of radiation to grav-
itational forces, supplied by a separate user-written module.

& Tremaine (2011), and is time reversible unlike the methods proposed in
those papers.
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Relativistic effects are neglected because these are thought to
be less important than radiation forces for low (βPR < 0.01)
luminosities, even in accreting neutron star systems where
a strong gravitational field is present (e.g., Miller & Lamb
1993).

The three terms on the right side of (106) correspond, re-
spectively, to gravity (reduced by outward radiation pres-
sure), redshift-related modification to radiation pressure
caused by radial motion, and Poynting–Robertson drag
against the direction of motion. These three terms can be
scaled independently by changing the three parameters k0,
k1, and k2, whose default values are unity. Rotation of the
central object can be crudely emulated by changing k2.

As for Lense–Thirring precession, the an+1 term of the
Leapfrog integration scheme can be expanded into velocity-
dependent and non-velocity-dependent component. We ob-
tain, after some algebra,

vn+1 = −T − Qk1(vn+1 · r̂)r̂
1 + Qk2

, (107)

where

T = vn + 1

2
�tan − (1 − k0βPR )GM�t

2r3
r (108)

and

Q = GMβPR�t

2cr2
. (109)

Equation (107) yields a set of simultaneous equations for the
three vector components that can be solved analytically. A
detailed derivation is given in Worpel (2015).

2.4.8. Coriolis and centrifugal forces

Under certain circumstances, it is useful to perform calcu-
lations in a co-rotating reference frame (e.g. for damping
binary stars into equilibrium with each other). The resulting
acceleration terms are given by

aext,a = −� × (� × ra) − 2(� × va ), (110)

which are the centrifugal and Coriolis terms, respectively,
with � the angular rotation vector. The timestepping algo-
rithm is as described above for Lense–Thirring precession,
with the velocity-dependent term handled by solving the 3 ×
3 matrix in the Leapfrog corrector step.

2.5. Driven turbulence

PHANTOM implements turbulence driving in periodic do-
mains via an Ornstein–Uhlenbeck stochastic driving of the
acceleration field, as first suggested by Eswaran & Pope
(1988). This is an SPH adaptation of the module used in the
grid-based simulations by Schmidt, Hillebrandt, & Niemeyer
(2006) and Federrath, Klessen, & Schmidt (2008) and many
subsequent works. This module was first used in PHAN-
TOM by Price & Federrath (2010) to compare the statis-
tics of isothermal, supersonic turbulence between SPH, and
grid methods. Subsequent applications have been to the den-
sity variance–Mach number relation (Price et al. 2011), sub-

sonic turbulence (Price 2012b), supersonic MHD turbulence
(Tricco et al. 2016b), and supersonic turbulence in a dust–
gas mixture (Tricco et al. 2017). Adaptations of this module
have also been incorporated into other SPH codes (Bauer &
Springel 2012; Valdarnini 2016).

The amplitude and phase of each Fourier mode is initialised
by creating a set of six random numbers, zn, drawn from a
random Gaussian distribution with unit variance. These are
generated by the usual Box–Muller transformation (e.g. Press
et al. 1992) by selecting two uniform random deviates u1, u2

∈ [0, 1] and constructing the amplitude according to

z =
√

2 log(1/u1) cos(2πu2). (111)

The six Gaussian random numbers are set up according to

xn = σ zn, (112)

where the standard deviation, σ , is set to the square root
of the energy per mode divided by the correlation time,
σ = √

Em/tdecay, where both Em and tdecay are user-specified
parameters.

The ‘red noise’ sequence (Uhlenbeck & Ornstein 1930)
is generated for each mode at each timestep according to
(Bartosch 2001)

xn+1 = f xn + σ
√

(1 − f 2)zn, (113)

where f = exp ( − �t/tdecay) is the damping factor. The re-
sulting sequence has zero mean with root-mean-square equal
to the variance. The power spectrum in the time domain can
vary from white noise [P(f) constant] to ‘brown noise’ [P(f)
= 1/f2].

The amplitudes and phases of each mode are constructed
by splitting xn into two vectors, �a and �b of length 3, em-
ployed to construct divergence- and curl-free fields according
to

Am = w[�a − (�a · k̂)k̂] + (1 − w)[(�b · k̂)k̂], (114)

Bm = w[�b − (�b · k̂)k̂] + (1 − w)[(�a · k̂)k̂], (115)

where k = [kx, ky, kz] is the mode frequency. The parame-
ter w ∈ [0, 1] is the ‘solenoidal weight’, specifying whether
the driving should be purely solenoidal (w = 1) or purely
compressive (w = 0) (see Federrath et al. 2008, 2010a).

The spectral form of the driving is defined in Fourier space,
with options for three possible spectral forms

Cm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 uniform

4(amin − 1)
(k − kc )2

(kmax − kmin )2
+ 1 parabolic

k/k−5/3
min Kolmogorov,

(116)

where k =
√

k2
x + k2

y + k2
z is the wavenumber, with non-zero

amplitudes defined only for wavenumbers where kmin � k �
kmax , and amin is the amplitude of the modes at kmin and kmax

in the parabolic case (we use amin = 0 in the code). The fre-
quency grid is defined using frequencies from kx = nx2π /Lx
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in the x direction, where nx ∈ [0, 20] is an integer and Lx is
the box size in the x-direction, while ky = ny2π /Ly and kz =
nz2π /Lz with ny ∈ [0, 8] and nz ∈ [0, 8]. We then set up four
modes for each combination of nx, ny, and nz, corresponding
to [kx, ky, kz], [kx, −ky, kz], [kx, ky, −kz], and [kx, −ky, −kz].
That is, we effectively sum from [− (N − 1)/2, (N − 1)/2]
in the ky and kz directions in the discrete Fourier transform,
where N = max (nx) is the number of frequencies. The default
values for kmin and kmax are 2π and 6π , respectively, corre-
sponding to large-scale driving of only the first few Fourier
modes, so with default settings there are 112 non-zero Fourier
modes. The maximum number of modes, defining the array
sizes needed to store the stirring information, is currently set
to 1,000.

We apply the forcing to the particles by computing the
discrete Fourier transform over the stirring modes directly,
i.e.

aforcing,a = fsol

nmodes∑
m=1

Cm [Am cos(k · ra ) − Bm sin(k · ra)] , (117)

where the factor fsol is defined from the solenoidal weight, w,
according to

fsol =
√

3

ndim

√
3

1 − 2w + ndimw2
, (118)

such that the rms acceleration is the same irrespective of the
value of w. We default to purely solenoidal forcing (w =
1), with the factor fsol thus equal to

√
3/2 by default. For

individual timesteps, we update the driving force only when
a particle is active.

To aid reproducibility, it is often desirable to pre-generate
the entire driving sequence prior to performing a calculation,
which can then be written to a file and read back at runtime.
This was the procedure used in Price & Federrath (2010),
Tricco et al. (2016b), and Tricco et al. (2017).

2.6. Accretion disc viscosity

Accretion disc viscosity is implemented in PHANTOM via
two different approaches, as described by Lodato & Price
(2010).

2.6.1. Disc viscosity using the shock viscosity term

The default approach is to adapt the shock viscosity term to
represent a Shakura & Sunyaev (1973) α-viscosity, as orig-
inally proposed by Artymowicz & Lubow (1994) and Mur-
ray (1996). The key is to note that (39) and (40) represent a
Navier–Stokes viscosity term with a fixed ratio between the
bulk and shear viscosity terms (e.g. Murray 1996; Jubelgas,
Springel, & Dolag 2004; Lodato & Price 2010; Price 2012b;
Meru & Bate 2012). In particular, it can be shown (e.g. Es-
pañol & Revenga 2003) that

∑
b

mb

ρab

(vab · r̂ab)
∇aWab

|rab| ≈ 1

5
∇ (∇ · v) + 1

10
∇2v, (119)

where ρab is some appropriate average of the density. This
enables the artificial viscosity term, (39), to be translated into
the equivalent Navier–Stokes terms. In order for the artificial
viscosity to represent a disc viscosity, we make the following
modifications (Lodato & Price 2010):

1. The viscosity term is applied for both approaching and
receding particles.

2. The speed v sig is set equal to cs.
3. A constant αAV is adopted, turning off shock detection

switches (Section 2.2.9).
4. The viscosity term is multiplied by a factor h/|rab|.

The net result is that (40) becomes

qa
ab =

⎧⎨
⎩− ρaha

2|rab|
(
αAVcs,a + βAV|vab · r̂ab|

)
vab · r̂ab, vab · r̂ab < 0

− ρaha
2|rab|α

AVcs,avab · r̂ab. otherwise.
(120)

With the above modifications, the shear and bulk coeffi-
cients can be translated using (119) to give (e.g. Monaghan
2005; Lodato & Price 2010; Meru & Bate 2012)

νAV ≈ 1

10
αAVcsh, (121)

ζAV = 5

3
νAV ≈ 1

6
αAVcsh. (122)

The Shakura–Sunyaev prescription is

ν = αSScsH, (123)

where H is the scale height. This implies that αSS may be
determined from αAV using

αSS ≈ αAV

10

〈h〉
H

, (124)

where 〈h〉 is the mean smoothing length on particles in a
cylindrical ring at a given radius.

In practice, this means that one must uniformly resolve
the scale height in order to obtain a constant αSS in the disc.
We have achieved this in simulations to date by choosing
the initial surface density profile and the power-law index
of the temperature profile (when using a locally isothermal
EOS) to ensure that this is the case (Lodato & Pringle 2007).
Confirmation that the scaling provided by (124) is correct is
shown in Figure 4 of Lodato & Price (2010) and is checked
automatically in the PHANTOM test suite.

In the original implementation (Lodato & Price 2010), we
also set the βAV to zero, but this is dangerous if the disc dy-
namics are complex as there is nothing to prevent particle
penetration (see Section 2.2.7). Hence, in the current version
of the code, βAV = 2 by default even if disc viscosity is set,
but is only applied to approaching particles (c.f. 120). Apply-
ing any component of viscosity to only approaching particles
can affect the sign of the precession induced in warped discs
(Lodato & Pringle 2007), but in general retaining the βAV
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term is safer with no noticeable effect on the overall dissi-
pation due to the second-order dependence of this term on
resolution.

Using αAV to set the disc viscosity has two useful conse-
quences. First, it forces one to consider whether or not the
scale height, H, is resolved. Second, knowing the value of
αAV is helpful, as αAV ≈ 0.1 represents the lower bound be-
low which a physical viscosity is not resolved in SPH (that is,
viscosities smaller than this produce disc spreading indepen-
dent of the value of αAV, see Bate 1995; Meru & Bate 2012),
while αAV > 1 constrains the timestep (Section 2.3.2).

2.6.2. Disc viscosity using the Navier–Stokes viscosity
terms

An alternative approach is to compute viscous terms directly
from the Navier–Stokes equation. Details of how the Navier–
Stokes terms are represented are given below (Section 2.7),
but for disc viscosity a method for determining the kinematic
viscosity is needed, which in turn requires specifying the
scale height as a function of radius. We use

Ha ≡ ca
s

�(Ra)
, (125)

where we assume Keplerian rotation � =
√

GM/R3 and cs

is obtained for a given particle from the EOS (which for
consistency must be either isothermal or locally isothermal).
It is important to note that this restricts the application of this
approach only to discs where R can be meaningfully defined,
excluding, for example, discs around binary stars.

The shear viscosity is then set using

νa = αSSca
s Ha, (126)

where αSS is a pre-defined/input parameter. The timestep is
constrained using Cvisch2/ν as described in Section 2.7. The
advantage to this approach is that the shear viscosity is set
directly and does not depend on the smoothing length. How-
ever, as found by Lodato & Price (2010), it remains necessary
to apply some bulk viscosity to capture shocks and prevent
particle penetration of the disc midplane, so one should ap-
ply the shock viscosity as usual. Using a shock-detection
switch (Section 2.2.9) means that this is usually not prob-
lematic. This formulation of viscosity was used in Facchini
et al. (2013).

2.7. Navier–Stokes viscosity

Physical viscosity is implemented as described in Lodato &
Price (2010). Here, (23) and (24) are replaced by the com-
pressible Navier–Stokes equations, i.e.

dv i

dt
= − 1

ρ

∂Si j
NS

∂x j
+ 	shock + aext (r, t )

+ asink−gas + aselfgrav, (127)

du

dt
= −P

ρ
(∇ · v) + 
visc + 
shock − 
cool

ρ
, (128)

with the stress tensor given by

Si j
NS =

[
P −

(
ζ − 2

3
η

)
∂vk

∂xk

]
δi j − η

(
∂v i

∂x j
+ ∂v j

∂xi

)
, (129)

where δij is the Kronecker delta, and ζ and η are the bulk
and shear viscosity coefficients, related to the volume and
kinematic shear viscosity coefficients by ζ v ≡ ζ /ρ and ν ≡
η/ρ.

2.7.1. Physical viscosity using two first derivatives

As there is no clear consensus on the best way to implement
physical viscosity in SPH, PHANTOM currently contains two
implementations. The simplest is to use two first derivatives,
which is essentially that proposed by Flebbe et al. (1994),
Watkins et al. (1996), and Sijacki & Springel (2006). In this
case, (127) is discretised in the standard manner using

dv i
a

dt
= −

∑
b

mb

[
Si j

NS,a

�aρ2
a

∂Wab(ha)

∂x j
a

+ Si j
NS,b

�bρ
2
b

∂Wab(hb)

∂x j
a

]

+ 	i
shock + ai

ext (r, t ) + ai
sink−gas + ai

selfgrav, (130)

where the velocity gradients are computed during the density
loop using

∂v i
a

∂x j
a

= − 1

�aρa

∑
b

mbv
i
ab∇ j

aWab(ha). (131)

Importantly, the differenced SPH operator is used in (131),
whereas (130) uses the symmetric gradient operator. The use
of conjugate operators5 is a common requirement in SPH in
order to guarantee energy conservation and a positive defi-
nite entropy increase from dissipative terms (e.g. Price 2010;
Tricco & Price 2012). Total energy conservation means that

dE

dt
=
∑

a

ma

(
dua

dt
+ v i

a

dv i
a

dt

)
= 0. (132)

This implies a contribution to the thermal energy equation
given by

dua

dt
= Si j

NS,a

�aρ2
a

∑
b

mbv
i
ab∇ j

aWab(ha), (133)

which can be seen to reduce to (24) in the inviscid case (Si j
NS =

Pδi j), but in general is an SPH expression for

dua

dt
= −Si j

NS,a

ρa

∂v i
a

∂x j
a

. (134)

Using Si j
NS = S ji

NS, we have

dua

dt
= −1

2

Si j
NS,a

ρa

(
∂v i

a

∂x j
a

+ ∂v j
a

∂xi
a

)
, (135)

which, using (129), gives


visc =
(

ζv,a − 2

3
νa

)
(∇ · v)2

a + νa

2

(
∂v i

a

∂x j
a

+ ∂v j
a

∂xi
a

)2

. (136)

5 The SPH difference operator is discretely skew adjoint to the symmetric
operator (Cummins & Rudman 1999).
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By the square in the last term, we mean the tensor summa-
tion �j�iTijTij, where Ti j ≡ ∂v i

a/∂x j
a + ∂v j

a/∂xi
a. The heat-

ing term is therefore positive definite provided that the veloc-
ity gradients and divergence are computed using the differ-
ence operator (131), both in (136) and when computing the
stress tensor (129).

The main disadvantage of the first derivatives approach is
that it requires storing the strain tensor for each particle, i.e.
six additional quantities when taking account of symmetries.

2.7.2. Physical viscosity with direct second derivatives

The second approach is to use SPH second derivative opera-
tors directly. Here we use modified versions of the identities
given by Español & Revenga (2003) (see also Monaghan
2005; Price 2012a), namely

∇ [A(∇ · v)] ≈

−
∑

b

mb

[
Aa

ρa
Gab(ha) + Ab

ρb
Gab(hb)

]
(vab · r̂ab)r̂ab, (137)

∇ · (C∇v) ≈ −
∑

b

mb

[
Ca

ρa
Gab(ha) + Cb

ρb
Gab(hb)

]
vab, (138)

where Gab ≡ −2Fab/|rab|, i.e. the scalar part of the kernel gra-
dient divided by the particle separation, which can be thought
of as equivalent to defining a new ‘second derivative kernel’
(Brookshaw 1985, 1994; Price 2012a; Price & Laibe 2015a).

From the compressible Navier–Stokes equations, (127)
with (129), the coefficients in these two terms are

A ≡ 1

2

(
ζ + η

3

)
, (139)

C ≡ 1

2
η, (140)

so that we can simply use(
dv i

a

dt

)
visc

=
∑

b

mb

[
τa

ρa
Gab(ha) + τb

ρb
Gab(hb)

]
(vab · r̂ab)r̂i

ab

+
∑

b

mb

[
κa

ρa
Gab(ha ) + κb

ρb
Gab(hb)

]
v i

ab (141)

where

τ = 5

2
A, (142)

κ =
(

C − A

2

)
. (143)

The corresponding heating terms in the thermal energy
equation are given by


visc = τa

ρa

∑
b

mb(vab · r̂ab)2Gab(ha )

+ κa

ρa

∑
b

mb(vab)2Gab(ha ). (144)

This is the default formulation of Navier–Stokes viscosity
in the code since it does not require additional storage. In

practice, we have found little difference between the two for-
mulations of physical viscosity, but this would benefit from
a detailed study. In general one might expect the two first
derivatives formulation to offer a less noisy estimate at the
cost of additional storage. However, direct second derivatives
are the method used in ‘Smoothed Dissipative Particle Dy-
namics’ (Español & Revenga 2003).

2.7.3. Timestep constraint

Both approaches to physical viscosity use explicit timestep-
ping, and therefore imply a constraint on the timestep given
by

�t a
visc ≡ Cvisc

h2
a

νa
, (145)

where Cvisc = 0.25 by default (Brookshaw 1994). When phys-
ical viscosity is turned on, this constraint is included with
other timestep constraints according to (77).

2.7.4. Physical viscosity and the tensile instability

Caution is required in the use of physical viscosity at high
Mach number, since negative stress can lead to the tensile in-
stability (Morris 1996b; Monaghan 2000; Gray, Monaghan,
& Swift 2001). For subsonic applications, this is usually not
a problem since the strain tensor and velocity divergence are
small compared to the pressure. In the current code, we sim-
ply emit a warning if physical viscosity leads to negative
stresses during the calculation, but this would benefit from a
detailed study.

2.7.5. Physical viscosity and angular momentum
conservation

Neither method for physical viscosity exactly conserves an-
gular momentum because the force is no longer directed along
the line of sight joining the particles. However, the error is
usually small (see discussion in Bonet & Lok 1999, Section 5
of Price & Monaghan 2004b or Hu & Adams 2006). Recently,
Müller, Fedosov, & Gompper (2015) have proposed an algo-
rithm for physical viscosity in SPH that explicitly conserves
angular momentum by tracking particle spin, which may be
worth investigating.

2.8. Sink particles

Sink particles were introduced into SPH by Bate, Bonnell,
& Price (1995) in order to follow star formation simula-
tions beyond the point of fragmentation. In PHANTOM, these
are treated separately to the SPH particles, and interact with
other particles, including other sink particles, only via grav-
ity. The differences with other point-mass particles imple-
mented in the code (e.g. dust, stars, and dark matter) are
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that (i) the gravitational interaction is computed using a di-
rect N2 summation which is not softened by default (i.e.,
the N-body algorithm is collisional); (ii) they are allowed to
accrete gas; and (iii) they store the accreted angular momen-
tum and other extended properties, such as the accreted mass.
Sink particles are evolved in time using the RESPA algorithm
(Section 2.3.3), which is second-order accurate, symplectic,
and allows sink particles to evolve on shorter timesteps com-
pared to SPH particles.

2.8.1. Sink particle accelerations

The equations of motion for a given sink particle, i, are

dvi

dt
= −

Nsink∑
j=1

GMjφ
′
i j (ε)r̂i j

−
Npart∑
b=1

Gmbφ
′
ib(εib)r̂ib, (146)

where φ′
ab is the softening kernel (Section 2.12.2), Npart is the

total number of gas particles, and Nsink is the total number of
sink particles. The sink–gas softening length, εib, is defined
as the maximum of the (fixed) softening length defined for
the sink particles, ε, and the softening length of the gas par-
ticle, εb. That is, εib ≡ max (ε, εb). SPH particles receive a
corresponding acceleration

aa
sink−gas = −

Nsink∑
j=1

GMjφ
′
a j (εa j )r̂a j . (147)

Softening of sink–gas interactions is not applied if the soft-
ening length for sink particles is set to zero, in which case the
sink–gas accelerations reduce simply to

aa
sink−gas = −

Nsink∑
j=1

GMj

|ra − r j |3 ra j . (148)

This is the default behaviour when sink particles are used
in the code. Softening of sink–gas interactions is useful to
model a point-mass particle that does not accrete gas (e.g. by
setting the accretion radius to zero). For example, we used a
softened sink particle to simulate the core of the red giant in
Iaconi et al. (2017). The sink–sink interaction is unsoftened
by default (ε = 0), giving the usual

ai
sink−sink = −

Nsink∑
j=1

GMj

|ri − r j |3 ri j . (149)

Caution is required when integrating tight binary or multiple
systems when ε = 0 to ensure that the timestep conditions
(Section 2.3.2) are strict enough.

2.8.2. Accretion onto sink particles

Accretion of gas particles onto a sink particle occurs when
a gas particle passes a series of accretion checks within the
accretion radius racc of a sink particle (set in the initial condi-
tions or when the sink particle is created, see Section 2.8.4).

First, a gas particle is indiscriminately accreted without un-
dergoing any additional checks if it falls within faccracc, where
0� facc � 1 (default facc = 0.8). In the boundary region faccracc

< r < racc, a gas particle undergoes accretion if

1. |Lai| < |Lacc|, that is, its specific angular momentum is
less than that of a Keplerian orbit at racc,

2. e = v2
ai
2 − GMi

rai
< 0, i.e., it is gravitationally bound to the

sink particle, and
3. e for this gas–sink pair is smaller than e with any other

sink particle, that is, out of all sink particles, the gas
particle is most bound to this one.

In the above conditions, Lai is the relative specific angular
momentum of the gas–sink pair, a − i, defined by

|L2
ai| ≡ |rai × vai|2

= r2
aiv

2
ai − (rai · vai )

2 , (150)

while |Lacc| = r2
acc�acc is the angular momentum at racc,

where �acc =
√

GMi/r3
ai is the Keplerian angular speed at

racc, vai, and rai are the relative velocity and position, respec-
tively, and Mi is the mass of the sink particle.

When a particle, a, passes the accretion checks, then the
mass, position, velocity, acceleration, and spin angular mo-
mentum of the sink particle are updated according to

ri = (rama + riMi )

Mi + ma
, (151)

vi = (vama + viMi )

Mi + ma
, (152)

ai = (aama + aiMi )

Mi + ma
, (153)

Si = Si + maMi

Mi + ma
[(ra − ri ) × (va − vi )] , (154)

Mi = Mi + ma. (155)

This ensures that mass, linear momentum, and angular mo-
mentum (but not energy) are conserved by the accretion pro-
cess. The accreted mass as well as the total mass for each
sink particle is stored to avoid problems with round-off error
in the case where the particle masses are much smaller than
the sink mass. Accreted particles are tagged by setting their
smoothing lengths negative. Those particles with h � 0 are
subsequently excluded when the kd-tree is built.

2.8.3. Sink particle boundary conditions

No special sink particle boundary conditions are imple-
mented in PHANTOM at present. More advanced boundary
conditions to regularise the density, pressure, and angular mo-
mentum near a sink have been proposed by Bate et al. (1995)
and used in Bate & Bonnell (1997), and proposed again more
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recently by Hubber, Walch, & Whitworth (2013b). While
these conditions help to regularise the flow near the sink par-
ticle, they can also cause problems—particularly the angular
momentum boundary condition if the disc near the sink par-
ticle has complicated structure such as spiral density waves
(Bate 2014, private communication). Often it is more cost
effective to simply reduce the accretion radius of the sink.
This may change in future code versions.

2.8.4. Dynamic sink particle creation

As described in Bate et al. (1995), it is also possible to create
sink particles on-the-fly provided certain physical conditions
are met and self-gravity is turned on (Section 2.12). The pri-
mary conditions required for sink particle formation are that
the density of a given particle exceeds some threshold phys-
ical density somewhere in the domain, and that this density
peak occurs more than a critical distance rcrit from an existing
sink. Once these conditions are met on a particular particle,
a, the creation of a new sink particle occurs by passing the
following conditions (Bate et al. 1995):

1. The particle is a gas particle.
2. ∇ · va ≤ 0, that is, gas surrounding the particle is at rest

or collapsing.
3. ha < racc/2, i.e., the smoothing length of the particle is

less than half of the accretion radius.
4. All neighbours within racc are currently active.
5. The ratio of thermal to gravitational energy of particles

within racc, αJ, satisfies αJ � 1/2.
6. αJ + βrot � 1, where βrot = |erot|/|egrav| is the ratio of

rotational energy to the magnitude of the gravitational
energy for particles within racc.

7. etot < 0, that is, the total energy of particles within racc

is negative (i.e. the clump is gravitationally bound).
8. The particle is at a local potential minimum, i.e. � is

less than � computed on all other particles within racc

(Federrath et al. 2010b).

A new sink particle is created at the position of particle
a if these checks are passed, and immediately the particles
within racc are accreted by calling the routine described in
Section 2.8.2. The checks above are the same as those in
Bate et al. (1995), with the additional check from Federrath
et al. (2010b) to ensure that sink particles are only created in
a local minimum of the gravitational potential.

The various energies used to evaluate the criteria above are
computed according to

ekin = 1

2

N<racc∑
b=1

mb(vb − va)2, (156)

etherm =
N<racc∑

b=1

mbub, (157)

egrav = −1

2

N<racc∑
b=1

N<racc∑
c=b

Gmbmc,

× [φ(|rb − rc|, hb) + φ(|rb − rc|, hc )] , (158)

etot = ekin + etherm + egrav, (159)

erot ≡
√

e2
rot,x + e2

rot,y + e2
rot,z, (160)

erot,x ≡ 1

2

N<racc∑
b=1

mb

L2
ab,x√

(ya − yb)2 + (za − zb)2
, (161)

erot,y ≡ 1

2

N<racc∑
b=1

mb

L2
ab,y√

(xa − xb)2 + (za − zb)2
, (162)

erot,z ≡ 1

2

N<racc∑
b=1

mb

L2
ab,z√

(xa − xb)2 + (ya − yb)2
, (163)

where Lab ≡ (ra − rb) × (va − vb) is the specific angular
momentum between a pair of particles, and φ is the grav-
itational softening kernel (defined in Section 2.12), which
has units of inverse length. Adding the contribution from all
pairs, b − c, within the clump is required to obtain the total
potential of the clump.

2.8.5. Sink particle timesteps

Sink particles are integrated together with a global, but adap-
tive, timestep, following the inner loop of the RESPA al-
gorithm given in (80)–(83) corresponding to a second-order
Leapfrog integration. The timestep is controlled by the mini-
mum of the sink–gas timestep, (75), and a sink–sink timestep
(Dehnen & Read 2011)

�tsink−sink ≡ min
i

(
Cforceη�

√
|�sink−sink

i |
|∇�sink−sink

i |2
)

, (164)

where the potential and gradient include other sink particles,
plus any external potentials applied to sink particles except
the sink–gas potential. We set η� = 0.05 by default, resulting
in ∼300–500 steps per orbit for a binary orbit with the default
Cforce = 0.25 (see Section 5.5.1).

More accurate integrators such as the fourth-order Her-
mite scheme (Makino & Aarseth 1992) or the fourth-order
symplectic schemes proposed by Omelyan, Mryglod, & Folk
(2002) or Chin & Chen (2005) are not yet implemented in
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PHANTOM, but it would be a worthwhile effort to incorpo-
rate one of these in a future code version. See Hubber et al.
(2013a) for a recent implementation of a fourth-order Her-
mite scheme for sink particles in SPH.

2.9. Stellar physics

A tabulated EOS can be used to take account of the departure
from an ideal gas, for example, due to changes in ionisa-
tion or molecular dissociation and recombination. This tab-
ulated EOS in PHANTOM is adapted from the log Pgas − T
EOS tables provided with the open source package Modules
for Experiments in Stellar Astrophysics MESA (Paxton et al.
2011). Details of the data, originally compiled from blends
of equations of state from Saumon, Chabrier, & van Horn
(1995) (SCVH), Timmes & Swesty (2000), Rogers & Nay-
fonov (2002, also the 2005 update), Potekhin & Chabrier
(2010) and for an ideal gas, are outlined by Paxton et al.
(2011).

In our implementation (adapted from original routines for
the MUSIC code; Goffrey et al. 2017), we compute the pres-
sure and other required EOS variables for a particular com-
position by interpolation between sets of tables for different
hydrogen abundance X = 0.0, 0.2, 0.4, 0.6, 0.8 and metallic-
ity Z = 0.0, 0.02, 0.04. Pressure is calculated with bicubic
interpolation, and �1 ≡ ∂ln P/∂lnρ|s with bilinear interpola-
tion, in log u and log V ≡ logρ − 0.7log u + 20. The tables
are currently valid in the ranges 10.5 � log u � 17.5 and
0.0 � log V � 14.0. Values requested outside the tables are
currently computed by linear extrapolation. This triggers a
warning to the user.

We have not tested the thermodynamic consistency of
our interpolation scheme from the tables (Timmes & Arnett
1999).

2.10. Magnetohydrodynamics

PHANTOM implements the smoothed particle magnetohydro-
dynamics (SPMHD) algorithm described in Price (2012a)
and Tricco & Price (2012, 2013), based on the original work
by Phillips & Monaghan (1985) and Price & Monaghan
(2004a, 2004b, 2005). PHANTOM was previously used to test
a vector potential formulation (Price 2010), but this algorithm
has been subsequently removed from the code due to its poor
performance (see Price 2010).

The important difference between PHANTOM and the
GADGET implementation of SPMHD (Dolag & Stasyszyn
2009; Bürzle et al. 2011a, 2011b), which also implements
the core algorithms from Price & Monaghan (2004a, 2004b,
2005), is our use of the divergence-cleaning algorithm from
Tricco & Price (2012, 2013) and Tricco, Price, & Bate
(2016a). This is vital for preserving the divergence-free (no
monopoles) condition on the magnetic field.

For recent applications of PHANTOM to MHD problems,
see e.g. Tricco et al. (2016b), Dobbs et al. (2016), Bonnerot

et al. (2017), Forgan, Price, & Bonnell (2017), and Wurster
et al. (2016, 2017).

2.10.1. Equations of magnetohydrodynamics

PHANTOM solves the equations of MHD in the form

dv i

dt
= − 1

ρ

∂Mi j

∂x j
+ 	shock + f i

divB + ai
ext

+ ai
sink−gas + ai

selfgrav, (165)

du

dt
= −P

ρ
(∇ · v) + 
shock − 
cool

ρ
, (166)

d

dt

(
B
ρ

)
= 1

ρ
[(B · ∇ ) v − ∇ψ + Ddiss] , (167)

d

dt

(
ψ

ch

)
= −ch (∇ · B) − 1

2

ψ

ch
(∇ · v) − ψ

chτc
, (168)

where B is the magnetic field, ψ is a scalar used to
control the divergence error in the magnetic field (see
Section 2.10.8), and Ddiss represents magnetic dissipation
terms (Sections 2.10.5 and 2.11). The Maxwell stress ten-
sor, Mij, is given by

Mi j =
(

P + 1

2

B2

μ0

)
δi j − BiB j

μ0
, (169)

where δij is the Kronecker delta and μ0 is the permeability of
free space. A source term related to the numerically induced
divergence of the magnetic field, given by

f i
divB ≡ −Bi

ρ
(∇ · B) (170)

is necessary to prevent the tensile instability in SPMHD
(Phillips & Monaghan 1985; Monaghan 2000; Børve,
Omang, & Trulsen 2001; Price 2012a). With this source term,
the equation set for ideal MHD in the absence of the diver-
gence cleaning field, ψ , is formally the same as in the Powell
et al. (1999) eight-wave scheme (Price 2012a), meaning that
the divergence errors in the magnetic field are advected by
the flow, but not dissipated, unless cleaning is used.

2.10.2. Discrete equations

The discrete version of (165) follows the same procedure as
for physical viscosity (Section 2.7), i.e.

dv i
a

dt
= −

∑
b

mb

[
Mi j

a

�aρ2
a

∂Wab(ha)

∂x j
a

+ Mi j
b

�bρ
2
b

∂Wab(hb)

∂x j
a

]

+ 	a
shock + f i

divB,a + ai
ext,a + ai

sink−gas

+ ai
selfgrav, (171)

where Mi j
a is defined according to (169), fdivB is a correction

term for stability (discussed below), and accelerations due to
external forces are as described in Section 2.4.
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Equations (167) and (168) are discretised according to
(Price & Monaghan 2005; Tricco & Price 2012; Tricco et al.
2016a)

d

dt

(
B
ρ

)
a

= − 1

�aρ2
a

∑
b

mbvab [Ba · ∇aWab(ha)]

−
∑

b

mb

[
ψa

�aρ2
a

∇aWab(ha ) + ψb

�bρ
2
b

∇aWab(hb)

]

+ 1

ρa
Da

diss, (172)

d

dt

(
ψ

ch

)
a

= ca
h

�aρa

∑
b

mbBab · ∇aWab(ha)

+ ψa

2ca
h�aρa

∑
b

mbvab · ∇aWab(ha) − ψa

ca
hτ

a
c

. (173)

The first term in (173) uses the divergence of the magnetic
field discretised according to

(∇ · B)a = − 1

�aρa

∑
b

mb (Ba − Bb) · ∇aWab(ha), (174)

which is therefore the operator we use when measuring the
divergence error (c.f. Tricco & Price 2012).

2.10.3. Code units

An additional unit is required when magnetic fields are in-
cluded to describe the unit of magnetic field. We adopt code
units such that μ0 = 1, as is common practice. The unit scal-
ings for the magnetic field can be determined from the defi-
nition of the Alfvén speed,

vA ≡
√

B2

μ0ρ
. (175)

Since the Alfvén speed has dimensions of length per unit
time, this implies a unit for the magnetic field, umag, given
by

umag =
(

μ0umass

udistutime

) 1
2

. (176)

Converting the magnetic field in the code to physical units
therefore only requires specifying μ0 in the relevant unit sys-
tem. In particular, it avoids the differences between SI and
cgs units in how the charge unit is defined, since μ0 is dimen-
sionless and equal to 4π in cgs units but has dimensions that
involve charge in SI units.

2.10.4. Tensile instability correction

The correction term fdivB is necessary to avoid the tensile
instability—a numerical instability where particles attract
each other along field lines—in the regime where the mag-
netic pressure exceeds the gas pressure, that is, when plasma
β ≡ P/ 1

2 B2 < 1 (Phillips & Monaghan 1985). The correction
term is computed using the symmetric divergence operator

(Børve et al. 2001; Price 2012a; Tricco & Price 2012)

f i
divB,a = −B̂i

a

∑
b

mb

[
Ba · ∇aWab(ha)

�aρ2
a

+ Bb · ∇aWab(hb)

�bρ
2
b

]
. (177)

Since this term violates momentum conservation to the extent
that the ∇ · B term is non-zero, several authors have proposed
ways to minimise its effect. Børve et al. (2004) showed that
stability could be achieved with B̂i = 1

2 Bi and also proposed
a scheme for scaling this term to zero for β > 1. Barnes,
Kawata, & Wu (2012) similarly advocated using a factor of
1
2 in this term. However, Tricco & Price (2012) showed that
this could lead to problematic effects (their Figure 12). In
PHANTOM, we use

B̂i =
⎧⎨
⎩

Bi β < 2,

[(10 − β )Bi]/8 2 < β < 10,

0 otherwise
(178)

to provide numerical stability in the strong field regime while
maintaining conservation of momentum when β > 10. This
also helps to reduce errors in the MHD wave speed caused
by the correction term (Iwasaki 2015).

2.10.5. Shock capturing

The shock capturing term in the momentum equation for
MHD is identical to (39) and (40) except that the signal speed
becomes (Price & Monaghan 2004a, 2005; Price 2012a)

vsig,a = αAV
a va + βAV|vab · r̂ab|, (179)

where

va =
√

c2
s,a + v2

A,a (180)

is the fast magnetosonic speed. Apart from this, the major
difference to the hydrodynamic case is the addition of an
artificial resistivity term to capture shocks and discontinuities
in the magnetic field (i.e. current sheets). This is given by

Da
diss = ρa

2

∑
b

mb

[
vB

sig,a

ρ2
a

Fab(ha)

�a
+ vB

sig,b

ρ2
b

Fab(hb)

�b

]
Bab, (181)

where vB
sig,a is an appropriate signal speed (see below) multi-

plied by a dimensionless coefficient, αB. The corresponding
contribution to the thermal energy from the resistivity term
in (42) is given by


artres = −1

4

∑
b

mb

[
vB

sig,a

ρ2
a

Fab(ha)

�a

+ vB
sig,b

ρ2
b

Fab(hb)

�b

]
(Bab)2. (182)

As with the artificial viscosity, (181) and (182) are the SPH
representation of a physical resistivity term, η∇2B, but with
a coefficient that is proportional to resolution (Price & Mon-
aghan 2004a). The resistive dissipation rate from the shock
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capturing term is given by

η ≈ 1

2
αBvB

sig|rab|, (183)

where |rab|∝h.

2.10.6. Switch to reduce resistivity

PHANTOM previously used the method proposed by Tricco
& Price (2013) to reduce the dissipation in the magnetic field
away from shocks and discontinuities. The signal velocity,
vB

sig, was set equal to the magnetosonic speed [Equation (180)]
multiplied by the dimensionless coefficient αB, which was set
according to

αB
a = min

(
ha

|∇Ba|
|Ba| , αB

max

)
, (184)

where αB
max = 1.0 by default and |∇Ba| is the two-norm of

the gradient tensor, i.e. the root mean square of all nine com-
ponents of this tensor. Unlike the viscous dissipation, this is
set based on the instantaneous values of h and B and there is
no source/decay equation involved, as Tricco & Price (2013)
found it to be unnecessary. Since αB is proportional to reso-
lution, from (183), we see that this results in dissipation that
is effectively second order (∝h2). When individual particle
timesteps were used, inactive particles retained their value of
αB from the last timestep they were active.

More recently, we have found that a better approach, sim-
ilar to that used for artificial conductivity, is to simply set
αB = 1 for all particles and set the signal speed for artificial
resistivity according to

vB
sig = |vab × r̂ab|. (185)

We find that this produces better results on all of our tests
(Section 5.6), in particular, producing zero numerical dissipa-
tion on the current loop advection test (Section 5.6.5). As with
the Tricco & Price (2013) switch, it gives second-order dis-
sipation in the magnetic field (demonstrated in Section 5.6.1,
Figure 26). This is now the default treatment for artificial
resistivity in PHANTOM.

2.10.7. Conservation properties

The total energy when using MHD is given by

E =
∑

a

ma

(
1

2
v2

a + ua + �a + 1

2

B2
a

μ0ρa

)
. (186)

Hence, total energy conservation, in the absence of diver-
gence cleaning, corresponds to

dE

dt
=
∑

a

ma

[
va · dva

dt
+ dua

dt
+ d�a

dt

+ B2
a

2μ0ρ2
a

dρa

dt
+ Ba

μ0
· d

dt

(
B
ρ

)
a

]
= 0. (187)

Neglecting the fdivB correction term for the moment, substitut-
ing (171), (35), and (172) into (187) with the ideal MHD and
shock capturing terms included demonstrates that the total
energy is exactly conserved, using the same argument as the

one given in Section 2.2.6 (detailed workings can be found
in Price & Monaghan 2004b). The total linear momentum
is also exactly conserved following a similar argument as in
Section 2.2.11. However, the presence of the fdivB correction
term, though necessary for numerical stability, violates the
conservation of both momentum and energy in the strong field
regime (in the weak field regime, it is switched off and con-
servation is preserved). The severity of this non-conservation
is related to the degree in which divergence errors are present
in the magnetic field, hence inadequate divergence control
(see below) usually manifests as a loss of momentum con-
servation in the code (see Tricco & Price 2012, for details).

2.10.8. Divergence cleaning

We adopt the ‘constrained’ hyperbolic/parabolic divergence
cleaning algorithm described by Tricco & Price (2012) and
Tricco et al. (2016a) to preserve the divergence-free condition
on the magnetic field. This formulation addresses a number
of issues with earlier formulations by Dedner et al. (2002)
and Price & Monaghan (2005).

The main idea of the scheme is to propagate divergence
errors according to a damped wave equation (Dedner et al.
2002; Price & Monaghan 2005). This is facilitated by intro-
ducing a new scalar field, ψ , which is coupled to the magnetic
field in (167) and evolved according to (168).

Tricco et al. (2016a) generalised the method of Dedner
et al. (2002) to include the case where the hyperbolic wave
speed, ch, varies in time and space. This is the approach we
use in PHANTOM. The resulting ‘generalised wave equation’
may be derived by combining the relevant term in (167) with
(168) to give (Tricco et al. 2016a)

d

dt

[
1√
ρch

d

dt

(
ψ√
ρch

)]
− ∇2ψ

ρ

+ d

dt

[
1√
ρch

(
ψ√
ρchτc

)]
= 0. (188)

When ch, ρ, τ c, and the fluid velocity are constant, this re-
duces to the usual damped wave equation in the form

∂2ψ

∂t2
− c2

h∇2ψ + 1

τc

∂ψ

∂t
= 0. (189)

The same equation holds for the evolution of ∇ · B itself, i.e.

∂2(∇ · B)

∂t2
− c2

h∇2(∇ · B) + 1

τc

∂ (∇ · B)

∂t
= 0, (190)

from which it is clear that ch represents the speed at which
divergence errors are propagated and τ c is the decay timescale
over which divergence errors are removed.

Tricco & Price (2012) formulated a ‘constrained’ SPMHD
implementation of hyperbolic/parabolic cleaning which
guarantees numerical stability of the cleaning. The constraint
imposed by Tricco & Price (2012) is that, in the absence of
damping, any energy removed from the magnetic field during
cleaning must be conserved by the scalar field, ψ . This en-
forces particular choices of numerical operators for ∇ · B and
∇ψ in (172) and (173), respectively, in particular that they
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form a conjugate pair of difference and symmetric derivative
operators. This guarantees that the change of magnetic en-
ergy is negative definite in the presence of the parabolic term
(see below).

In PHANTOM, we set the cleaning speed, ch, equal to the
fast magnetosonic speed [Equation (180)] so that its timestep
constraint is satisfied already by (72), as recommended by
Tricco & Price (2013). The decay timescale is set according
to

τ a
c ≡ ha

σcch,a
, (191)

where the dimensionless factor σ c sets the ratio of parabolic
to hyperbolic cleaning. This is set to σ c = 1.0 by default,
which was empirically determined by Tricco & Price (2012)
to provide optimal reduction of divergence errors in three
dimensions.

The divergence cleaning dissipates energy from the mag-
netic field at a rate given by (Tricco & Price 2012)

(
dE

dt

)
cleaning

= −
∑

a

ma
ψ2

a

μ0ρac2
h,aτ

a
c

. (192)

In general, this is so small compared to other dissipation terms
(e.g. resistivity for shock capturing) that it is not worth moni-
toring (Tricco et al. 2016a). This energy is not added as heat,
but simply removed from the calculation.

2.10.9. Monitoring of divergence errors and
over-cleaning

The divergence cleaning algorithm is guaranteed to either
conserve or dissipate magnetic energy, and cleans divergence
errors to a sufficient degree for most applications. However,
the onus is on the user to ensure that divergence errors are
not affecting simulation results. This may be monitored by
the dimensionless quantity

εdivB ≡ h|∇ · B|
|B| . (193)

The maximum and mean values of this quantity should be
used to check the fidelity of simulations that include magnetic
fields. A good rule-of-thumb is that the mean should remain
� 10−2 for the simulation to remain qualitatively unaffected
by divergence errors.

The cleaning wave speed can be arbitrarily increased to im-
prove the effectiveness of the divergence cleaning according
to

ch,a = fcleanva, (194)

where fclean is an ‘over-cleaning’ factor (by default, fclean =
1, i.e. no ‘over-cleaning’). Tricco et al. (2016a) showed that
increasing fclean leads to further reduction in divergence er-
rors, without affecting the quality of obtained results, but with
an accompanying computational expense associated with a
reduction in the timestep size.

2.11. Non-ideal magnetohydrodynamics

PHANTOM implements non-ideal MHD including terms for
Ohmic resistivity, ambipolar (ion-neutral) diffusion and the
Hall effect. Algorithms and tests are taken from Wurster,
Price, & Ayliffe (2014) and Wurster, Price, & Bate (2016).
See Wurster et al. (2016, 2017) and Wurster, Bate, & Price
(2018) for recent applications. Our formulation of non-ideal
SPMHD in PHANTOM is simpler than the earlier formula-
tion proposed by Hosking & Whitworth (2004) because we
consider only one set of particles, representing a mixture of
charged and uncharged species. Ours is similar to the imple-
mentation by Tsukamoto, Iwasaki, & Inutsuka (2013) and
Tsukamoto et al. (2015).

2.11.1. Equations of non-ideal MHD

We assume the strong coupling or ‘heavy ion’ approxima-
tion (see e.g. Wardle & Ng 1999; Shu et al. 2006; Pandey &
Wardle 2008), which neglects ion pressure and assumes ρ i

� ρn, where the subscripts i and n refer to the ionised and
neutral fluids, respectively. In this case, (167) contains three
additional terms in the form

d

dt

(
B
ρ

)
nimhd

= − 1

ρ
∇ ×

[
J
σe

+ J × B
ene

− (J × B) × B
γADρi

]
,

(195)
where σ e is the electrical conductivity, ne is the number den-
sity of electrons, e is the charge on an electron, and γ AD is
the collisional coupling constant between ions and neutrals
(Pandey & Wardle 2008). We write this in the form

d

dt

(
B
ρ

)
nimhd

= − 1

ρ
∇ ×

[
ηOJ + ηHJ × B̂

− ηAD(J × B̂) × B̂
]
, (196)

where B̂ is the unit vector in the direction of B such that
ηO, ηAD, and ηHall are the coefficients for resistive and am-
bipolar diffusion and the Hall effect, respectively, each with
dimensions of area per unit time.

To conserve energy, we require the corresponding resistive
and ambipolar heating terms in the thermal energy equation
in the form

(
du

dt

)
nimhd

= ηO

ρ
J2 + ηAD

ρ

[
J2 − (J · B̂)2

]
. (197)

The Hall term is non-dissipative, being dispersive rather than
diffusive, so does not enter the energy equation.

We currently neglect the ‘Biermann battery’ term (Bier-
mann 1950) proportional to ∇Pe/(ene) in our non-ideal MHD
implementation, both because it is thought to be negligible
in the interstellar medium (Pandey & Wardle 2008) and be-
cause numerical implementations can produce incorrect re-
sults (Graziani et al. 2015). This term is mainly important
in generating seed magnetic fields for subsequent dynamo
processes (e.g. Khomenko et al. 2017).
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2.11.2. Discrete equations

Our main constraint is that the numerical implementation of
the non-ideal MHD terms should exactly conserve energy,
which is achieved by discretising in the form (Wurster et al.
2014)

d

dt

(
B
ρ

)
nimhd,a

= −
∑

b

⎡
⎣ Da

�aρ2
a

× ∇aWab(ha)

+ Db

�bρ
2
b

× ∇aWab(hb)

⎤
⎦, (198)

where

D = −ηOJ − ηH(J × B̂) + ηAD[(J × B̂) × B̂]. (199)

The corresponding term in the energy equation is given by(
dua

dt

)
nimhd

= −Da · Ja

ρa
, (200)

where the magnetic current density is computed alongside
the density evaluation according to

J = 1

�aρa

∑
b

mb(Ba − Bb) × ∇aWab(ha). (201)

Non-ideal MHD therefore utilises a ‘two first derivatives’
approach, similar to the formulation of physical viscosity de-
scribed in Section 2.7.1. This differs from the ‘direct second
derivatives’ approach used for our artificial resistivity term,
and in previous formulations of physical resistivity (Bonafede
et al. 2011). In practice, the differences are usually minor. Our
main reason for using two first derivatives for non-ideal MHD
is that it is easier to incorporate the Hall effect and ambipolar
diffusion terms.

2.11.3. Computing the non-ideal MHD coefficients

To self-consistently compute the coefficients ηO, ηH, and
ηAD from the local gas properties, we use the NICIL library
(Wurster 2016) for cosmic ray ionisation chemistry and ther-
mal ionisation. We refer the reader to Wurster (2016) and
Wurster et al. (2016) for details, since this is maintained and
versioned as a separate package.

2.11.4. Timestepping

With explicit timesteps, the timestep is constrained in a sim-
ilar manner to other terms, using

�t = Cnimhdh2

max(ηO, ηAD, |ηH|) , (202)

where Cnimhd = 1/(2π ) by default. This can prove prohibitive,
so we employ the so-called ‘super-timestepping’ algorithm
from Alexiades, Amiez, & Gremaud (1996) to relax the sta-
bility criterion for the Ohmic and ambipolar terms (only). The
implementation is described in detail in Wurster et al. (2016).
Currently, the Hall effect is always timestepped explicitly in
the code.

2.12. Self-gravity

PHANTOM includes self-gravity between particles. By self-
gravity, we mean a solution to Poisson’s equation

∇2� = 4πGρ(r), (203)

where � is the gravitational potential and ρ represents a con-
tinuous fluid density. The corresponding acceleration term in
the equation of motion is

aselfgrav = −∇�. (204)

Since (203) is an elliptic equation, implying instant action,
it requires a global solution. This solution is obtained in
PHANTOM by splitting the acceleration into ‘short-range’ and
‘long-range’ contributions.

aa
selfgrav = aa

short + aa
long, (205)

where the ‘short-range’ interaction is computed by direct
summation over nearby particles, and the ‘long-range’ in-
teraction is computed by hierarchical grouping of particles
using the kd-tree.

The distance at which the gravitational acceleration is
treated as ‘short-’ or ‘long-range’ is determined for each
node–node pair, n–m, either by the tree opening criterion,

θ 2 <

(
sm

rnm

)2

, (206)

where 0 � θ � 1 is the tree opening parameter, or by nodes
whose smoothing spheres intersect,

r2
nm <

[
sn + sm + max(Rkernhn

max, Rkernhm
max)

]2
. (207)

Here, s is the node size, which is the minimum radius about
the centre of mass that contains all the particles in the node,
and hmax is the maximum smoothing length of the particles
within the node. Node pairs satisfying either of these cri-
teria have the particles contained within them added to a
trial neighbour list, used for computing the short-range grav-
itational acceleration. Setting θ = 0, therefore, leads to the
gravitational acceleration computed entirely as ‘short-range’,
that is, only via direction summation, while θ = 1 gives the
fastest possible, but least accurate, gravitational force evalu-
ation. The code default is θ = 0.5.

2.12.1. Short-range interaction

How to solve (203) on particles is one of the most widely
misunderstood problems in astrophysics. In SPH or colli-
sionless N-body simulations (i.e. stars and dark matter), the
particles do not represent physical point-mass particles, but
rather interpolation points in a density field that is assumed
to be continuous. Hence, one needs to first reconstruct the
density field on the particles, then solve (203) in a manner
which is consistent with this (e.g. Hernquist & Barnes 1990).

How to do this consistently using a spatially adaptive soft-
ening length was demonstrated by Price & Monaghan (2007),
since an obvious choice is to use the iterative kernel summa-
tion in (3) to both reconstruct the density field and set the
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softening length, i.e.6

ρa =
∑

b

mbWab(εa ); εa = hfac(ma/ρa )1/3. (208)

It can then be shown that the gravitational potential consistent
with this choice is given by

�a = −G
∑

b

mbφ(|ra − rb|, εa ), (209)

where φ is the softening kernel derived from the density ker-
nel via Poisson’s equation (Section 2.12.2). For a variable
smoothing length, energy conservation necessitates taking
an average of the kernels, i.e.

�a = −G
∑

b

mb

[
φab(εa ) + φab(εb)

2

]
. (210)

Price & Monaghan (2007) showed how the equations of mo-
tion could then be derived from a Lagrangian in order to take
account of the softening length gradient terms, giving equa-
tions of motion in the form

aa
selfgrav = −∇�a,

= −G
∑

b

mb

[
φ′

ab(εa ) + φ′
ab(εb)

2

]
r̂ab

− G

2

∑
b

mb

[
ζa

�ε
a

∇aWab(εa) + ζb

�ε
b

∇aWab(εb)

]
, (211)

where �ε and ζ are correction terms necessary for energy
conservation, with � as in (5) but with h replaced by ε, and
ζ defined as

ζa ≡ ∂εa

∂ρa

∑
b

mb
∂φab(εa)

∂εa
. (212)

The above formulation satisfies all of the conservation prop-
erties, namely conservation of linear momentum, angular mo-
mentum, and energy.

The short-range acceleration is evaluated for each particle
in the leaf node n by summing (211) over the trial neighbour
list obtained by node–node pairs that satisfy either of the cri-
teria in (206) or (207). For particle pairs separated outside the
softening radius of either particle, the short range interaction
reduces to

aa
short,r>Rkernε = −G

∑
b

mb
ra − rb

|ra − rb|3 . (213)

We use this directly for such pairs to avoid unnecessary eval-
uations of the softening kernel.

It is natural in SPH to set the gravitational softening length
equal to the smoothing length ε = h, since both derive from
the same density estimate. Indeed, Bate & Burkert (1997)
showed that this is a crucial requirement to resolve gas frag-
mentation correctly. For pure N-body calculations, Price &
Monaghan (2007) also showed that setting the (variable) soft-
ening length in the same manner as the SPH smoothing length

6 Strictly one should use the number density instead of the mass density when
computing the softening length via (208), but as we enforce equal masses
for each particle type in PHANTOM, the two methods are equivalent.

(Sections 2.1.3–2.1.4) results in a softening that is always
close to the ‘optimal’ fixed softening length (Merritt 1996;
Athanassoula et al. 2000; Dehnen 2001). In collisionless N-
body simulations, this has been found to increase the resolv-
ing power, giving results at lower resolution comparable to
those obtained at higher resolution with a fixed softening
length (Bagla & Khandai 2009; Iannuzzi & Dolag 2011).
It also avoids the problem of how to ‘choose’ the softening
length, negating the need for ‘rules of thumb’ such as the
one given by Springel (2005) where the softening length is
chosen to be 1/40 of the average particle spacing in the initial
conditions.

2.12.2. Functional form of the softening kernel

The density kernel and softening potential kernel are related
using Poisson’s equation (203), i.e.

W (r, ε) = 1

4πr2

∂

∂r

(
r2 ∂φ

∂r

)
, (214)

where r ≡ |r − r′|. Integrating this equation gives the soft-
ening kernels used for the force and gravitational potential.
As with the standard kernel functions (Section 2.1.5), we de-
fine the potential and force kernels in terms of dimensionless
functions of the scaled interparticle separation, q ≡ r/h, ac-
cording to

φ(r, ε) ≡ 1

ε
φ̃(q), (215)

φ′(r, ε) ≡ 1

ε2
φ̃′(q), (216)

where the dimensionless force kernel is obtained from the
density kernel f(q) (Section 2.1.5–2.1.6) using

φ̃′(q) = 4π

q2
Cnorm

∫
f (q′)q′2dq′, (217)

with the integration constant set such that φ̃′(q) = 1/q2 at q
= Rkern. The potential function is

φ̃(q) =
∫

φ̃′(q′)dq′. (218)

The derivative of φ with respect to ε required in (212) is also
written in terms of a dimensionless function, i.e.

∂φ(r, ε)

∂ε
≡ 1

ε2
h(q), (219)

where from differentiating (215), we have

h(q) = −φ̃(q) − qφ̃′(q). (220)

Included in the PHANTOM source code is a PYTHON script
using the SYMPY library to solve (217), (218), and (220)
using symbolic integration to obtain the softening kernel from
the density kernel. This makes it straightforward to obtain
the otherwise laborious expressions needed for each kernel
[expressions for the cubic spline kernel are in Appendix A
of Price & Monaghan (2007) and for the quintic spline in
Appendix A of Hubber et al. (2011)]. Figure 3 shows the
functional form of the softening kernels for each of the kernels
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Figure 3. Functional form of the softening kernel functions −φ(r, h) and
φ′(r, h) used to compute the gravitational force in PHANTOM, shown for
each of the available kernel functions w(r, h) (see Figure 1). Dotted lines
show the functional form of the unsoftened potential (−1/r) and force (1/r2)
for comparison.

available in PHANTOM. The kernel function f(q) is shown for
comparison (top row in each case).

2.12.3. Softening of gravitational potential due to stars,
dark matter, and dust

In the presence of collisionless components (e.g. stars, dark
matter, and dust), we require estimates of the density in order
to set the softening lengths for each component. We follow the
generalisation of the SPH density estimate to multi-fluid sys-
tems described by Laibe & Price (2012a) where the density
(and hence the softening length and �ε) for each component
is computed in the usual iterative manner (Section 2.1.4), but
using only neighbours of the same type (c.f. Section 2.13.3).
That is, the softening length for stars is determined based on
the local density of stars, the softening length for dark matter
is based on the local density of dark matter particles, and so
on. The gravitational interaction both within each type and
between different types is then computed using (211). This
naturally symmetrises the softening between different types,
ensuring that momentum, angular momentum, and energy
are conserved.

2.12.4. Long-range interaction

At long range, that is r > Rkernεa and r > Rkernεb, the second
term in (211) tends to zero since ζ = 0 for q � Rkern, while
the first term simply becomes 1/r2. Computing this via direct
summation would have an associated O(N2) computational
cost, thus we adopt the usual practice of using the kd-tree to
reduce this cost to O(N log N ).

Figure 4. Double hump smoothing kernels D(r, h) available in PHANTOM,
used in the computation of the dust–gas drag force.

The main optimisation in PHANTOM compared to a stan-
dard tree code (e.g. Hernquist & Katz 1989; Benz et al.
1990) is that we compute the long-range gravitational in-
teraction once per leaf-node rather than once per-particle
and that we use Cartesian rather than spherical multipole ex-
pansions to enable this (Dehnen 2000b; Gafton & Rosswog
2011).

The long-range acceleration on a given leaf node n consists
of a sum over distant nodes m that satisfy neither (206) nor
(207).

an =
∑

m

anm. (221)

The acceleration along the node centres, between a given pair
n and m, is given (using index notation) by

ai
nm = −GMm

r3
ri + 1

r4

(
r̂kQm

ik − 5

2
r̂iQm

)
, (222)

where ri ≡ xi
n − xi

m is the relative position vector, r̂ is the
corresponding unit vector, Mm is the total mass in node m,
Qm

i j is the quadrupole moment of node m, and repeated indices
imply summation. We define the following scalar and vector
quantities for convenience:

Q ≡ r̂i r̂ jQi j, (223)

Qi ≡ r̂ jQi j . (224)

Alongside the acceleration, we compute six independent
components of the first derivative matrix:

∂ai
n

∂r j
=
∑

m

∂ai
nm

∂r j
, (225)
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where

∂ai
nm

∂r j
= GMm

r3

[
3r̂i r̂ j − δi j

]

+ 1

r5

[
Qm

i j +
(

35

2
r̂i r̂ j − 5

2
δi j

)
Qm

− 5r̂iQm
j − 5r̂ jQm

i

]
, (226)

and ten independent components of the second derivatives,
given by

∂2ai
nm

∂r j∂rk
= −3GMm

r4

[
5r̂i r̂ j r̂k − δ jk r̂i − δik r̂ j − δi j r̂

k

]

+ 1

r6

[
− 5(r̂kQm

i j + r̂iQm
jk + r̂ jQm

ik )

− 315

2
r̂i r̂ j r̂kQm

+ 35

2

(
δi j r̂

k + δik r̂ j + δ jk r̂i
)Qm

+ 35
(
r̂ j r̂kQm

i + r̂i r̂kQm
j + r̂i r̂ jQm

k

)
− 5(δi jQm

k + δikQm
j + δ jkQm

i )

]
. (227)

The acceleration on each individual particle inside the leaf
node n is then computed using a second-order Taylor series
expansion of an

node about the node centre, i.e.

ai
long,a = ai

n + �x j ∂ai
n

∂r j
+ 1

2
�x j�xk ∂2ai

n

∂r j∂rk
, (228)

where �xi
a ≡ xi

a − xi
0 is the relative distance of each particle

from the node centre of mass. Pseudo-code for the resulting
force evaluation is shown in Figure A5.

The quadrupole moments are computed during the tree
build using

Qi j =
∑

a

ma

[
3�xi�x j − (�x)2δi j

]
, (229)

where the sum is over all particles in the node. Since Q is a
symmetric tensor, only six independent quantities need to be
stored (Qxx, Qxy, Qxz, Qyy, Qyz and Qzz).

The current implementation in PHANTOM is
O(Nleafnodes log Npart ) rather than the O(N ) treecode im-
plementation proposed by Dehnen (2000b), since we do not
currently implement the symmetric node–node interactions
required for O(N ) scaling. Neither does our treecode con-
serve linear momentum to machine precision, except when
θ = 0. Implementing these additional features would be
desirable.

2.13. Dust–gas mixtures

Modelling dust–gas mixtures is the first step in the ‘grand
challenge’ of protoplanetary disc modelling (Haworth et al.

2016). The public version of PHANTOM implements dust–gas
mixtures using two approaches. One models the dust and gas
as two separate types of particles (two-fluid), as presented in
Laibe & Price (2012a, 2012b), and the other, for small grains,
using a single type of particle that represents the combina-
tion of dust and gas together (one-fluid), as described in Price
& Laibe (2015a). Various combinations of these algorithms
have been used in our recent papers using PHANTOM, in-
cluding Dipierro et al. (2015, 2016), Ragusa et al. (2017),
and Tricco et al. (2017) (see also Hutchison et al. 2016).

In the two-fluid implementation, the dust and gas are
treated as two separate fluids coupled by a drag term with
only explicit timestepping. In the one-fluid implementation,
the dust is treated as part of the mixture, with an evolution
equation for the dust fraction.

2.13.1. Continuum equations

The two-fluid formulation is based on the continuum equa-
tions in the form:

∂ρg

∂t
+ (vg · ∇ )ρg = −ρg(∇ · vg), (230)

∂ρd

∂t
+ (vd · ∇ )ρd = −ρd(∇ · vd ), (231)

∂vg

∂t
+ (vg · ∇ )vg = −∇P

ρg
+ K

ρg
(vd − vg), (232)

∂vd

∂t
+ (vd · ∇ )vd = − K

ρd
(vd − vg), (233)

∂u

∂t
+ (vg · ∇ )u = − P

ρg
(∇ · vg) + 
drag

ρg
, (234)

where the subscripts g and d refer to gas and dust properties,
K is a drag coefficient and the drag heating is


drag ≡ K (vd − vg)2. (235)

The implementation in PHANTOM currently neglects any
thermal coupling between the dust and the gas (see Laibe
& Price 2012a), aside from the drag heating. Thermal effects
are important for smaller grains since they control the heating
and cooling of the gas (e.g. Dopcke et al. 2011). Currently,
the internal energy (u) of dust particles is simply set to zero.

2.13.2. Stopping time

The stopping time

ts = ρgρd

K (ρg + ρd )
(236)

is the characteristic timescale for the exponential decay of the
differential velocity between the two phases caused by the
drag. In the code, ts is by default specified in physical units,
which means that code units need to be defined appropriately
when simulating dust–gas mixtures.
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2.13.3. Two-fluid dust–gas in SPH

In the two-fluid method, the mixture is discretised into two
distinct sets of ‘dust’ and ‘gas’ particles. In the following, we
adopt the convention from Monaghan & Kocharyan (1995)
that subscripts a, b, and c refer to gas particles while i, j, and
k refer to dust particles. Hence, (230)–(231) are discretised
with a density summation over neighbours of the same type
(c.f. Section 2.12.3), giving

ρa =
∑

b

mbWab(ha); ha = hfact

(
ma

ρa

)1/3

, (237)

for a gas particle, and

ρi =
∑

j

m jWi j (hi ); hi = hfact

(
mi

ρi

)1/3

, (238)

for a dust particle. The kernel used for density is the same as
usual (Section 2.1.6). We discretise the equations of motion
for the gas particles, (232), using(

dva

dt

)
drag

= −3
∑

j

m j
va j · r̂a j

(ρa + ρ j )t s
a j

r̂a jDa j (ha), (239)

and for dust, (233), using(
dvi

dt

)
drag

= −3
∑

b

mb
vib · r̂ib

(ρi + ρb)t s
ib

r̂ibDib(hb), (240)

where D is a ‘double hump’ kernel, defined in Section 2.13.4.
The drag heating term in the energy equation, (234), is dis-
cretised using(

du

dt

)
drag

= 
drag

ρg
= 3

∑
j

m j
(va j · r̂a j )2

(ρa + ρ j )t s
a j

Da j (ha ). (241)

Notice that gas properties are only defined on gas particles
and dust properties are defined only on dust particles, greatly
simplifying the algorithm. Buoyancy terms caused by dust
particles occupying a finite volume (Monaghan & Kocharyan
1995; Laibe & Price 2012a) are negligible in astrophysics
because typical grain sizes (μm) are negligible compared to
simulation scales of ∼au or larger.

2.13.4. Drag kernels

Importantly, we use a ‘double-hump’ shaped kernel func-
tion D (Fulk & Quinn 1996) instead of the usual bell-
shaped kernel W when computing the drag terms. Defining
D in terms of a dimensionless kernel function as previously
(c.f. Section 2.1.5).

D(r, h) = σ

h3
g(q), (242)

then the double hump kernels are defined from the usual ker-
nels according to

g(q) = q2 f (q), (243)

where the normalisation constant σ is computed by enforcing
the usual normalisation condition∫

D(r, h)dV = 1. (244)

Figure 4 shows the functional forms of the double hump ker-
nels used in PHANTOM. Using double hump kernels for the
drag terms was found by Laibe & Price (2012a) to give a fac-
tor of 10 better accuracy at no additional cost. The key feature
is that these kernels are zero at the origin putting more weight
in the outer parts of the kernel where the velocity difference
is large. This also solves the problem of how to define the
unit vector in the drag terms (239)–(241)—it does not matter
since D is also zero at the origin.

2.13.5. Stopping time in SPH

The stopping time is defined between a pair of particles, using
the properties of gas and dust defined on the particle of the
respective type, i.e.

t s
a j = ρaρ j

Ka j (ρa + ρ j )
. (245)

The default prescription for the stopping time in PHANTOM

automatically selects a physical drag regime appropriate to
the grain size, as described below and in Laibe & Price
(2012b). Options to use either a constant K or a constant
ts between pairs are also implemented, useful for testing and
debugging (c.f. Section 5.9).

2.13.6. Epstein drag

To determine the appropriate physical drag regime, we use the
procedure suggested by Stepinski & Valageas (1996) where
we first evaluate the Knudsen number

Kn = 9λg

4sgrain
, (246)

where sgrain is the grain size and λg is the gas mean free path
(see Section 2.13.8, below, for how this is evaluated). For Kn

� 1, the drag between a particle pair is computed using the
generalised formula for Epstein drag from Kwok (1975), as
described in Paardekooper & Mellema (2006) and Laibe &
Price (2012b), giving

Ka j = ρa
gρ

j
d

4

3

√
8π

γ

s2
grain

mgrain
ca

s f , (247)

where

mgrain ≡ 4

3
πρgrains3

grain, (248)

and ρgrain is the intrinsic grain density, which is 3 g/cm3 by
default. The variable f is a correction for supersonic drift
velocities given by (Kwok 1975)

f ≡
√

1 + 9π

128

�v2

c2
s

, (249)

where �v ≡ |vd − vg| = v j
d − va

g . The stopping time is
therefore

ts = ρgrainsgrain

ρcs f

√
πγ

8
, (250)

where ρ ≡ ρd + ρg. This formula, (250), reduces to the
standard expression for the linear Epstein regime in the limit
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Figure 5. Dependence of the drag stopping time ts on differential Mach
number, showing the increased drag (decrease in stopping time) as the ve-
locity difference between dust and gas increases. The black line shows the
analytic approximation we employ [Equation (250)] which may be com-
pared to the red line showing the exact expression from Epstein (1924). The
difference is less than 1% everywhere.

where the drift velocity is small compared to the sound speed
(i.e. f → 1). Figure 5 shows the difference between the above
simplified prescription and the exact expression for Epstein
drag (Epstein 1924; c.f. equations (11) and (38) in Laibe &
Price 2012b) as a function of �v/cs, which is less than 1%
everywhere.

2.13.7. Stokes drag

For Kn < 1, we adopt a Stokes drag prescription, describing
the drag on a sphere with size larger than the mean free path
of the gas (Fan & Zhu 1998). Here, we use (Laibe & Price
2012b)

Ka j = ρa
gρ

j
d

1

2
CD

πs2
grain

mgrain
|�v|, (251)

where the coefficient CD is given by (Fassio & Probstein
1970) (see Whipple 1972; Weidenschilling 1977)

CD =
⎧⎨
⎩

24R−1
e , Re < 1,

24R−0.6
e , 1 < Re < 800,

0.44, Re > 800,

(252)

where Re is the local Reynolds number around the grain

Re ≡ 2sgrain|�v|
ν

, (253)

and ν is the microscopic viscosity of the gas (see below, not
to be confused with the disc viscosity). Similar formulations
of Stokes drag can be found elsewhere (see e.g. discussion in
Woitke & Helling 2003 and references therein). The stopping

time in the Stokes regime is therefore given by

ts = 8ρgrainsgrain

3ρ|�v|CD
, (254)

where it remains to evaluate ν and λg.

2.13.8. Kinematic viscosity and mean free path

We evaluate the microscopic kinematic viscosity, ν, assuming
gas molecules interact as hard spheres, following Chapman
& Cowling (1970). The viscosity is computed from the mean
free path and sound speed according to

ν =
√

2

πγ
csλg, (255)

with the mean free path defined by relating this expression to
the expression for the dynamic viscosity of the gas (Chapman
& Cowling 1970) given by

μν = 5m

64σs

√
π

γ
cs, (256)

with μν = ρgν, giving

λg = 5π

64
√

2

1

ngσs
, (257)

where ng = ρg/m is the number density of molecules and σ s

is the collisional cross section. To compute this, PHANTOM

currently assumes the gas is molecular Hydrogen, such that
the mass of each molecule and the collisional cross section
are given by

m = 2mH, (258)

σs = 2.367 × 10−15cm2. (259)

2.13.9. Stokes/Epstein transition

At the transition between the two regimes, assuming Re < 1,
(254) reduces to

ts = 2ρgrains2
grain

9ρcsλg

√
πγ

2
, (260)

which is the same as the Epstein drag in the subsonic regime
when λg = 4sgrain/9, i.e. Kn = 1. That this transition is indeed
continuous in the code is demonstrated in Figure 6, which
shows the transition from Epstein to Stokes drag and also
through each of the Stokes regimes in (252) by varying the
grain size while keeping the other parameters fixed. For sim-
plicity, we assumed a fixed �v = 0.01cs in this plot, even
though in general one would expect �v to increase with stop-
ping time [see Equation (270)].

2.13.10. Self-gravity of dust

With self-gravity turned on, dust particles interact in the same
way as stars or dark matter (Section 2.12.3), with a softening
length equal to the smoothing length determined from the
density of neighbouring dust particles. Dust particles can be
accreted by sink particles (Section 2.8.2), but a sink cannot
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Figure 6. Drag stopping time ts (in years) as a function of grain size, show-
ing the continuous transition between the Epstein and Stokes drag regimes.
The example shown assumes fixed density ρ = 10−13g/cm3 and sound speed
cs = 6 × 104 cm/s with subsonic drag �v = 0.01cs and material density
ρgrain = 3g/cm3.

currently be created from dust particles (Section 2.8.4). There
is currently no mechanism in the code to handle the collapse
of dust to form a self-gravitating object independent of the
gas.

2.13.11. Timestep constraint

For the two-fluid method, the timestep is constrained by the
stopping time according to

�t a
drag = min

j
(t a j

s ). (261)

This requirement, alongside the spatial resolution require-
ment h � csts (Laibe & Price 2012a), means the two-fluid
method becomes both prohibitively slow and increasingly
inaccurate for small grains. In this regime, one should switch
to the one-fluid method, as described below.

2.13.12. Continuum equations: One-fluid

In Laibe & Price (2014a), we showed that the two-fluid equa-
tions, (230)–(234), can be rewritten as a single fluid mixture
using a change of variables given by

ρ ≡ ρg + ρd, (262)

ε ≡ ρd/ρ, (263)

v ≡ ρgvg + ρdvd

ρg + ρd
, (264)

�v ≡ vd − vg, (265)

where ρ is the combined density, ε is the dust fraction, v is
the barycentric velocity, and �v is the differential velocity
between the dust and gas.

In Laibe & Price (2014a), we derived the full set of evo-
lution equations in these variables, and in Laibe & Price
(2014c), implemented and tested an algorithm to solve these
equations in SPH. However, using a fluid approximation can-
not properly capture the velocity dispersion of large grains, as
occurs for example when large planetesimals stream simul-
taneously in both directions through the midplane of a pro-
toplanetary disc. For this reason, the one-fluid equations are
better suited to treating small grains, where the stopping time
is shorter than the computational timestep. In this limit, we
employ the ‘terminal velocity approximation’ (e.g. Youdin &
Goodman 2005) and the evolution equations reduce to (Laibe
& Price 2014a; Price & Laibe 2015a)

dρ

dt
= −ρ(∇ · v), (266)

dv

dt
= −∇P

ρ
+ aext, (267)

dε

dt
= − 1

ρ
∇ · [ε(1 − ε)ρ�v] , (268)

du

dt
= −P

ρ
(∇ · v) + ε(�v · ∇ )u, (269)

where

�v ≡ ts

(
ad − ag

)
, (270)

where ad and ag refers to any acceleration acting only on the
dust or gas phase, respectively. For the simple case of pure
hydrodynamics, the only difference is the pressure gradient,
giving

�v ≡ ts
∇P

ρg
= ts

(1 − ε)

∇P

ρ
, (271)

such that (268) becomes

dε

dt
= − 1

ρ
∇ · (εts∇P) . (272)

Importantly, the one-fluid dust algorithm does not result
in any heating term in du/dt due to drag, because this term is
O(�v2) and thus negligible (Laibe & Price 2014a).

2.13.13. Visualisation of one-fluid results

Finally, when visualising results of one-fluid calculations,
one must reconstruct the properties of the dust and gas in
post-processing. We use

ρg = (1 − ε)ρ, (273)

ρd = ερ, (274)

vg = v − ε�v, (275)

vd = v + (1 − ε)�v. (276)
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To visualise the one-fluid results in a similar manner to those
from the two-fluid method, we reconstruct a set of ‘dust’ and
‘gas’ particles with the same positions but with the respec-
tive properties of each type of fluid particle copied onto them.
We compute �v from (271) using the pressure gradient com-
puted using (34), multiplied by the stopping time and the gas
fraction. See Price & Laibe (2015a) for more details.

2.13.14. One-fluid dust–gas implementation

Our implementation of the one-fluid method in PHANTOM

follows Price & Laibe (2015a) with a few minor changes and
corrections7. In particular, we use the variable s = √

ερ de-
scribed in Appendix B of Price & Laibe (2015a) to avoid
problems with negative dust fractions. The evolution equa-
tion (268) expressed in terms of s is given by

ds

dt
= − 1

2s
∇ ·

(
ρgρd

ρ
�v

)
− s

2
(∇ · v), (277)

which for the case of hydrodynamics becomes

ds

dt
= − 1

2s
∇ ·

(
s2

ρ
ts∇P

)
− s

2
(∇ · v),

= −1

2
∇ ·

(
s

ρ
ts∇P

)
− ts

2ρ
∇P · ∇s − s

2
(∇ · v). (278)

The SPH discretisation of this equation is implemented in the
form

dsa

dt
= −1

2

∑
b

mbsb

ρb

(
ts,a

ρa
+ ts,b

ρb

)
(Pa − Pb)

F ab

|rab|

+ sa

2ρa�a

∑
b

mbvab · ∇aWab(ha), (279)

where F ab ≡ 1
2 [Fab(ha) + Fab(hb)]. The thermal energy equa-

tion, (269), takes the form

du

dt
= −P

ρ
(∇ · v) + s2ts

ρρg
∇P · ∇u, (280)

the first term of which is identical to (35) and the second term
of which is discretised in PHANTOM according to

− ρa

2ρ
g
a

∑
b

mb
sasb

ρaρb

(
ts,a

ρa
+ ts,b

ρb

)
(Pa − Pb)(ua − ub)

F ab

|rab| .
(281)

2.13.15. Conservation of dust mass

Conservation of dust mass with the one-fluid scheme is in
principle exact because (Price & Laibe 2015a)

d

dt

(∑
a

ma

ρa
s2

a

)
=
∑

a

ma

(
2sa

ρa

dsa

dt
− s2

a

ρ2
a

dρa

dt

)
= 0. (282)

In practice, some violation of this can occur because although
the above algorithm guarantees positivity of the dust fraction,
it does not guarantee that ε remains less than unity. Under this

7 One should be aware that we derived several of the above equations in-
correctly in Appendix B of Price & Laibe (2015a) (see Price & Laibe
2015b). The above equations are the correct versions and reflect what is
implemented in PHANTOM.

circumstance, which occurs only rarely, we set ε = max (ε,
1) in the code. However, this violates the conservation of dust
mass. This specific issue has been recently addressed in detail
in the study by Ballabio et al. (2018). Therefore, in the latest
code, there are two main changes as follows:

• Rather than evolve s = √
ερ, in the most recent code,

we instead evolve a new variable s′ = √
ρd/ρg. This pre-

vents the possibility of ε > 1.
• We limit the stopping time such that the timestep from

the one fluid algorithm does not severely restrict the
computational performance.

For details of these changes, we refer the reader to Ballabio
et al. (2018).

2.13.16. Conservation of energy and momentum

Total energy with the one-fluid scheme can be expressed via

E =
∑

a

ma

[
1

2
v2

a + (1 − εa )ua

]
, (283)

which is conserved exactly by the discretisation since

∑
a

ma

[
va · dva

dt
+ (1 − εa )

dua

dt

− ua

(
2sa

ρa

dsa

dt
− s2

a

ρ2
a

dρa

dt

)]
= 0. (284)

Conservation of linear and angular momentum also hold since
the discretisation of the momentum equation is identical to
the hydrodynamics algorithm.

2.13.17. Timestep constraint

For the one-fluid method, the timestep is constrained by the
inverse of the stopping time according to

�t a
drag = Cforce

h2

εtsc2
s

. (285)

This becomes prohibitive precisely in the regime where the
one-fluid method is no longer applicable (ts > tCour; see Laibe
& Price 2014a), in which case one should switch to the two-
fluid method instead. There is currently no mechanism to
automatically switch regimes, though this is possible in prin-
ciple and may be implemented in a future code version.

2.14. Interstellar medium (ISM) physics

2.14.1. Cooling function

The cooling function in PHANTOM is based on a set of FOR-
TRAN modules written by Glover & Mac Low (2007), up-
dated further by Glover et al. (2010). It includes cooling from
atomic lines (H I), molecular excitation (H2), fine structure
metal lines (Si I, Si II, O I, C I, and C II), gas–dust collisions,
and polycyclic aromatic hydrocarbon (PAH) recombination
(see Glover & Mac Low 2007 for references on each process).
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Table 2. Heating and cooling processes in the PHANTOM cooling module.

Process Description Reference

H I (atomic) cooling Electron collisional excitation/ Sutherland & Dopita (1993)
resonance line emission

H2 (molecular) cooling Vibrational/rotational excitation cooling Le Bourlot et al. (1999)
by collisions with H, He and H2

Fine structure cooling C II, Si II, and O I collisions with Glover & Jappsen (2007)
H, H2, free e−, and H+

CO rotational cooling CO collisions with H2, H, and free e− Neufeld & Kaufman (1993),
Neufeld, Lepp, & Melnick (1995)

Recombination cooling Free e− recombining with ionised gas Wolfire et al. (2003)
on PAH and dust grain surfaces

Gas-grain cooling Dust–gas collisional heat transfer Hollenbach & McKee (1989)
Cosmic-ray heating Energy deposition associated with Goldsmith & Langer (1978)

cosmic ray ionisation
Photo-electric heating UV e− excitation from dust and PAH Wolfire et al. (2003)
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Figure 7. Emissivity, 
E (erg s−1 cm3) as a function of temperature for the
ISM cooling assuming default abundances appropriate for the warm neutral
medium (WNM). Note that as we treat cooling from atomic hydrogen using
a full non-equilibrium treatment, the behaviour of 
E close to 104 K is
highly sensitive to the electron fraction, which in the case shown here is
much smaller than it would be in collisional ionisation equilibrium. Values
of 
E below 104 K depend strongly on the current chemical state of the gas
and are not shown in this plot.

Heating is provided by cosmic rays and the photoelectric ef-
fect. The strength of the cooling is a function of the tempera-
ture, density, and various chemical abundances. Table 2 sum-
marises these various heating and cooling processes. Figure 7
shows the resulting emissivity 
E(T) for temperatures be-
tween 104 and 108 K. The cooling rate per unit volume is
related to the emissivity according to


cool ≡ n2
E(T ) erg s−1cm−3, (286)

where n is the number density. The cooling in the energy
equation corresponds to(

du

dt

)
cool

= −
cool

ρ
. (287)

Table 3. Default fractional abundances
for C, O, Si, and e− in the ISM cooling and
chemistry modules. Abundances are taken
from Sembach et al. (2000) appropriate for
the warm neutral medium (WNM). These
are lower than solar because it is assumed
some fraction of the metals are locked up
in dust rather than being available in the
gas phase.

Element Abundance

C 1.4 × 10−4

O 3.2 × 10−4

Si 1.5 × 10−5

e− 2 × 10−4

These routines were originally adapted for use in SPHNG

(Dobbs et al. 2008) and result in an approximate two-phase
ISM with temperatures of 100 K and 10 000 K. Note that
the cooling depends on a range of parameters (dust-to-gas
ratio, cosmic ray ionisation rate, etc.), many of which can
be specified at runtime. Table 3 lists the default abundances,
which are set to values appropriate for the Warm Neutral
Medium taken from Sembach et al. (2000). The abundances
listed in Table 3, along with the dust-to-gas ratio, are the only
metallicity-dependent parameters that can be changed at run-
time. An option for cooling appropriate to the zero metallicity
early universe is also available.

2.14.2. Timestep constraint from cooling

When cooling is used, we apply an additional timestep con-
straint in the form

�t a
cool = Ccool

∣∣∣∣ u

(du/dt )cool

∣∣∣∣ , (288)

where Ccool = 0.3 following Glover & Mac Low (2007). The
motivation for this additional constraint is to not allow the
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Table 4. Processes and references for the Phantom ISM chemistry module tracing the evolution
of H, H2, and CO.

Reaction Description Reference

H+ + e− + grain → H + grain Grain surface recombination Weingartner & Draine (2001)
H+ + e− → H + γ Gas-phase recombination Ferland et al. (1992)
H + e− → H+ + 2e− e− collisional ionisation Abel et al. (1997)
H + c.r. → H+ + e− Cosmic ray ionisation Glover & Mac Low (2007)
H + H + grain → H2 + grain Grain surface formation Bergin et al. (2004)
H2 + γ → 2H UV photodissociation Draine & Bertoldi (1996)
H2 + c.r. → H+

2 + e− Cosmic ray ionisation∗ Bergin et al. (2004)
C+ + H2 → CH+

2 + γ Radiative association Nelson & Langer (1997)
CH+

2 + various → CHX + various Rapid neutralisation† –
CHZ + O → CO + H Gas phase formation –
CHZ + γ → C + H UV photodissociation –
CO + γ → C+ + O + e− UV photodissociation†† –

∗ H+
2 ions produced by cosmic ray ionisation of H2 are assumed to dissociatively recombine to H + H, so that

the effective reaction in the code is actually H2 + c.r. → H + H.
† Process is intermediate and is assumed rather than fully represented.
†† C is not present in our chemistry, but is assumed to rapidly photoionise to C+.

cooling to completely decouple from the other equations in
the code (Suttner et al. 1997), and to avoid cooling insta-
bilities that may be generated by numerical errors (Ziegler,
Yorke, & Kaisig 1996).

Cooling is currently implemented only with explicit
timestepping of (287), where u is evolved alongside veloc-
ity in our leapfrog timestepping scheme. However, the sub-
stepping scheme described below for the chemical network
(Section 2.14.4) is also used to update the cooling on the
chemical timestep, meaning that the cooling can evolve on
a much shorter timestep than the hydrodynamics when it is
used in combination with chemistry, which it is by default.
Implementation of an implicit cooling method, namely the
one proposed by Townsend (2009), is under development.

2.14.3. Chemical network

A basic chemical network is included for ISM gas that evolves
the abundances of H, H+, e−, and the molecules H2 and CO.
The number density of each species, nX, is evolved using
simple rate equations of the form

dnX

dt
= CX − DX nX , (289)

where CX and DX are creation and destruction coefficients for
each species. In general, CX and DX are functions of density,
temperature, and abundances of other species. The number
density of each species, X, is time integrated according to

nX (t + �t ) = nX (t ) + dnX

dt
�t . (290)

There are in effect only three species to evolve (H, H2, and
CO), as the H+ and e− abundances are directly related to the
H abundance.

The chemistry of atomic hydrogen is effectively the same
as in Glover & Mac Low (2007). H is created by recombi-
nation in the gas phase and on grain surfaces, and destroyed
by cosmic ray ionisation and free electron collisional ioni-

sation. H2 chemistry is based on the model of Bergin et al.
(2004), with H2 created on grain surfaces and destroyed by
photo-dissociation and cosmic rays (see Dobbs et al. 2008
for computational details).

The underlying processes behind CO chemistry are more
complicated, and involve many intermediate species in creat-
ing CO from C and O by interactions with H species. Instead
of following every intermediate step, we use the model of
Nelson & Langer (1997) (see Pettitt et al. 2014 for computa-
tional details). CO is formed by a gas phase reaction from an
intermediate CHZ step after an initial reaction of C+ and H2

(where Z encompasses many similar type species). CO and
CHZ are subject to independent photo-destruction, which far
outweighs the destruction by cosmic rays. Abundances of C+

and O are used in the CO chemistry, and their abundance is
simply the initial value excluding what has been used up in
CO formation. Glover & Clark (2012) test this and a range
of simpler and more complicated models, and show that the
model adopted here is sufficient for large-scale simulations
of CO formation, although it tends to over-produce CO com-
pared to more sophisticated models.

The details for each reaction in the H, H2, and CO chem-
istry are given in Table 4, with relevant references for each
process.

2.14.4. Timestep constraint from chemistry

H chemistry is evolved on the cooling timestep, since the
timescale on which the H+ abundance changes significantly
is generally comparable to or longer than the cooling time.
This is not true for H2 and CO. Instead, these species are
evolved using a chemical timestepping criterion, where (290)
is subcycled during the main time step at the interval �tchem.
If the abundance is decreasing, then the chemical timestep is

�tchem = − 1

10

nX

(CX − DX nX )
, (291)
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i.e., 10% of the time needed to completely deplete the species.
If the abundance is increasing,

�tchem = �thydro

200
, (292)

where �thydro is the timestep size for the hydrodynamics,
and was found to be an appropriate value by test simula-
tions. These updated abundances feed directly into the rel-
evant cooling functions. Although the cooling function in-
cludes Si I and C I, the abundances of these elements are set
to zero in the current chemical model.

2.15. Particle injection

We implement several algorithms for modelling inflow
boundary conditions (see Toupin et al. 2015a, 2015b for re-
cent applications) This includes injecting SPH particles in
spherical winds from sink particles (both steady and time de-
pendent), in a steady Cartesian flow and for injection at the
L1 point between a pair of sink particles to simulate the for-
mation of accretion discs by Roche Lobe overflow in binary
systems.

3 INITIAL CONDITIONS

3.1. Uniform distributions

The simplest method for initialising the particles is to set them
on a uniform Cartesian distribution. The lattice arrangement
can be cubic (equal particle spacing in each direction, �x =
�y = �z), close-packed (�y = √

3/4�x, �z = √
6/3�x,

repeated every three layers in z), hexagonal close-packed (as
for close-packed but repeated every two layers in z), or uni-
form random. The close-packed arrangements are the closest
to a ‘relaxed’ particle distribution, but require care with peri-
odic boundary conditions due to the aspect ratio of the lattice.
The cubic lattice is not a relaxed arrangement for the parti-
cles, but is convenient and sufficient for problems where the
initial conditions are quickly erased (e.g. driven turbulence).
For problems where initial conditions matter, it is usually
best to relax the particle distribution by evolving the simula-
tion for a period of time with a damping term (Section 3.6).
This is the approach used, for example, in setting up stars in
hydrostatic equilibrium (Section 3.4).

3.2. Stretch mapping

General non-uniform density profiles may be set up using
‘stretch mapping’ (Herant 1994). The procedure for spherical
distributions is the most commonly used (e.g. Fryer, Hunger-
ford, & Rockefeller 2007; Rosswog & Price 2007; Rosswog,
Ramirez-Ruiz, & Hix 2009), but we have generalised the
method for any density profile that is along one coordinate
direction (e.g. Price & Monaghan 2004b). Starting with parti-
cles placed in a uniform distribution, the key is that a particle
should keep the same relative position in the mass distribu-

tion. For each particle with initial coordinate x0 in the relevant
coordinate system, we solve the equation

f (x) = M(x)

M(xmax)
− x0 − xmin

(xmax − xmin )
= 0, (293)

where M(x) is the desired density profile integrated along the
relevant coordinate direction, i.e.

M(x) ≡
∫ x

xmin

ρ(x′)dS(x′)dx′, (294)

where the area element dS(x′) depends on the geometry and
the chosen direction, given by

dS(x) =
⎧⎨
⎩

1 Cartesian or cyl./sph. along φ, θ or z,
2πx cylindrical along r,
4πx2 spherical along r.

(295)
We solve (293) for each particle using Newton–Raphson it-
erations

x = x − f (x)

f ′(x)
, (296)

where

f ′(x) = ρ(x)dS(x)

M(xmax)
, (297)

iterating until |f(x)| < 10−9. The Newton–Raphson itera-
tions have second-order convergence, but may fail in extreme
cases. Therefore, if the root finding has failed to converge af-
ter 30 iterations, we revert to a bisection method, which is
only first-order but guaranteed to converge.

Stretch mapping is implemented in such a way that only the
desired density function need be specified, either as through
an analytic expression (implemented as a function call) or
as a tabulated dataset. Since the mass integral in (294) may
not be known analytically, we compute this numerically by
integrating the density function using the trapezoidal rule.

The disadvantage of stretch mapping is that in spherical or
cylindrical geometry it produces defects in the particle dis-
tribution arising from the initial Cartesian distribution of the
particles. In this case, the particle distribution should be re-
laxed into a more isotropic equilibrium state before starting
the simulation. For stars, for example, this may be done by
simulating the star in isolation with artificial damping added
(Section 3.6). Alternative approaches are to relax the simula-
tion using an external potential chosen to produce the desired
density profile in equilibrium (e.g. Zurek & Benz 1986; Na-
gasawa, Nakamura, & Miyama 1988) or to iteratively ‘cool’
the particle distribution to generate ‘optimal’ initial condi-
tions (Diehl et al. 2015).

3.3. Accretion discs

3.3.1. Density field

The accretion disc setup module uses a Monte Carlo particle
placement (details in Section A.7) in cylindrical geometry to
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construct density profiles of the form

ρ(x, y, z) = �0 fs

(
R

Rin

)−p

exp

(−z2

2H 2

)
, (298)

where �0 is the surface density at R = Rin (if fs = 1), H ≡ cs/�
is the scale height (with � ≡

√
GM/R3), p is the power-law

index (where p = 3/2 by default following Lodato & Pringle
2007), and fs ≡ (1 − √

Rin/R) is an optional factor to smooth
the surface density near the inner disc edge.

Several authors have argued that a more uniform par-
ticle placement is preferable for setting up discs in SPH
(Cartwright, Stamatellos, & Whitworth 2009; Vanaverbeke
et al. 2009). This may be important if one is interested in tran-
sient phenomena at the start of a simulation, but otherwise the
particle distribution settles to a smooth density distribution
within a few orbits (c.f. Lodato & Price 2010).

3.3.2. Velocity field

The orbital velocities of particles in the disc are set by solving
the equation for centrifugal equilibrium, i.e.

v2
φ = GM

R
− fp − 2vφ fBH, (299)

where the correction from radial pressure gradients is given
by

fp = −c2
s (R)

(
3

2
+ p + q + 1

2 fs

)
, (300)

where q is the index of the sound speed profile such that cs(R)
= cs, in(R/Rin)−q and fBH is a correction used for discs around
a spinning black hole (Nealon et al. 2015)

fBH = −2a

c3

(
GM

R

)2

, (301)

where a is the black hole spin parameter. The latter as-
sumes Lense–Thirring precession is implemented as in
Section 2.4.5. Where self-gravity is used, M is the en-
closed mass at a given radius M( < R), otherwise it is
simply the mass of the central object. Using the enclosed
mass for the self-gravitating case is an approximation since
the disc is not spherically symmetric, but the difference is
small and the disc relaxes quickly into the true equilib-
rium. Equation (299) is a quadratic for vφ which we solve
analytically.

3.3.3. Warps

Warps are applied to the disc (e.g. Lodato & Price 2010;
Nealon et al. 2015) by rotating the particles about the y-axis
by the inclination angle i [in general, a function of radius i ≡
i(R)], according to

x′ = x cos(i) + z sin(i), (302)

y′ = y, (303)

z′ = −x sin(i) + z cos(i), (304)

with the velocities similarly adjusted using

v ′
x = vx cos(i) + vz sin(i), (305)

v ′
y = vy, (306)

v ′
z = −vx sin(i) + vz cos(i). (307)

3.3.4. Setting an α-disc viscosity

The simplest approach to mimicking an α-disc viscosity in
SPH is to employ a modified shock viscosity term, setting the
desired αSS according to (124) as described in more detail
in Section 2.6.1. Since the factor 〈h〉/H is dependent both
on resolution and temperature profile (i.e. the q-index), it is
computed in the initial setup by taking the desired αSS as
input in order to give the required αAV. Although this does
not guarantee that αSS is constant with radius and time (this
is only true with specific choices of p and q and if the disc is
approximately steady), it provides a simple way to prescribe
the disc viscosity.

3.4. Stars and binary stars

We implement a general method for setting up ‘realistic’ stel-
lar density profiles, based on either analytic functions (e.g.
polytropes) or tabulated data files output from stellar evolu-
tion codes [see Iaconi et al. (2017) for a recent application of
this to common envelope evolution].

The basic idea is to set up a uniform density sphere of
particles and set the density profile by stretch mapping (see
above). The thermal energy of the particles is set so that the
pressure gradient is in hydrostatic equilibrium with the self-
gravity of the star for the chosen EOS. We then relax the star
into equilibrium for several dynamical times using a damping
parameter (Section 3.6), before re-launching the simulation
with the star on an appropriate orbit.

For simulating red giants, it is preferable to replace the core
of the star by a sink particle (see Passy et al. 2012; Iaconi et al.
2017). When doing so, one should set the accretion radius of
the sink to zero and set a softening length for the sink particle
consistent with the original core radius (see Section 2.8.1).

3.5. Galactic initial conditions

In addition to simulating ISM gas in galactic discs with an-
alytic stellar potentials, one may represent bulge-halo-disc
components by collisionless N-body particles (see Section
2.12.3). To replace a potential with a resolved system re-
quires care with the initial conditions (i.e. position, veloc-
ity, and mass). If setup incorrectly the system will expe-
rience radial oscillations and undulations in the rotation
curve, which will have strong adverse effects on the gas
embedded within. We include algorithms for initialising the
static-halo models of Pettitt et al. (2015) (which used the
SPHNG SPH code). These initial conditions require the NFW
profile to be active and care must be taken to ensure the
mass and scale lengths correspond to the rotation curve
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used to generate the initial conditions. Other codes may al-
ternatively be used to seed multi-component N-body disc
galaxies (e.g. Kuijken & Dubinski 1995a; Boily, Kroupa, &
Peñarrubia-Garrido 2001; McMillan & Dehnen 2007; Yurin
& Springel 2014), including MAGALIE (Boily et al. 2001)
and GALIC (Yurin & Springel 2014) for which we have im-
plemented format readers.

The gas in galactic scale simulations can be setup either
in a uniform surface density disc, or according to the Milky
Way’s specific surface density. The latter is based on the radial
functions given in Wolfire et al. (1995). As of yet, we have not
implemented a routine for enforcing hydrostatic equilibrium
(Springel, Di Matteo, & Hernquist 2005; Wang et al. 2010),
this may be included in a future update.

3.6. Damping

To relax a particle distribution into equilibrium, we adopt
the standard approach (e.g. Gingold & Monaghan 1977) of
adding an external acceleration in the form

aa
ext,damp = − fdv, (308)

such that a percentage of the kinetic energy is removed each
timestep. The damping parameter, fd, is specified by the user.
A sensible value for fd is of order a few percent (e.g. fd = 0.03)
such that a small fraction of the kinetic energy is removed over
a Courant timescale.

4 SOFTWARE ENGINEERING

No code is completely bug free (experience is the name ev-
eryone gives to their mistakes; Wilde 1892). However, we
have endeavoured to apply the principles of good software
engineering to PHANTOM. These include

1. a modular structure,
2. unit tests of important modules,
3. nightly builds,
4. automated nightly tests,
5. automated code maintenance scripts,
6. version control with GIT,
7. wiki documentation, and
8. a bug database and issue tracker.

Together these simplify the maintenance, stability, and us-
ability of the code, meaning that PHANTOM can be used direct
from the development repository without fear of regression,
build failures, or major bugs.

Specific details of how the algorithms described in
Section 2 are implemented are given in the Appendix. Details
of the test suite are given in Appendix A.9.

5 NUMERICAL TESTS

Unless otherwise stated, we use the M6 quintic spline kernel
with hfac = 1.0 by default, giving a mean neighbour number

of 113 in 3D. Almost all of the test results are similar when
adopting the cubic spline kernel with hfac = 1.2 (requiring
≈58 neighbours), apart from the tests with the one-fluid dust
method where the quintic is required. Since most of the al-
gorithms used in PHANTOM have been extensively tested
elsewhere, our aim is merely to demonstrate that the imple-
mentation in the code is correct, and to illustrate the typical
results that should be achieved on these tests when run by the
user. The input files used to run the entire test suite shown in
the paper are available on the website, so it should be straight-
forward for even a novice user to reproduce our results.

Unless otherwise indicated, we refer to dimensionless L1

and L2 norms when referencing errors, computed according
to

L1 ≡ 1

NC0

N∑
i=1

|yi − yexact|, (309)

L2 ≡
√√√√ 1

NC0

N∑
i=1

|yi − yexact|2, (310)

where yexact is the exact or comparison solution interpolated
or computed at the location of each particle i and N is the num-
ber of points. The norms are the standard error norms divided
by a constant, which we set to the maximum value of the ex-
act solution within the domain, C0 = max (yexact), in order to
give a dimensionless quantity. Otherwise quoting the absolute
value of L1 or L2 is meaningless. Dividing by a constant has
no effect when considering convergence properties. These are
the default error norms computed by SPLASH (Price 2007).

Achieving formal convergence in SPH is more complicated
than in mesh-based codes where linear consistency is guaran-
teed (see Price 2012a). The best that can be achieved with reg-
ular (positive, symmetric) kernels is second-order accuracy
away from shocks provided the particles remain well ordered
(Monaghan 1992). The degree to which this remains true de-
pends on the smoothing kernel and the number of neighbours.
Our tests demonstrate that formal second-order convergence
can be achieved with PHANTOM on certain problems (e.g.
Section 5.6.1). More typically, one obtains something be-
tween first- and second-order convergence in smooth flow
depending on the degree of spatial disordering of the parti-
cles. The other important difference compared to mesh-based
codes is that there is no intrinsic numerical dissipation in SPH
due to its Hamiltonian nature—numerical dissipation terms
must be explicitly added. We perform all tests with these
terms included.

We use timestep factors of CCour = 0.3 and Cforce = 0.25
by default for all tests (Section 2.3.2).

5.1. Hydrodynamics

5.1.1. Sod shock tube

Figure 8 shows the results of the standard Sod (1978) shock
tube test, performed in 3D using [ρ, P] = [1, 1] in the ‘left
state’ (x � 0) and [ρ, P] = [0.125, 0.1] for the ‘right state’
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Figure 8. Results of the Sod shock tube test in 3D, showing projection of all particles (black dots) compared to the analytic solution (red
line). The problem is set up with [ρ, P] = [1, 1] for x � 0 and [ρ, P] = [0.125, 0.1] for x > 0 with γ = 5/3, with zero velocities and no
magnetic field. The density contrast is initialised using equal mass particles placed on a close packed lattice with 256 × 24 × 24 particles
initially in x ∈ [− 0.5, 0] and 128 × 12 × 12 particles initially in x ∈ [0, 0.5]. The results are shown with constant αAV = 1.

(x > 0) with a discontinuity initially at x = 0 and zero initial
velocity and magnetic field. We perform the test using an
adiabatic EOS with γ = 5/3 and periodic boundaries in y and
z. While many 1D solutions appear in the literature, only a
handful of results on this test have been published for SPH
in 3D (e.g. Dolag et al. 2005; Hubber et al. 2011; Beck et al.
2016; a 2D version is shown in Price 2012a). The tricky part
in a 3D SPH code is how to set up the density contrast. Setting
particles on a cubic lattice is a poor choice of initial condition
since this is not a stable arrangement for the particles (Morris
1996b, 1996a; Lombardi et al. 1999; Børve et al. 2004). The
approach taken in Springel (2005) (where only the density
was shown, being the easiest to get right) was to relax the
two halves of the box into a stable arrangement using the
gravitational force run with a minus sign, but this is time
consuming.

Here we take a simpler approach which is to set the par-
ticles initially on a close-packed lattice (Section 3.1), since
this is close to the relaxed arrangement (e.g. Lombardi et al.
1999). To ensure continuity of the lattice across periodic
boundaries, we fix the number of particles in the y (z) di-
rection to the nearest multiple of 2 (3) and adjust the spacing
in the x-direction accordingly to give the correct density in

each subdomain. We implement the boundary condition in
the x-direction by tagging the first and last few rows of par-
ticles in the x direction as boundary particles, meaning that
their particle properties are held constant. The results shown
in Figure 8 use 256 × 24 × 24 particles initially in x ∈ [−
0.5, 0] and 128 × 12 × 12 particles in x ∈ [0, 0.5] with code
defaults for the artificial conductivity [αu = 1 with vu

sig given
by equation (43)] and artificial viscosity (αAV = 1, βAV = 2).
The results are identical whether global or individual particle
timesteps (Section 2.3.4) are used. Figure 9 shows the results
when code defaults for viscosity are also employed, result-
ing in a time-dependent αAV (see lower right panel). There is
more noise in the velocity field around the contact disconti-
nuity in this case, but the results are otherwise identical.

The L2 errors for the solutions shown in Figure 8 are
0.0090, 0.0022, 0.0018, and 0.0045 for the density, velocity,
thermal energy, and pressure, respectively. With dissipation
switches turned on (Figure 9), the corresponding errors are
0.009, 0.0021, 0.0019, and 0.0044, respectively. That is, our
solutions are within 1% of the analytic solution for all four
quantities in both cases, with the density profile showing the
strongest difference (mainly due to smoothing of the contact
discontinuity).
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Figure 9. As in Figure 8, but with code defaults for all dissipation terms (αAV ∈ [0, 1]; αu = 1). These leave more noise in the velocity field
behind the shock but provide second-order convergence in smooth flow. The lower right panel in this case shows the resultant values for the
viscosity parameter αAV.

Puri & Ramachandran (2014) compared our shock captur-
ing algorithm with other SPH variants, including Godunov
SPH. Our scheme was found to be the most robust of those
tested.

5.1.2. Blast wave

As a more extreme version of the shock test, Figures 10 and
11 show the results of the blast wave problem from Monaghan
(1997), set up initially with [ρ, P] = [1, 1000] for x�0 and [ρ,
P] = [1.0, 0.1] for x > 0 and with γ = 1.4 (appropriate to air).
As previously, we set the particles on a close-packed lattice
with a discontinuous initial pressure profile. We employ 800
× 12 × 12 particles in the domain x ∈ [− 0.5, 0.5]. Results are
shown at t = 0.01. This is a more challenging problem than
the Sod test due to the higher Mach number. As previously,
we show results with both αAV = 1 (Figure 10) and with the
viscosity switch α ∈ [0, 1]. Both calculations use αu = 1 with
(43) for the signal speed in the artificial conductivity. For the
solution shown in Figure 10, we find normalised L2 errors
of 0.057, 0.063, 0.051, and 0.018 in the density, velocity,
thermal energy, and pressure, respectively, compared to the
analytic solution. Employing switches (Figure 11), we find
corresponding L2 errors of 0.056, 0.059, 0.052, and 0.017.

That is, our solutions are within 6% of the analytic solution
at this resolution.

The main source of error is that the contact discontinuity
is over-smoothed due to the artificial conductivity, while the
velocity profile shows a spurious jump at the location of the
contact discontinuity. This glitch is a startup error caused by
our use of purely discontinuous initial conditions—it could
be removed by adopting smoothed initial conditions but we
prefer to perform the more difficult version of this test. There
is also noise in the post-shock velocity profile because the
viscosity switch does not apply enough dissipation here. As
in the previous test, this noise can be reduced by increasing the
numerical viscosity, e.g. by adopting a constant αAV (compare
Figures 10 and 11).

Figure 12 quantifies the error in energy conservation,
showing the error in the total energy as a function of time,
i.e. |E − E0|/|E0|. Energy is conserved to a relative accuracy
of better than 2 × 10−6.

5.1.3. Sedov blast wave

The Sedov–Taylor blast wave (Taylor 1950a, 1950b; Sedov
1959) is a similar test to the previous but with a spherical
geometry. This test is an excellent test for the individual
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Figure 10. Results of the 3D blast wave test, showing projection of all particles (black dots) compared to the analytic solution (red line). The
problem is set up with [ρ, P] = [1, 1000] for x � 0 and [ρ, P] = [1, 0.1] for x > 0 with γ = 7/5, with zero velocities and no magnetic field.
We use equal mass particles placed on a close packed lattice with 800 × 12 × 12 particles initially in x ∈ [− 0.5, 0.5]. Results are shown with
constant αAV = 1.

timestepping algorithm, since it involves propagating a blast
wave into an ambient medium of ‘inactive’ or ‘asleep’ par-
ticles, which can cause severe loss of energy conservation
if they are not carefully awoken (Saitoh & Makino 2009).
For previous uses of this test with SPH, see e.g. Springel
& Hernquist (2002) and Rosswog & Price (2007), and for a
comparison between SPH and mesh codes on this test, see
Tasker et al. (2008).

We set up the problem in a uniform periodic box x, y, z ∈
[− 0.5, 0.5], setting the thermal energy on the particles to be
non-zero in a barely resolved sphere around the origin. We
assume an adiabatic EOS with γ = 5/3. The total energy is
normalised such that the total thermal energy in the blast is
E0 = �amaua = 1, distributed on the particles within r <

Rkernh0 using the smoothing kernel, i.e.

ua =
{

E0W (r, h0 ), r/h0 ≤ Rkern

0 r/h0 > Rkern,
(311)

where r =
√

x2 + y2 + z2 is the radius of the particle and we
set h0 to be twice the particle smoothing length.

We simulate the Sedov blast wave using both global and in-
dividual timesteps at several different resolutions. Figure 13

shows the evolution of the relative error in total energy for our
suite, while Figure 14 shows the density at t = 0.1 compared
to the analytical solution given by the solid line. Energy is
conserved to better than 1% in all cases. Using higher spatial
resolution results in a better match of the post-shock density
with the analytic solution. The scatter at the leading edge of
the shock is a result of the default artificial conductivity al-
gorithm. Given the initial strong gradient in thermal energy,
using more artificial conductivity than our switch permits
would reduce the noise on this problem (Rosswog & Price
2007).

5.1.4. Kelvin–Helmholtz instability

Much has been written about Kelvin–Helmholtz instabilities
with SPH (e.g. Agertz et al. 2007; Price 2008; Abel 2011;
Valdarnini 2012; Read & Hayfield 2012; Hubber, Falle, &
Goodwin 2013c). For the present purpose, it suffices to say
that the test problems considered by Agertz et al. (2007)
and Price (2008) are not well posed. That is, the number
of small-scale secondary instabilities will always increase
with numerical resolution because high wavenumber modes
grow fastest in the absence of physical dissipation or other
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Figure 11. As in Figure 10, but with code defaults for dissipation switches (αAV ∈ [0, 1]; αu = 1). As in Figure 9, the velocity field behind
the shock is more noisy with switches applied, but the switches reduce the numerical dissipation away from shocks.

Figure 12. Relative error in energy conservation for the 3D blast wave test.
Energy is conserved to an error of 10−6 in this test.

regularising forces such as magnetic fields or surface tension.
The ill-posed nature of the test problem has been pointed out
by several authors (Robertson et al. 2010; McNally, Lyra, &
Passy 2012; Lecoanet et al. 2016), who have each proposed
well-posed alternatives.
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Figure 13. Evolution of the relative error in total energy for the Sedov blast
wave problem. Resolutions are given in the legend; solid lines use individual
timestepping while dotted lines show global timestepping.

We adopt the setup from Robertson et al. (2010), similar to
the approach by McNally et al. (2012), where the initial den-
sity contrast is smoothed using a ramp function. This should
suppress the formation of secondary instabilities long enough
to allow a single large-scale mode to grow. The density and
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Figure 14. Density as a function of radius in the Sedov blast wave problem at three resolutions. All particles are placed initially on a
closepacked lattice, are evolved using individual timesteps and we use the quintic kernel. The analytic solution is given by the solid line,
and the bottom panels show the residuals compared to the analytical solution.

shear velocity in the y direction are given by

ρ(y) = ρ1 + R(y)[ρ2 − ρ1], (312)

and

vx (y) = v1 + R(y)[v2 − v1], (313)

where ρ1 = 1, ρ2 = 2, v1 = −0.5, and v2 = 0.5 with constant
pressure P = 2.5, γ = 5/3. The ramp function is given by

R(y) ≡ [
1 − f (y)

] [
1 − g(y)

]
, (314)

where

f ≡ 1

1 + exp
[
2(y − 0.25)/�

] ,
g ≡ 1

1 + exp
[
2(0.75 − y)/�

] , (315)

and we set � = 0.25. Finally, a perturbation is added in the
velocity in the y direction, given by

vy = 0.1 sin(2πx). (316)

The setup in Robertson et al. (2010) is 2D, but since
PHANTOM is a 3D code, we instead set up the problem using
a thin 3D box. We first set up a uniform close packed lattice
in a periodic box with dimensions 1 × 1 × √

24/nx, where
nx is the initial resolution in the x direction such that the box
thickness is set to be exactly 12 particle spacings in the z
direction independent of the resolution used in the x and y
direction. The box is set between [0,1] in x and y, consistent
with the ramp function. We then set up the density profile by
stretch mapping in the y direction using (312) as the input
function (c.f. Section 3.2).

Figure 15 shows the results of this test, showing a cross
section of density at z = 0 for three different resolutions (top
to bottom) and at the times corresponding to those shown
in Robertson et al. (2010). We compute the quantitative dif-
ference between the calculations by taking the root mean
square difference of the cross section slices shown above
interpolated to a 1,024 × 1,024 pixel map. The error be-
tween the nx = 64 calculation and the nx = 256 calcula-
tion is 1.3 × 10−3, while this reduces to 4.9 × 10−4 for
the nx = 128 calculation. Figure 16 shows the growth of the
amplitude of the mode seeded in (316). We follow the pro-
cedure described in McNally et al. (2012) to calculate the
mode amplitude. At t = 2, the amplitude between the nx

= 128 and nx = 256 calculations is within 4%. The artifi-
cial viscosity and conductivity tend to slow convergence on
this problem, so it is a good test of the dissipation switches
(we use the default code viscosity switch as discussed in
Section 2.2.9).

5.2. External forces

5.2.1. Lense–Thirring precession

We test the implementation of the Lense–Thirring precession
by computing the precession induced on a pressure-less disc
of particles, as outlined in Nealon et al. (2015). This disc is
simulated for one orbit at the outer edge such that the inner
part of the disc has precessed multiple times but the outer re-
gion has not yet completed a full precession. The precession
timescale is estimated by measuring the twist as a function
of time for each radial bin; in the inner region, this is the time
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Figure 15. Results of the well-posed Kelvin–Helmholtz instability test from Robertson et al. (2010), shown at a resolution of (from top to bottom) 64 × 74
× 12, 128 × 148 × 12 and 256 × 296 × 12 equal mass SPH particles. We use stretch mapping (Section 3.2) to achieve the initial density profile, consisting
of a 2:1 density jump with a smoothed transition.
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Figure 16. Growth of the amplitude of the seeded mode for the Kevin–
Helmholtz instability test. The amplitude at t = 2 between the nx = 128 and
nx = 256 calculations is within 4%.

taken for the twist to go from a minimum (zero twist) to a
maximum (fully twisted) and in the outer region the gra-
dient of the twist against time is used to calculate the
equivalent time. Figure 17 shows the precession timescale

Figure 17. Lense–Thirring precession test from a disc inclined by 30°. Here,
the precession timescale is measured from the cumulative twist in the disc
and the exact solution, tp = R3/2a is represented by the red line.

measured from the simulation as a function of the radius
compared to the analytically derived precession timescale,
with uncertainties derived from the calculation of the
gradient.
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Figure 18. Inspiral of a test particle subjected to Poynting–Robertson drag
using PHANTOM (blue curve) compared to the expected solution (red curve).
For clarity, only some of the points are plotted. The results are indistin-
guishable on this scale. Bottom panel shows the distance (�r) between the
PHANTOM particle and the test code particle. This demonstrates that the
implementation of Poynting–Robertson drag in PHANTOM is consistent with
a fourth-order numerical solution to (106).

5.2.2. Poynting–Robertson drag

Figure 18 shows the trajectory of a spherical assembly of
89 pressureless SPH particles subject to Poynting–Robertson
drag with a fixed value of βPR = 0.1, assuming a central
neutron star of mass 1.4 M� and 10 km radius and a particle
initially orbiting at R = 200 km with initial vφ of 0.9 times
the Keplerian orbital speed. We compare this to the trajectory
of a test particle produced by direct numerical integration of
the equations of motion, (106), with a fourth-order Runge
Kutta scheme. As shown in Figure 18, there is no significant
difference between the codes. We therefore expect that the
behaviour of SPH gas or dust particles under the influence of
any given β will be correct.

5.2.3. Galactic potentials

Figure 19 shows six calculations with gas embedded within
different galactic potentials (Section 2.4.4). We set up an
isothermal gas disc with T = 10 000 K, with a total gas mass

of 1 × 109 M� set up in a uniform surface density disc from
0–10 kpc in radius. A three-part potential model for the Milky
Way provides the disc with an axisymmetric rotation curve
[bulge plus disc plus halo, the same as Pettitt et al. (2014)].
The top row shows gas exposed to spiral potentials of Cox
& Gómez (2002) with three different arm numbers (2, 3, and
4), while the bottom row shows simulations within the bar
potential of Wada & Koda (2001) at three different pattern
speeds (40, 60, and 80 km s−1 kpc−1). All models are shown
after approximately one full disc rotation (240 Myr). Gas can
be seen to trace the different spiral arm features, with the two
armed model in particular showing branches characteristic of
such density wave potentials (e.g. Martos et al. 2004). The
bars drive arm features in the gas, the radial extent of which
is a function of the pattern speed. Also, note the inner ellipti-
cal orbits of the bar at the location of the Lindblad resonance
which is an effect of the peaked inner rotation curve resulting
from the central bulge.

5.3. Accretion discs

SPH has been widely used for studies of accretion discs, ever
since the first studies by Artymowicz & Lubow (1994, 1996),
Murray (1996), and Maddison, Murray, & Monaghan (1996)
showed how to use the SPH artificial viscosity term to mimic
a Shakura & Sunyaev (1973) disc viscosity.

5.3.1. Measuring the disc viscosity

The simplest test is to measure the disc viscosity from the
diffusion rate of the disc surface density. Figure 20 shows the
results of an extensive study of this with PHANTOM perfomed
by Lodato & Price (2010). For this study, we set up a disc
from Rin = 0.5 to Rout = 10 with surface density profile

� = �0R−p

(
1 −

√
Rin

R

)
, (317)

and a locally isothermal EOS cs = cs, 0R−q. We set p = 3/2
and q = 3/4 such that the disc is uniformly resolved, i.e. h/H
∼ constant (Lodato & Pringle 2007), giving a constant value
of the Shakura & Sunyaev (1973) α parameter according to
(124). We set cs, 0 such that the aspect ratio is H/R = 0.02 at
R = 1. We used 2 million particles by default, with several
additional calculations performed using 20 million particles.
The simulation is performed to t = 1,000 in code units.

The diffusion rate is measured by fitting the surface den-
sity evolution obtained from PHANTOM with the results of
a ‘ring code’ solving the standard 1D diffusion equation for
accretion discs (Lynden-Bell & Pringle 1974; Pringle 1981,
1992). Details of the fitting procedure are given in Lodato &
Price (2010). In short, we use Newton–Raphson iterations to
find the minimum error between the 1D code and the surface
density profile from PHANTOM at the end of the simulation,
which provides the best fit (αfit) and error bars. Figure 20
shows that the measured diffusion rates agree with the ex-
pected values to within the error bars. The exception is for
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Figure 19. Gas in a galactic disc under the effect of different galactic potentials. Top row shows models with a 2, 3, and 4 armed spiral (left to right) with a
pitch angle of 15° and pattern speed of 20 km s−1 kpc−1. Bottom row shows a bar potential with pattern speeds of 40, 60, and 80 km s−1 kpc−1 (left to right).
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Figure 20. Calibration of the disc viscosity in PHANTOM, comparing the
input value of the Shakura–Sunyaev α from (124) (x-axis) with the measured
diffusion rate of the surface density by fitting to a 1D code (y-axis). Triangles
indicate simulations with the disc viscosity computed using the artificial
viscosity (Section 2.6.1), while squares represent simulations using physical
viscosity (Section 2.7.1). All simulations use 2 million particles except for
the green, cyan, and red triangles which use 20 million particles. Figure
taken from Lodato & Price (2010).

low viscosity discs with physical viscosity, where contribu-
tion from artificial viscosity becomes significant. Triangles in
the figure show the results with disc viscosity computed from
the artificial viscosity (Section 2.6.1), while squares represent
simulations with physical viscosity set according to (126).

This test demonstrates that the implementation of disc vis-
cosity matches the analytic theory to within measurement
errors. This also demonstrates that the translation of the arti-
ficial viscosity term according to (124) is correct.

5.3.2. Warp diffusion

A more demanding test of disc physics involves the dynam-
ics of warped discs. Extensive analytic theory exists, starting
with the linear theory of Papaloizou & Pringle (1983), sub-
sequent work by Pringle (1992), and culminating in the work
by Ogilvie (1999) which provides the analytic expressions
for the diffusion rate of warps in discs for non-linear values
of both disc viscosity and warp amplitude. Importantly, this
theory applies in the ‘diffusive’ regime where the disc vis-
cosity exceeds the aspect ratio, α > H/R. For α � H/R, the
warp propagation is wave-like and no equivalent non-linear
theory exists (see Lubow & Ogilvie 2000; Lubow, Ogilvie,
& Pringle 2002).

PHANTOM was originally written to simulate warped
discs—with our first study in Lodato & Price (2010) designed
to test the Ogilvie (1999) theory in 3D simulations. Figure 21
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Figure 21. Warp diffusion rate as a function of disc viscosity, showing the
PHANTOM results compared to the non-linear theory of Ogilvie (1999)
(dashed line). The linear prediction, α2 = 1/(2α), is shown by the solid
line, highlighting the agreement of PHANTOM with the non-linear theory.
Colouring of points is as in Figure 20. Figure taken from Lodato & Price
(2010).

shows the results of this study, showing the measured warp
diffusion rate as a function of disc viscosity. The setup of the
simulations is as in the previous test but with a small warp
added to the disc, as outlined in Section 3.3 of Lodato & Price
(2010). Details of the fitting procedure used to measure the
warp diffusion rate are also given in Section 4.2 of that paper.
The dashed line shows the non-linear prediction of Ogilvie
(1999), namely

α2 = 1

2α

4(1 + 7α2)

4 + α2
. (318)

Significantly, the PHANTOM results show a measurable dif-
ference between the predictions of the non-linear theory and
the prediction from linear theory (Papaloizou & Pringle 1983)
of α2 = 1/(2α), shown by the solid black line.

In addition to the results shown in Figure 21, PHANTOM

also showed a close match to both the predicted self-induced
precession of the warp and to the evolution of non-linear
warps (see Figures 13 and 14 in Lodato & Price 2010, respec-
tively). From the success of this initial study, we have used
PHANTOM to study many aspects of disc warping, either with
isolated warps or breaks (Lodato & Price 2010; Nixon et al.
2012a), warps induced by spinning black holes (Nixon et al.
2012b; Nealon et al. 2015, 2016), and warps in circumbinary
(Nixon et al. 2013; Facchini et al. 2013) or circumprimary
(Doğan et al. 2015; Martin et al. 2014a, 2014b) discs. In par-
ticular, PHANTOM was used to discover the phenomenon of
‘disc tearing’ where sections of the disc are ‘torn’ from the
disc plane and precess effectively independently (Nixon et al.
2012b, 2013; Nealon et al. 2015).

Figure 22. Planet–disc interaction in 3D, showing the ‘viscous Jupiter’ cal-
culation comparable to the 2D results shown with various grid and SPH
codes in Figure 10 of de Val-Borro et al. (2006). The dotted lines shows the
estimated position of the planetary shocks from Ogilvie & Lubow (2002).
The offset between this solution and the numerical shock position is due
to the approximate nature of the analytic solution (see de Val-Borro et al.
2006).

5.3.3. Disc–planet interaction

Although there is no ‘exact’ solution for planet–disc inter-
action, an extensive code comparison was performed by de
Val-Borro et al. (2006). Figure 22 shows the column density
of a 3D PHANTOM calculation, plotted in r–φ with the density
integrated through the z direction, comparable to the ‘viscous
Jupiter’ setup in de Val-Borro et al. (2006).

Two caveats apply when comparing our results with those
in Figure 10 of de Val-Borro et al. (2006). The first is that
the original comparison project was performed in 2D and
mainly with grid-based codes with specific ‘wave damping’
boundary conditions prescribed. We chose simply to ignore
the prescribed boundary conditions and two dimensionality
and instead modelled the disc in 3D with a central accretion
boundary at r = 0.25 with a free outer boundary, with the
initial disc set up from r = 0.4 to r = 2.5. We used 106

SPH particles. Second, the planetary orbit was prescribed
on a fixed circular orbit with no accretion onto either the
planet or the star. Although we usually use sink particles in
PHANTOM to model planet–disc interaction (e.g. Dipierro
et al. 2015), for this test we thus employed the fixed binary
potential (Section 2.4.2) to enable a direct comparison. We
thus used M = 10−3 in the binary potential, corresponding to
the ‘Jupiter’ simulation in de Val-Borro et al. (2006) with the
planet on a fixed circular orbit at r = 1.

As per the original comparison project, we implemented
Plummer softening of the gravitational force from the planet

φplanet = − −mplanet√
r2 + ε2

, (319)
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where ε =0.6H. We also implemented the prescribed increase
of planet mass with time for the first five orbits according to

mplanet = sin2

(
πt

10Porbit

)
, (320)

where Porbit is the orbital period (2π in code units), though
we found this made little or no difference to the results in
practice. We assumed a locally isothermal EOS, cs∝R−0.5,
such that H/R ≈ 0.05 ≈ constant. We assumed an initially
constant surface density, �0 = 0.002 M∗ /(πa2). We also em-
ployed a Navier–Stokes viscosity with ν = 10−5 on top of the
usual settings for shock dissipation with the viscosity switch,
namely αAV ∈ [0, 1] and βAV = 2. We use the Navier–Stokes
viscosity implementation described in Section 2.7.2, which
is the code default. We also employed the cubic spline kernel
(with hfac = 1.2) rather than the quintic to reduce the compu-
tational expense (using the quintic made no difference to the
results).

Despite the different assumptions, the results in Figure 22
are strikingly similar to those obtained with most of the grid-
based codes in de Val-Borro et al. (2006). The main difference
is that our gap is shallower, which is not surprising since this
is where resolution is lowest in SPH. There is also some dif-
ference in the evolution of the surface density, particularly at
the inner boundary, due to the difference in assumed bound-
ary conditions. However, the dense flow around the planet
and in the shocks appear well resolved compared to the other
codes. What is interesting is that the SPH codes used in the
original comparison performed poorly on this test. This may
be simply due to the low resolution employed, as the two SPH
calculations used 250 000 and 300 000 particles, respectively,
(though performed only in 2D rather than 3D), but given the
extent of other differences between adopted setup and SPH
algorithms, it is hard to draw firm conclusions.

As per the original comparison, Figure 22 shows the esti-
mated position of the planetary shocks from Ogilvie & Lubow
(2002) plotted as dotted lines, namely

φ(r, t ) =

⎧⎪⎪⎨
⎪⎪⎩

t − 2

3ε

(
r3/2 − 3

2
ln r − 1

)
; r > rplanet,

t + 2

3ε

(
r3/2 − 3

2
ln r − 1

)
; r < rplanet,

(321)

where ε = 0.05 is the disc aspect ratio. The disagreement
between the shock position and the Ogilvie & Lubow (2002)
solution seen in Figure 22 was also found in every simulation
shown in de Val-Borro et al. (2006), so more likely reflects
the approximate nature of the analytic solution rather than
numerical error.

We found this to be a particularly good test of the viscosity
limiter, since there is both a shock and a shear flow present.
Without the limiter in (46), we found the shock viscosity
switch would simply trigger to αAV ≈ 1. The original Morris
& Monaghan (1997) switch (Section 2.2.9) also performs
well on this test, suggesting that the velocity divergence is
better able to pick out shocks in differentially rotating discs
compared to its time derivative.

Figure 23. Test of physical Navier–Stokes viscosity in the Taylor–Green
vortex using kinematic shear viscosity ν = 0.05, 0.1, 0.2. The exponential
decay rate of kinetic energy may be compared to the analytic solution in
each case (solid black lines), demonstrating that the calibration of physical
viscosity in PHANTOM is correct.

5.4. Physical viscosity

5.4.1. Taylor–Green vortex

The Taylor–Green vortex (Taylor & Green 1937) consists of
a series of counter-rotating vortices. We perform this test
using four vortices set in a thin 3D slab. The initial ve-
locity fields are given by vx = v0sin (2πx)cos (2πy), vy =
−v0cos (2πx)sin (2πy) with v0 = 0.1. The initial density is
uniform ρ = 1, and an isothermal EOS is used (P = c2

s ρ)
with speed of sound cs = 1. Viscosity will cause each compo-
nent of the velocity field to decay at a rate ∝exp ( − 16π2νt),
where ν is the kinematic shear viscosity.

Figure 23 shows the kinetic energy for a series of calcu-
lations using ν = 0.05, 0.1, 0.2. In each case, the kinetic
energy exponentially decays by several orders of magnitude.
The corresponding analytic solutions are shown by the solid
black lines for comparison, demonstrating that the implemen-
tation of physical viscosity in PHANTOM is correct.

5.5. Sink particles

5.5.1. Binary orbit

Figure 24 shows the error in total energy conservation
�E/|E0| for a set of simulations consisting of two sink
particles set up in a binary orbit, a common test of N-body
integrators (e.g. Hut, Makino, & McMillan 1995; Quinn
et al. 1997; Farr & Bertschinger 2007; Dehnen & Read
2011). We fix the initial semi-major axis a = 1 with masses
m1 = m2 = 0.5 and with the two sink particles initially at
periastron, corresponding to x1 = [−m2/(m1 + m2)�, 0, 0]
and x2 = [m1/(m1 + m2)�, 0, 0], where � = a(1 − e) is
the initial separation. The corresponding initial velocities
are v1 = [0,−m2/(m1 + m2)|v|, 0] and v2 = [0, m1/(m1 +
m2)|v|, 0], where |v| =

√
a(1 − e2)(m1 + m2)/�. The
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Figure 24. Errors in energy conservation in a sink particle binary integration
with code default parameters for the timestep control, showing the energy
drift caused by the adaptive timestepping. Angular momentum is conserved
to machine precision.

orbital period is thus P =
√

4π2a3/(G(m1 + m2)) = 2π in
code units for our chosen parameters. Importantly, we use
an adaptive timestep which is not time symmetric so there
remains some drift in the energy error which is absent if
the timestep is constant (see e.g. Hut et al. 1995; Quinn
et al. 1997 and Dehnen & Read 2011 for discussion of this
issue).

Figure 24 shows the error in total energy as a function
of time for the first 1,000 orbits for calculations with initial
eccentricities of e = 0.0 (a circular orbit), 0.3, 0.5, 0.7, and
0.9. Energy conservation is worse for more eccentric orbits,
as expected, with �E/|E0| ∼ 6% after 1,000 orbits for our
most extreme case (e = 0.9). The energy error can be reduced
arbitrarily by decreasing the timestep, so this is mainly a test
of the default settings for the sink particle timestep control.
For this problem, the timestep is controlled entirely by (76),
where by default we use η� = 0.05, giving 474 steps per orbit
for e = 0.9. For simulations with more eccentric orbits, we
recommend decreasing Cforce from the default setting of 0.25
to obtain more accurate orbital dynamics.

In addition to calibrating the timestep constraint, Figure 24
also validates the sink particle substepping via the RESPA
algorithm (Section 2.3.3) since for this problem the ‘gas’
timestep is set only by the desired interval between out-
put files (to ensure sufficient output for the figure we
choose �tmax = 1, but we also confirmed that this choice
is unimportant for the resultant energy conservation). This
means that increasing the accuracy of sink particle inter-
actions adds little or no cost to calculations involving gas
particles.

The corresponding plot for angular momentum conserva-
tion (not shown) merely demonstrates that angular momen-
tum is conserved to machine precision (�L/|L| ∼ 10−15),
as expected. Importantly, angular momentum remains con-
served to machine precision even with adaptive timestepping.

Figure 25. Orbit of a sink particle in the restricted three-body problem from
Chin & Chen (2005) using default code parameters. This tests both the time
integrator for sink particles and the interaction with a time-dependent binary
potential (Section 2.4.2). The trajectory of the sink is plotted every timestep
for three periods (t = 27π ).

5.5.2. Restricted three-body problem

Chin & Chen (2005) proposed a more demanding test of
N-body integrators, consisting of a test particle orbiting
in the potential of a binary on a fixed circular orbit. We
set up this problem with a single sink particle with x =
[0, 0.0580752367, 0] and v = [0.489765446, 0, 0], using the
time-dependent binary potential as described in Section 2.4.2
with M = 0.5. This is therefore a good test of the interaction
between a sink particle and external potentials in the code, as
well as the sink particle timestepping algorithm. For conve-
nience, we set the sink mass m = 1 and accretion radius racc

= 0.1, although both are irrelevant to the problem.
Figure 25 shows the resulting orbit using the default code

parameters, where we plot the trajectory of the sink parti-
cle up to t = 27π , as in Figures 1 and 2 of Chin & Chen
(2005). Considering that we use only a second-order integra-
tor, the orbital trajectory is remarkably accurate, showing no
chaotic behaviour and only a slight precession consistent or
better than the results with some of the fourth-order schemes
shown in their paper (albeit computed with a larger timestep).
We are thus satisfied that our time integration scheme and the
associated timestep settings can capture complex orbital dy-
namics with sufficient accuracy.

5.6. Magnetohydrodynamics

5.6.1. 3D circularly polarised Alfvén wave

Tóth (2000) introduced the circularly polarised Alfvén wave
test, an exact non-linear solution to the MHD equations which
can therefore be performed using a wave of arbitrarily large
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Figure 26. Results of the 3D circularly polarised Alfven wave test after
five periods, showing perpendicular component of the magnetic field on all
particles (black dots) as a function of distance along the axis parallel to the
wave vector. Results are shown using 32 × 18 × 18, 64 × 36 × 39, and
128 × 74 × 78 particles (most to least damped, respectively), compared
to the exact solution given by the solid red line. Convergence is shown in
Figure 27.

amplitude. Most results of this test are shown in 2D (e.g. Price
& Monaghan 2005; Rosswog & Price 2007; Price 2012a;
Tricco & Price 2013). Here we follow the 3D setup outlined
by Gardiner & Stone (2008). We use a periodic domain of
size L × L/2 × L/2, where L = 3, with the wave propagation
direction defined using angles a and b where sin a = 2/3
and sin b = 2/

√
5, with the unit vector along the direction of

propagation given by r = [cos a cos b, cos a sin b, sin a]. We
use an initial densityρ =1, an adiabatic EOS withγ =5/3 and
P = 0.1. We perform the ‘travelling wave test’ from Gardiner
& Stone (2008), where the wavelength λ = 1 and the vectors
[v1, v2, v3] = [0, 0.1sin (2πx1/λ), 0.1cos (2πx1/λ)] and [B1,
B2, B3] = [1, 0.1sin (2πx1/λ), 0.1cos (2πx1/λ)] are projected
back into the x, y, and z components using the transformations
given by (Gardiner & Stone 2008)

x = x1 cos a cos b − x2 sin b − x3 sin a cos b,

y = x1 cos a sin b + x2 cos b − x3 sin a sin b,

z = x1 sin a + x3 cos a. (322)

Figure 26 shows the results of this test using 32 × 18 × 18,
64 × 36 × 39 and 128 × 74 × 78 particles initially set on a
close packed lattice, compared to the exact solution given by
the red line (the same as the initial conditions for the wave).
We plot the transverse component of the magnetic field B2

as a function of x1, where B2 ≡ (By − 2Bx )/
√

5 and x1 ≡ (x
+ 2y + 2z)/3 for our chosen values of a and b. There is both
a dispersive and dissipative error, with the result converging
in both phase and amplitude towards the undamped exact
solution as the resolution is increased.

Figure 27 shows a convergence study on this problem,
showing, as in Gardiner & Stone (2008), the L1 error as a
function of the number of particles in the x-direction. The

Figure 27. Convergence in the 3D circularly polarised Alfven wave test,
showing the L1 error as a function of the number of particles along the
x-axis, nx alongside the expected slope for second-order convergence (dot-
ted line). Significantly, this demonstrates second-order convergence with all
dissipation switched on.

convergence is almost exactly second order. This is signif-
icant because we have performed the test with code de-
faults for all dissipation and divergence cleaning terms. This
plot therefore demonstrates the second-order convergence
of both the viscous and resistive dissipation in PHANTOM

(see Sections 2.2.9 and 2.10.6). By comparison, the solution
shown by Price & Monaghan (2005) (Figure 6 in their paper)
was severely damped when artificial resistivity was applied.

As noted by Price & Monaghan (2005) and illustrated in
Figure 12 of Price (2012a), this problem is unstable to the
SPMHD tensile instability (e.g. Phillips & Monaghan 1985)
in the absence of force correction terms since the plasma
β ≡ P/ 1

2 B2 ≈ 0.2. Our results demonstrate that the correc-
tion term (Section 2.10.2) effectively stabilises the numerical
scheme without affecting the convergence properties.

5.6.2. MHD shock tubes

The classic Brio & Wu (1988) shock tube test generalises the
Sod shock tube (Section 5.1.1) to MHD. It has provoked de-
bate over the years (e.g. Wu 1988; Dai & Woodward 1994a;
Falle & Komissarov 2001; Takahashi, Yamada, & Yamada
2013) because of the presence of a compound slow shock
and rarefaction in the solution, which is stable only when
the magnetic field is coplanar and there is no perturbation to
the tangential (Bz) magnetic field (Barmin, Kulikovskiy, &
Pogorelov 1996). Whether or not such solutions can exist in
nature remains controversial (e.g. Feng et al. 2007). Never-
theless, it has become a standard benchmark for numerical
MHD (e.g. Stone et al. 1992; Dai & Woodward 1994a; Bal-
sara 1998; Ryu & Jones 1995). It was first used to benchmark
SPMHD by Price & Monaghan (2004a, 2004b) and 1.5D re-
sults on this test with SPMHD, for comparison, can be found
in e.g. Price & Monaghan (2005), Rosswog & Price (2007),
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Figure 28. Results of the Brio & Wu (1988) shock tube test in 3D, showing projection of all particles (black dots) compared to the reference
solution (red line). The problem is set up with [ρ, P, By, Bz] = [1, 1, 1, 0] for x � 0 and [ρ, P, By, Bz] = [0.125, 0.1, −1, 0] for x > 0 with
zero initial velocities, Bx = 0.75 and γ = 2. The density contrast is initialised using equal mass particles placed on a close packed lattice with
256 × 24 × 24 particles initially in x ∈ [− 0.5, 0] and 128 × 12 × 12 particles initially in x ∈ [0, 0.5].

Dolag & Stasyszyn (2009), Price (2010), and Vanaverbeke,
Keppens, & Poedts (2014), with 2D versions shown in Price
(2012a), Tricco & Price (2013), and Tricco et al. (2016a). We
handle the boundary conditions by setting the first and last few
planes of particles to be ‘boundary particles’ (Section A.2),
meaning that the gas properties on these particles are fixed.

Figure 28 shows the results of the Brio & Wu (1988) prob-
lem using PHANTOM, performed in 3D with 256 × 24 × 24
particles initially in x ∈ [− 0.5, 0] and 128 × 12 × 12 parti-
cles initially in x ∈ [0, 0.5] set on close packed lattices with
purely discontinuous initial conditions in the other variables
(see caption). The projection of all particles onto the x-axis are
shown as black dots, while the red lines shows a reference so-
lution taken from Balsara (1998). Figure 28 shows the results
when a constant αAV = 1 is employed, while Figure 29 shows
the results with default code parameters, giving second-order
dissipation away from shocks. For constant αAV (Figure 28),
we find the strongest deviation from the reference solution is
in vx, withL1 = 0.015 andL2 = 0.065 at this resolution. The
remaining L2 errors are within 5% of the reference solution,
while the L1 norms are all smaller than 1.5% per cent in the
other variables. Similar errors are found with code defaults

(Figure 29), withL2 = 0.074 in vx andL1 norms smaller than
1.6% in all variables. That is, our solutions are within 1.6%
of the reference solution. Using the default Courant factor
of 0.3, total energy is conserved to better than 0.5%, with
maximum |�E|/|E0| = 4.2 × 10−3 up to t = 0.1.

Figure 30 shows the result of the ‘seven-discontinuity’
test from Ryu & Jones (1995). This test is particularly
sensitive to over-dissipation by resistivity given the sharp
jumps in the transverse magnetic and velocity fields. A ref-
erence solution with intermediate states taken from the cor-
responding table in Ryu & Jones (1995) is shown by the
red lines for comparison. Here the boundary particles are
moved with a fixed velocity in the x-direction. The largest
deviation from the reference solution is in the vy compo-
nent, mainly due to the over-dissipation of the small spikes,
with L1 = 0.02 and L2 = 0.07 at this resolution. The re-
maining L2 errors are within 3% of the reference solu-
tion, while the L1 norms are smaller than 0.9% in all other
variables.

Finally, Figure 31 shows the results of shock tube 1a from
Ryu & Jones (1995). This test is interesting because it has
historically proven to be a difficult test for SPMHD codes in
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Figure 29. As in Figure 28 but using code defaults which give second-order convergence away from shocks. Some additional noise in the
velocity field is visible, while otherwise the solutions are similar.

more than 1D. In particular, to obtain reasonable results on
this problem, Price & Monaghan (2005) had to employ both
an explicit shear viscosity term and a large neighbour number.
Even then the jumps were found to show significant deviation
from the analytic solution (see figure 10 in Price & Monaghan
2005). We did find that using hfac =1.2 significantly improved
the results of this test compared to our default hfac = 1.0
for the quintic kernel. Likewise, we found the results with
the cubic spline kernel could be noisy. However, Figure 31
demonstrates that with only this change to the default code
parameters, we can obtain results withL1 errors of better than
4.4% in vy and less than 0.9% in all other variables at this
resolution. The bottom left panel shows the errors induced in
Bx, with the largest error (L∞) only 0.6%. This is a substantial
improvement over the 2D results shown in Price & Monaghan
(2005).

5.6.3. Orszag–Tang vortex

The Orszag–Tang vortex (Orszag & Tang 1979; Dahlburg &
Picone 1989; Picone & Dahlburg 1991) has been used widely
to test astrophysical MHD codes (e.g. Stone et al. 1992; Ryu,
Jones, & Frank 1995; Dai & Woodward 1998; Tóth 2000;
Londrillo & Del Zanna 2000). Similar to our hydrodynamic
tests, we perform a 3D version of the original 2D test prob-

lem, similar to the ‘thin box’ setup used by Dolag & Sta-
syszyn (2009). Earlier results on this test with 2D SPMHD
can be found in Price & Monaghan (2005), Rosswog & Price
(2007), Tricco & Price (2012, 2013), Tricco et al. (2016a),
and Hopkins & Raives (2016), and in 3D by Dolag & Sta-
syszyn (2009) and Price (2010).

The setup is a uniform density, periodic box x, y ∈ [−
0.5, 0.5] with boundary in the z direction set to ±2

√
6/nx,

where nx is the initial number of particles in x, in or-
der to setup the 2D problem in 3D (c.f. Section 5.1.4).
We use an initial plasma β0 = 10/3, initial Mach num-
ber M0 = v0/cs,0 = 1, initial velocity field [vx, vy, v z] =
[− v0sin (2πy′), v0sin (2πx′), 0], and magnetic field [Bx,
By, Bz] = [− B0sin (2πy′), B0sin (4πx′), 0], where v0 = 1,
B0 = 1/

√
4π , x′ ≡ x − xmin , and y′ ≡ y − ymin ; giving

P0 = 1
2 B2

0β0 ≈ 0.133 and ρ0 = γ P0M0 ≈ 0.221. We use an
adiabatic EOS with γ = 5/3.

Figure 32 shows the results at t = 0.5 (top row) and at t =
1 (bottom) at resolutions of nx = 128, 256, and 512 particles
(left to right). At t = 0.5, the main noticeable change as the
resolution is increased is that the shocks become more well
defined, as does the dense filament consisting of material
trapped in the reconnecting layer of magnetic field in the
centre of the domain. This current sheet eventually becomes
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Figure 30. Results of the seven-discontinuity MHD shock tube test 2a from Ryu & Jones (1995) in 3D, showing projection of all particles (black dots) compared
to the reference solution (red line). The problem is set up with [ρ, P, vx, vy, vz, Bx, By, Bz] = [1.08, 0.95, 1.2, 0.01, 0.5, 2/

√
4π, 3.6/

√
4π, 2/

√
4π ] for x

� 0 and [ρ, P, vx, vy, vz, Bx, By, Bz] = [1, 1, 0, 0, 0, 2/
√

4π, 4/
√

4π, 2/
√

4π ] for x > 0 with γ = 5/3. The density contrast is initialised using equal mass
particles placed on a close packed lattice with 379 × 24 × 24 particles initially in x ∈ [− 0.5, 0] and 238 × 12 × 12 particles initially in x ∈ [0, 0.5].

unstable to the tearing mode instability (e.g. Furth, Killeen,
& Rosenbluth 1963; Syrovatskii 1981; Priest 1985), seen by
the development of small magnetic islands or ‘beads’ at t = 1
at high resolution (bottom right panel; c.f. Politano, Pouquet,
& Sulem 1989). The appearance of these islands occurs only
at high resolution and when the numerical dissipation is small
[compare to the results using Euler potentials in 2D shown
in Figure 13 of Tricco & Price (2012)], indicating that our
implementation of artificial resistivity (Section 2.10.6) and
divergence cleaning (Section 2.10.2) are effective in limiting
the numerical dissipation.

One other feature worth noting is that the slight ‘ringing’
behind the shock fronts visible in the results of Price & Mon-
aghan (2005) is absent from the low resolution calculation.
This is because the Cullen & Dehnen (2010) viscosity switch
does a better job of detecting and responding to the shock
compared to the previous Morris & Monaghan (1997)-style
switch used in that paper. It is also worth noting that the re-
sults on this test, in particular, the coherence of the shocks,
are noticeably worse without artificial resistivity, indicating
that a small amount of dissipation in the magnetic field is
necessary to capture MHD shocks correctly in SPMHD (c.f.
Price & Monaghan 2004a, 2005; Tricco & Price 2012).

Figure 33 shows horizontal slices of the pressure at t =
0.5, showing cuts along y = 0.3125 (top) and y = 0.4277

(bottom) following (e.g.) Londrillo & Del Zanna (2000) and
Stone et al. (2008). The main difference at higher resolution is
that the shocks become sharper and more well defined. Most
of the smooth flow regions are converged with nx = 256 (i.e.
the red and black lines are indistinguishable), but the parts
of the flow where dissipation is important are can be seen to
converge more slowly. This is expected.

5.6.4. MHD rotor problem

Balsara & Spicer (1999) introduced the ‘MHD rotor prob-
lem’ to test the propagation of rotational discontinuities. Our
setup follows Tóth (2000)’s ‘first rotor problem’ as used by
Price & Monaghan (2005), except that we perform the test
in 3D. A rotating dense disc of material with ρ = 10 is set
up with cylindrical radius R = 0.1, surrounded by a uniform
periodic box [x, y] ∈ [− 0.5, 0.5] with the z boundary set to
[−√

6/(2nx ),
√

6/(2nx )], or 12 particle spacings on a close
packed lattice. The surrounding medium has density ρ = 1.
Initial velocities are vx, 0 = −v0(y − y0)/r and vy, 0 = v0(x −
x0)/r for r < R, where v0 = 2 and r =

√
x2 + y2. The initial

pressure P = 1 everywhere while the initial magnetic field
is given by [Bx, By, Bz] = [5/

√
4π, 0, 0] with γ = 1.4. We

set up the initial density contrast unsmoothed, as in Price
& Monaghan (2005), by setting up two uniform lattices of
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Figure 31. Results of the MHD shock tube test 1a from Ryu & Jones (1995) in 3D, showing projection of all particles (black dots) compared to the reference so-
lution (red line). The problem is set up with [ρ, P, vx, vy, vz, Bx, By, Bz] = [1.0, 20.0, 10, 0, 0, 5/

√
4π, 5/

√
4π, 0] for x� 0 and [ρ, P, vx, vy, vz, Bx, By, Bz] =

[1, 1,−10, 0, 0, 5/
√

4π, 5/
√

4π, 0] for x > 0 with γ = 5/3. We show results using 652 × 12 × 12 particles. This has historically proven difficult for SPMHD
codes. We find L1 within 1% of the reference solution except in vy (5%).

particles masked to the initial cylinder, with the particle spac-
ing adjusted inside the cylinder by the inverse cube root of the
density contrast. At a resolution of nx = 256 particles for the
closepacked lattice, this procedure uses 1 145 392 particles,
equivalent to a 2D resolution of ∼3002, inbetween the 2002

results shown in Tóth (2000) and Price & Monaghan (2005)
and the 4002 used in Stone et al. (2008).

Figure 34 presents the results of this test, showing 30 con-
tours in density, pressure, Mach number, and magnetic pres-
sure using limits identical to those given in Tóth (2000).
The symmetry of the solution is preserved by the numeri-
cal scheme and the discontinuities are sharp, as discussed
in Stone et al. (2008). The contours we obtain with PHAN-
TOM are noticeably less noisy than the earlier SPMHD results
given in Price & Monaghan (2005), a result of the improve-
ment in the treatment of dissipation and divergence errors in
SPMHD since then (c.f. Section 2.10; see also recent results
in Tricco et al. 2016a).

5.6.5. Current loop advection

The current loop advection test was introduced by Gar-
diner & Stone (2005, 2008), and regarded by Stone et al.
(2008) as the most discerning of their code tests. We per-
form this test in 3D, as in the ‘first 3D test’ from Stone
et al. (2008) by using a thin 3D box with non-zero v z.
The field setup is with a vector potential Az = A0(R − r)
for r < R, giving Bx = −A0y/r, By = A0x/r and Bz = 0,
where r =

√
x2 + y2, R = 0.3 and we use A0 = 10−3, ρ0

= 1, P0 = 1, and an adiabatic EOS with γ = 5/3. We
use a domain [x, y, z] ∈ [−1 : 1,−0.5 : 0.5,−√

6/(2nx ) :√
6/(2nx )] with [vx, vy, vz] = [2, 1, 0.1/

√
5]. The test is dif-

ficult mainly because of the cusp in the vector potential gra-
dient at r = R leading to a cylindrical current sheet at this
radius. The challenge is to advect this infinite current with-
out change (in numerical codes the current is finite but with
a magnitude that increases with resolution). We choose the
resolution to be comparable to Stone et al. (2008).
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Figure 32. Density in a z = 0 cross section of the Orszag-Tang vortex test performed in 3D. Results are shown at t = 0.5 (top) and t = 1 (bottom) at a
resolution of 128 × 148 × 12, 256 × 296 × 12 and 512 × 590 × 12 particles (left to right). Compare e.g. to Figure 4 in Dai & Woodward (1994b) or Figure 22
in Stone et al. (2008), while improvements in the SPMHD method over the last decade can be seen by comparing to Figure 14 in Price & Monaghan (2005).

Figure 33. Horizontal slices of pressure shown at t=0.5 in the Orszag–Tang
vortex test. We show cuts along y = 0.3125 (top) and y = 0.4277 (bottom)
in the z = 0 plane for three different numerical resolutions (see legend).

For SPMHD, this is mainly a test of the shock dissipa-
tion and divergence cleaning terms, since in the absence of
these terms the advection can be computed to machine pre-
cision [c.f. 2D results shown in Rosswog & Price (2007)

and Figure 11 of Price (2012a), shown after one thousand
crossings of the computational domain]. Figure 35 shows the
results of this test in PHANTOM with 128 × 74 × 12 parti-
cles after two box crossings, computed with all dissipation
and divergence cleaning terms switched on, precisely as in
the previous tests including the shock tubes (Sections 5.6.2–
5.6.4). Importantly, our implementation of artificial resistiv-
ity (Section 2.10.6) guarantees that the dissipation is iden-
tically zero when there is no relative velocity between the
particles, meaning that simple advection of the current loop
is not affected by numerical resistivity. However, the problem
remains sensitive to the divergence cleaning (Section 2.10.2),
in particular to any spurious divergence of B that is measured
by the SPMHD divergence operator, (174). For this reason,
the results using the quintic kernel, (19), are substantially
better than those using the cubic spline, because the initial
measurement of ∇ · B is smaller and so the evolution is less
affected by the divergence cleaning.

5.6.6. MHD blast wave

The MHD blast wave problem consists of an over-pressurised
central region that expands preferentially along the strong
magnetic field lines. Our setup uses the 3D initial condi-
tions of Stone et al. (2008), which follows from the work of
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Figure 34. Density, pressure, Mach number, and magnetic pressure shown in a z = 0 cross section at t = 0.15 in the
3D MHD rotor problem, using nx = 256, equivalent to ∼3002 resolution elements in 2D. The plots show 30 contours
with limits identical to those given by Tóth (2000); 0.483 < ρ < 12.95, 0.0202 < P < 2.008, 0 < |v |/cs < 1.09, and
0 < 1

2 B2 < 2.642.

Londrillo & Del Zanna (2000) and Balsara & Spicer (1999).
For a recent application of SPMHD to this problem, see
Tricco & Price (2012) and Tricco et al. (2016a). Set in a
periodic box [x, y, z] ∈ [− 0.5, 0.5], the fluid has uniform
ρ = 1 and B = [10/

√
2, 0, 10/

√
2]. The pressure is set to P

= 1, using γ = 1.4, except for a region in the centre of ra-
dius R = 0.125 which has its pressure increased to P = 100.
This yields initial plasma beta β = 2 inside the blast and β

= 0.02 outside. The particles are arranged on a close-packed
triangular lattice using nx = 256.

Figure 36 shows slices through y = 0 of density, pressure,
magnetic energy density, and kinetic energy density, which
may be directly compared to results in Gardiner & Stone
(2008). The shock positions and overall structure of the blast
wave in all four variables show excellent agreement with the
results shown in their paper. The main difference is that their
solution appears less smoothed, suggesting that the overall
numerical dissipation is lower in ATHENA.

5.6.7. Balsara–Kim supernova-driven turbulence

We reproduce the ‘test problem’ of Balsara & Kim (2004)
(hereafter BK04) modelling supernova-driven turbulence in
the interstellar medium. BK04 used this test to argue strongly
against the use of divergence cleaning for problems involv-
ing strong shocks. Specifically, they compared three different
divergence cleaning schemes against a constrained transport
method, finding that divergence cleaning was unusable for
such problems, with all three divergence cleaning schemes
producing strong temporal fluctuations in magnetic energy
during the growth phase of the supernova-driven dynamo.
The problems were attributed to issues with the non-locality
of divergence cleaning.

We follow the setup in BK04 as closely as possible, but sev-
eral issues make a direct comparison difficult. Chief among
these is their use of a physical ISM cooling prescription. We
implement a similar algorithm (Section 2.14), but our cooling
prescription is not identical (e.g. our implementation includes
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Figure 35. Magnitude of the current density |∇ × B| in the current loop ad-
vection test performed in 3D, showing comparing the initial conditions (top)
to the result after two (middle) and five (bottom) crossings of the box, using
128 × 74 × 12 particles. Full dissipation, shock capturing, and divergence
cleaning terms were applied for this test, without which the advection is ex-
act to machine precision. The advection is affected mainly by the divergence
cleaning acting on the outer (infinite) current sheet.

live chemistry and thus the possibility for a cold phase of the
ISM, which theirs does not). Second, they give the setup pa-
rameters for the problem in computational units, but the use
of ISM cooling requires the physical units of the problem to
be specified. Since these are not stated in their paper, one must
guess the units by reading descriptions of the same problem
in physical units given in Kim, Balsara, & Mac Low (2001),
Balsara et al. (2004), and Mac Low et al. (2005).

We set up the problem as follows. Particles are initialised
on a close-packed lattice in a periodic box with x, y, z ∈ [−
0.1, 0.1], with ρ = 1 and the initial thermal pressure set to
P = 0.3 (all in code units, as specified in BK04). We infer a
length unit of kpc since this is described as a ‘200 pc3 box’
in their other papers. We employ an adiabatic EOS with γ

= 5/3 and turn on interstellar cooling and chemistry in the
code with default initial abundances (i.e. atomic Hydrogen
everywhere). We choose the mass unit such that a density
of 2.3 × 10−23 g cm−3, as described in Kim et al. (2001),
corresponds to ρ = 1 in code units as described in BK04.
Finally, we set the time unit such that G = 1 in code units (a
common choice, even though gravity is not involved in the
problem). We compute the problem using resolutions of 64
× 74 × 78 particles and 128 × 148 × 156 particles.

Supernovae are injected into the simulation every 0.00125
in code units at the positions listed in Table 1 of BK04. We in-
fer this to correspond to the ‘12 × Galactic’ rate described in
Balsara et al. (2004), i.e. 12 times faster than 1 per 1.26 Myr.
We inject supernovae following the description in BK04 by
setting the pressure to P = 13649.6 on particles within a dis-
tance of 0.005 code units from the injection site (correspond-
ing to a radius of 5 pc in physical units). Our choice of units
means that this corresponds to an energy injection within a
few percent of 1051 ergs in physical units, corresponding to
the description given in their other papers. However, this is
only true if the density equals the initial value, since BK04
specify pressure rather than the energy. We follow the de-
scription in BK04 (i.e. we set the pressure), even though this
gives an energy not equal to 1051 ergs if injected in a low or
high density part of the computational domain.

The initial magnetic field is uniform in the x-direction with
Bx = 0.056117, as stated in BK04. We could not reconcile
this with the magnetic energy plotted in their paper, which
show an initial magnetic energy of 10−6. Nor could we rec-
oncile this with the statement in Balsara et al. (2004) that
‘the magnetic energy is 10−6 times smaller than the thermal
energy’. So any comparison is approximate. Nevertheless,
BK04 state that the problems caused by divergence cleaning
are not dependent on specific details of the implementation.

Figure 37 shows the evolution of the column density in the
lowest resolution calculation using 64 × 74 × 78 particles.
The combination of supernovae injection and cooling drives
turbulence and significant structure in the density field.

To specifically address the issues found by BK04,
Figure 38 shows a cross-section slice of the magnetic pres-
sure at a time similar to the one shown in Figure 3 of BK04
(they do not indicate which slice they plotted, we chose z
= 0.0936). The magnetic pressure in the interior of the su-
pernovae shells is smooth, and does not display any of the
large-scale artefacts of the type found in their paper.

Figure 39 shows the time evolution of the magnetic energy
in the low-resolution calculation. The magnetic energy rises
monotonically up to t ≈ 0.02 before the magnetic energy sat-
urates, similar to what was found by BK04 for their staggered
mesh/constrained transport scheme (compare with Figure 2
in their paper). There are no large temporal fluctuations in the
magnetic energy of the kind they report for their divergence
cleaning methods.

In summary, the results we obtain for the magnetic field
energy and structure within supernova-driven turbulence in
the interstellar medium match closest the constrained trans-
port result of BK04. There is no evidence that our simulations
experience the numerical issues encountered by BK04 with
their divergence cleaning schemes, suggesting that the prob-
lems they reported are primarily code dependent rather than
being fundamental. The most probable reason our results are
of the same quality as BK04’s constrained transport result is
our use of constrained divergence cleaning, which guaran-
tees that energy removed from the magnetic field is negative
definite. A follow-up study to examine this in more depth
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t=0.02 P

|B|2/2  |v|2/2

Figure 36. Slices through y = 0 for the MHD blast wave problem showing density (top left), gas pressure (top right),
magnetic energy density (bottom left), and kinetic energy density (bottom right). The plot limits are ρ ∈ [0.19, 2.98],
P ∈ [1, 42.4], [25.2, 64.9] for the magnetic energy density and [0, 33.1] for the kinetic energy density. These are directly
comparable to Figure 8 in Gardiner & Stone (2008).

would be worthwhile. For our present purposes, we can con-
clude that our divergence cleaning algorithm is sufficiently
robust—even in ‘real-world’ problems—to be useful in prac-
tice (see also Section 6.3).

5.7. Non-ideal MHD

The following tests demonstrate the non-ideal MHD algo-
rithms (Section 2.11). We adopt periodic boundary condi-
tions for both tests, initialising the particles on a close-packed
lattice with an isothermal EOS, P = c2

s ρ, and using the C4

Wendland kernel.

5.7.1. Wave damping test

To test ambipolar diffusion in the strong coupling approxi-
mation, we follow the evolution of decaying Alfvén waves,
as done in (e.g.) Choi, Kim, & Wiita (2009) and Wurster et al.
(2014).

In arbitrary units, the initial conditions are a box of size
Lx ×

√
3

2 Lx ×
√

6
2 Lx with Lx = 1, a density of ρ = 1, magnetic

field of B = B0x̂ with B0 = 1, sound speed of cs = 1, and
velocity of v = v0 sin(kx)ẑ, where k = 2π /Lx is the wave
number, and v0 = 0.01vA, where vA is the Alfvén velocity. We
adopt an ambipolar diffusion coefficient of ηAD = 0.01v2

A.
All artificial dissipation terms are turned off. We use nx =
128 particles.

The solution to the dispersion relation for Alfvén waves
(Balsara 1996) is

ω2 + ηADk2ωi − v2
Ak2 = 0, (323)

where ω = ωR + ωIi is the complex angular frequency of the
wave, giving a damped oscillation in the form

h(t ) = h0 |sin (ωRt )| eωIt . (324)

In our test, h(t) corresponds the root mean square of the mag-
netic field in the z-direction,

〈
B2

z

〉1/2
, and h0 = v0B0/(vA

√
2).
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Figure 37. Balsara–Kim supernova-driven turbulence, showing column density at three different times at a resolution of 64 × 74 × 78 particles. Supernovae
are injected every 0.00125 in code units, leading to a series of interacting blast waves. Interstellar chemistry and cooling is turned on, producing a dense
filaments in a turbulent interstellar medium.

Figure 38. Cross-section slice of magnetic pressure at t = 0.006 in the
Balsara–Kim supernova-driven turbulence test using 128 × 148 × 156 par-
ticles. No large-scale artefacts in magnetic energy are visible, indicating that
the simulation is not corrupted by divergence cleaning.

Figure 40 shows the time evolution of
〈
B2

z

〉1/2
to t = 5 for

both the numerical results (blue line) and the analytic solution
(red line). At the end of the test, the L2 error is 7.5 × 10−5

(evaluated at intervals of dt = 0.01), demonstrating close
agreement between the numerical and analytical results.

Given that, by design, there is motion of the particles and
that we have excluded artificial dissipation, the particles tend
to ‘break’ from the initial lattice. For both the M6 quintic
kernel and the C4 Wendland kernel on a cubic lattice, the par-
ticles fall off the lattice at t ≈ 0.75. Prior to this, however, the
L2 error is smaller than that calculated using the C4 Wend-

Time

E
m

ag

0 0.01 0.02 0.03

10-5

10-4

10-3

64 x 74 x 78

Figure 39. Magnetic energy as a function of time in the Balsara–Kim
supernova-driven turbulence problem. The magnetic energy increases mono-
tonically by approximately an order of magnitude before reaching its satu-
ration value at t ≈ 0.02. There are no spurious spikes in magnetic energy
caused by divergence cleaning, in contrast to what was found by Balsara &
Kim (2004).

land kernel and a close-packed lattice, thus there is a trade
off between accuracy and long-term stability.

5.7.2. Standing shock

To test the Hall effect, we compare our solutions against the
1D isothermal steady-state equations for the strong Hall ef-
fect regime. The numerical solution to this problem is given
in Falle (2003) and O’Sullivan & Downes (2006), and also
summarised in Appendix C1.2 of Wurster et al. (2016).

The left- and right-hand side of the shock are initialised
with (ρ0, vx, 0, vy, 0, vz, 0, Bx, 0, By, 0, Bz, 0) = (1.7942,
−0.9759, −0.6561, 0.0, 1.0, 1.74885, 0.0) and (1.0, −1.751,
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Figure 40. Wave damping test showing the decay of Alfvén waves in the
presence of ambipolar diffusion, using the coefficient ηAD = 0.01v2

A. The
L2 error between the analytic and numerical solution is 7.5 × 10−5.

0.0, 0.0, 1.0, 0.6, 0.0), respectively, with the discontinuity at x
= 0. We use boundary particles at the x-boundary, supersed-
ing the periodicity in this direction. To replicate inflowing
boundary conditions in the x-direction, when required, the
initial domain of interest xl < x < xr is automatically adjusted
to x′

l < x < x′
r , where x′

r = xr − v0tmax, where tmax is the end
time of the simulation. Note that for inflowing conditions,
xr and v0 will have opposite signs. Thus, at the end of the
simulation, the entire range of interest will still be populated
with particles.

The non-ideal MHD coefficients are ηOR = 1.12 × 10−12,
ηHE = −3.53 × 10−2B, and ηAD = 7.83 × 10−3v2

A. We in-
clude all artificial dissipation terms using their default set-
tings. We initialise 512 × 14 × 15 particles in x < 0 and 781
× 12 × 12 particles in x� 0, with the domain extending from
xl = x′

l = −2 to xr = 2 with x′
r = 3.75.

Figure 41 shows vx and By for both the numerical and
analytical results, which agree to within 3% at any given
position.

On the left-hand side of the shock interface, the numerical
results are lower than the analytical solution because of the
artificial dissipation terms, which are required to properly
model a shock. These results do not depend on either the
kernel choice or the initial particle lattice configuration.

5.8. Self-gravity

5.8.1. Polytrope

The simplest test of self-gravity is to model a spherical
polytrope in hydrostatic equilibrum. Similar tests have been
shown for SPH codes dating back to the original papers of
Gingold & Monaghan (1977, 1978, 1980). Modern calcula-
tions have used these simple models in more complex ap-
plications, ranging from common envelope evolution (Iaconi
et al. 2017) to tidal disruption events (Coughlin & Nixon
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Figure 41. Hall-dominated standing shock using ηOR = 1.12 × 10−12, ηHE

=−3.53 ×10−2B, and ηAD = 7.83 × 10−3v2
A. The numerical and analytical

results agree to within 3% everywhere.

Figure 42. Polytrope static structure using 106 particles (black), compared
to the exact solution (red), shown at t = 100.

2015; Coughlin et al. 2016b, 2016a; Bonnerot et al. 2016,
2017).

The EOS is P = Kργ , with γ = 1 + 1/n where n is the
polytropic index. The exact hydrostatic solution is given by

γ K

4πG (γ − 1)

d2

dr2

(
rργ−1

)+ rρ = 0. (325)

Our initial setup uses a solution scaled to a radius R = 1, for a
polytropic index of n = 3/2, corresponding to γ = 5/3, with K
= 0.4244. We solve (325) numerically. We place the particles
initially on a hexagonal close-packed lattice, truncated to a
radius of R = 1, which we then stretch map (see Section 3.2)
such that the initial radial density profile matches the exact
solution.

The relaxation time depends on the initial density profile
and on how far the initial particle configuration is from equi-

PASA, 35, e031 (2018)
doi:10.1017/pasa.2018.25

https://doi.org/10.1017/pasa.2018.25 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2018.25
https://doi.org/10.1017/pasa.2018.25


Phantom 59

Figure 43. y- and x-positions of the centre of mass of one star of a binary
system (top and bottom, respectively). Each star is a polytrope with mass
and radius of unity, and N = 104 particles; the initial separation is 6.0 in code
units. After ∼15 orbits, the separation remains within 1%, and the period
remains constant within the given time resolution. The red line represents
the analytical position with respect to time, and the black line represents the
numerical position.

librium. Figure 42 shows the solution at t = 100 in code
units. The polytrope relaxes within a few dynamical times,
with only a slight rearrangement of the particles from the
stretched lattice. The density profile at all times is equal to
within 3% of the exact solution for r � 0.7 and the polytrope
remains in hydrostatic equilibrium.

Once the static solution is obtained, we tested the energy
conservation by giving the star a radial perturbation. That is,
we applied a velocity perturbation of the form v r = 0.2r to
the N ≈ 105 model, and evolved the polytrope for 100 time
units. We turned off the artificial viscosity for this test. The
total energy—including contributions from thermal, kinetic,
and gravitational energy—remained conserved to within 3%.

5.8.2. Binary polytrope

Next, we placed two initially unrelaxed, identical polytropes,
each with N = 104 particles in a circular orbit around each
other with a separation of 6R and evolved for ∼15 orbits
(1 000 code units). Figure 43 demonstrates that the separation
remains within 1% of the initial separation over 15 orbits,
and that the orbital period remains constant. After the initial
relaxation, total energy is conserved to within 0.06%.

The stars are far enough apart that any tidal deformation
as they orbit is insignificant. The final density profile of each
star agrees with the expected profile within 3% for r � 0.7.

5.8.3. Evrard collapse

A more complex test, relevant especially for star formation,
is the so-called ‘Evrard collapse’ (Evrard 1988) modelling
the adiabatic collapse of a cold gas sphere. It has been used
many times to test SPH codes with self-gravity, e.g. Hernquist
& Katz (1989), Steinmetz & Mueller (1993), Thacker et al.
(2000), Escala et al. (2004), and many others.
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Figure 44. Thermal, kinetic, total, and potential energies as a function of
time during the Evrard collapse (Evrard 1988). Green lines are calculated
using a 1D PPM code, taken from Figure 6 of Steinmetz & Mueller (1993),
while remaining colours show SPH simulations of different resolutions. Both
energy and time are given in code units, where R = M = G = 1.

Following the initial conditions of Evrard (1988), we setup
the particles initially in a sphere of radius R = 1 and mass M
= 1, with density profile

ρ(r) = M(R)

2πR2

1

r
. (326)

The density profile is created using the same stretch mapping
method as for the polytrope (see Section 5.8.1). The sphere is
initially isothermal, with the specific internal energy set to u
= 0.05GM/R with an adiabatic index of γ = 5/3. The sphere
initially undergoes gravitational collapse.

In the literature, the results of the Evrard collapse are typ-
ically normalised to a characteristic value. Here, we simply
show the results in code units (Section 2.2.3), since these
units already represent a normalised state. A distance unit of
R = 1 and mass unit M(R) = 1 is adopted, with the time unit
set such that G ≡ 1, where G is the gravitational constant.

Figure 44 shows the kinetic, thermal, total, and potential
energies as a function of time, at four different numerical res-
olutions. The green line shows the reference solution, com-
puted using a 1D piecewise parabolic method (PPM) code us-
ing 350 zones, which we transcribed from Figure 6 of Stein-
metz & Mueller (1993).

As the number of particles increases, the energies for t �
1.5 converge to the results obtained from the PPM code. At
t � 2, the SPH results appear to converge to energies that
differ slightly from the PPM code. Given that we are not able
to perform a comparable convergence study with the PPM
code, we are unable to assess whether or not this discrepancy
is significant.

Figure 45 shows enclosed mass, density, thermal energy,
and radial velocity as a function of radius at t = 0.77, where
the SPH results may be compared to the PPM results pre-
sented by Steinmetz & Mueller (1993) shown with the red
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Figure 45. Radial profile of the Evrard collapse (Evrard 1988) at t = 0.77,
red lines are taken from Figure 7 of Steinmetz & Mueller (1993), with panels
showing density (top) and radial velocity (bottom) as a function of (log)
radius. All values are given in code units, where R = M = G = 1. The
outward propagating shock at r ≈ 0.1 is sharper at high resolution.

line in the figure. At this time, the outward propagating shock
is at r ≈ 0.1, with the shock profile in agreement with the ref-
erence solution at high resolution.

5.9. Dust–gas mixtures

The SPH algorithms used in PHANTOM for dust–gas mix-
tures have been extensively benchmarked in Laibe & Price
(2012a, 2012b) (for the two-fluid method) and in Price &
Laibe (2015a) (for the one-fluid method; hereafter PL15).
Here, we merely demonstrate that the implementation of
these algorithms in PHANTOM gives satisfactory results on
these tests. For recent applications of PHANTOM to more real-
istic problems involving dust/gas mixtures, see Dipierro et al.
(2015, 2016), Ragusa et al. (2017), and Tricco et al. (2017).

5.9.1. DUSTYBOX

Figure 46 shows the results of the DUSTYBOX problem (Mon-
aghan & Kocharyan 1995; Paardekooper & Mellema 2006;

Figure 46. Decay of kinetic energy as a function of time in the DUSTY-
BOX test, involving a uniformly translating mixture of gas and dust coupled
by drag. Solid lines show the PHANTOM results for drag coefficients K =
0.01, 0.1, 1.0, 10, and 100 (top to bottom), which may be compared to the
corresponding analytic solutions given by the dashed red lines.

Laibe & Price 2011). We setup a uniform, periodic box x,
y, z ∈ [− 0.5, 0.5] with 32 × 36 × 39 gas particles set on
a close-packed lattice and 32 × 36 × 39 dust particles also
set on a close-packed lattice. The gas particles are initially at
rest, while the dust is given a uniform velocity vx = 1 in the
x-direction. We employ an isothermal EOS with cs = 1, uni-
form gas and dust densities of ρg = ρd = 1, using the cubic
spline kernel for the SPH terms and the double-hump cubic
spline kernel (Section 2.13.4) for the drag terms, following
Laibe & Price (2012a).

The red dashed lines in Figure 46 show the exact so-
lution for kinetic energy as a function of time. For our
chosen parameters, the barycentric velocity is vx = 0.5,
giving vg(t) = 0.5[1 + �vx(t)], vd(t) = 0.5[1 − �vx(t)],
where �vx(t) = exp ( − 2Kt) (Laibe & Price 2011) and
the red lines show Ekin(t ) = 1

2 [vg(t )2 + vd(t )2]. The close
match between the numerical and analytic solutions (L2 ∼
3 × 10−4) demonstrates that the drag terms are implemented
correctly.

The DUSTYBOX test is irrelevant for the one-fluid method
(Section 2.13.14) since this method implicitly assumes that
the drag is strong enough so that the terminal velocity ap-
proximation holds—implying that the relative velocites are
simply the barycentric values at the end of the DUSTYBOX

test.

5.9.2. DUSTYWAVE

Maddison (1998) and Laibe & Price (2011) derived the an-
alytic solution for linear waves in a dust–gas mixture: the
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Figure 47. Velocity of gas (solid) and dust (circles) at t = 4.5 in the DUSTYWAVE test, using the two-fluid method (left; with 64 × 12 × 12 gas particles,
64 × 12 × 12 dust particles) and the one-fluid method (right; with 64 × 12 × 12 mixture particles) and a dust-to-gas ratio of unity. Panels show results with
K = 0.5, 5, 50, and 500 (top to bottom), corresponding to the stopping times indicated. The two-fluid method is accurate when the stopping time is long (top
three panels in left figure) but requires h � csts to avoid overdamping (bottom two panels on left; Laibe & Price 2012a). The one-fluid method should be used
when the stopping time is short (right figure).

‘DUSTYWAVE’ test. The corresponding dispersion relation is
given by (Maddison 1998; Laibe & Price 2011, 2012a)

ω3 + iK

(
1

ρg
+ 1

ρd

)
ω2 − c2

s k2ω − iK
k2c2

s

ρd
= 0, (327)

which can be more clearly expressed as

(ω2 − c2
s k2) + i

ωts
(ω2 − c̃2

s k2) = 0, (328)

where c̃s = cs(1 + ρd/ρg)−1/2 is the modified sound speed
(e.g. Miura & Glass 1982). This demonstrates the two im-
portant limits: (i) ts → ∞, giving undamped sound waves in
the gas and (ii) ts → 0, giving undamped sound waves in the
mixture propagating at the modified sound speed. In between
these limits, the mixture is dissipative and waves are damped
by the imaginary term. This is seen in the analytic solutions
shown in Figure 47.

Two-fluid. We perform this test first with the two-fluid al-
gorithm, using 64 × 12 × 12 gas particles and 64 × 12 × 12
dust particles set up on a uniform, close-packed lattice in a
periodic box with x ∈ [− 0.5, 0.5] and the y and z boundaries
set to correspond to 12 particle spacings on the chosen lattice.
The wave is set to propagate along the x-axis with vg = vd

= Asin (2πx), ρ = ρ0[1 + Asin (2πx)] with ρ0 = 1 and A
= 10−4. The density perturbation is initialised using stretch
mapping (Section 3.2; see also Appendix B in Price & Mon-
aghan 2004b). We perform this test using an adiabatic EOS
with cs, 0 = 1. We adopt a simple, constant K drag prescrip-
tion, choosing K = 0.5, 5, 50, and 500 such that the stopping

time given by (236) is a multiple of the wave period (ts = 1,
0.1, 0.01, and 0.001, respectively).

The left panels in Figure 47 show the results of this test
using the two-fluid method, showing velocity in each phase
compared to the analytic solution after 4.5 wave periods (the
time is chosen to give a phase offset between the phases).
For stopping times ts � 0.1, the numerical solution matches
the analytic solution to within 4%. For short stopping times,
Laibe & Price (2012a) showed that the resolution criterion
h � csts needs to be satisfied to avoid overdamping of the
mixture. For the chosen number of particles, the smoothing
length is h = 0.016, implying in this case that the criterion is
violated when ts � 0.016. This is evident from the lower two
panels in Figure 47, where the numerical solution is over-
damped compared to the analytic solution.

This problem is not unique to SPH codes, but represents a
fundamental limitation of two-fluid algorithms in the limit of
short stopping times due to the need to resolve the physical
separation between the phases (which becomes ever smaller
as ts decreases) when they are modelled with separate sets
of particles (or with a grid and a physically separate set of
dust particles). The need to resolve a physical length scale
results in first-order convergence of the algorithm in the limit
of short stopping times, as already noticed by Miniati (2010)
in the context of grid-based codes. The problem is less severe
when the dust fraction is small (Lorén-Aguilar & Bate 2014),
but is difficult to ameliorate fully.

One-fluid. The limit of short stopping time (small grains)
is the limit in which the mixture is well described by the
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one-fluid formulation in the terminal velocity approximation
(Section 2.13.12). To compare and contrast the two methods
for simulating dust in PHANTOM, the right half of Figure 47
shows the results of the DUSTYWAVE test computed with the
one-fluid method. To perform this test, we set up a single
set of 64 × 12 × 12 ‘mixture’ particles placed on a uniform
closepacked lattice, with an initially uniform dust fraction ε

= 0.5. The particles are given a mass corresponding to the
combined mass of the gas and dust, with the density pertur-
bation set as previously.

The one-fluid solution is accurate precisely where the two-
fluid method is inaccurate, and vice-versa. For short stop-
ping times (ts = 0.001; bottom row) the numerical solu-
tion is within 1.5% of the analytic solution, compared to
errors greater than 60% for the two-fluid method (left fig-
ure). For long stopping times (ts � 1; top two rows), the
one-fluid method is both inaccurate and slow, but this is pre-
cisely the regime in which the two-fluid method (left figure)
is explicit and therefore cheap. Thus, the two methods are
complementary.

5.9.3. Dust diffusion

A simple test of the one-fluid dust diffusion algorithm is given
by PL15. For this test, we set up the particles on a uniform
cubic lattice in a 3D periodic box x, y, z ∈ [− 0.5, 0.5] using 32
× 32 × 32 particles with an initial dust fraction set according
to

ε(r, 0) =

⎧⎪⎨
⎪⎩

ε0

[
1 −

(
r

rc

)2
]

, r < rc,

0, elsewhere,

(329)

with ε0 = 0.1 and rc = 0.25. We then evolve the dust diffusion
equation, (272), discretised according to (279), while setting
the acceleration and thermal energy evolution to zero and
assuming P = ρ, with the stopping time set to a constant
ts = 0.1 and the computational timestep set to �t = 0.05.
Figure 48 shows the evolution of the dust fraction ε ≡ ρd/ρ as
a function of radius at various times, showing the projection of
all particles in the box (points) compared to the exact solution
(red lines) at t = 0.0, 0.1, 0.3, 1.0, and 10.0 (top to bottom).
The solution shows a close match to the analytic solution,
with agreement to within 0.3% of the analytic solution at all
times.

5.9.4. Dust settling

We perform the dust settling test from PL15 in order to di-
rectly compare the PHANTOM solutions to those produced in
PL15 with the NDSPMHD code. To simplify matters, we do
not consider rotation but simply adapt the 2D problem to 3D
by using a thin Cartesian box (as for several of the MHD tests
in Section 5.6). Our setup follows PL15, considering a slice
of a protoplanetary disc at R0 = 50 au in the r–z plane (corre-
sponding to our x and y Cartesian coordinates, respectively)

Figure 48. Dust diffusion test from Price & Laibe (2015a), showing the
evolution of the dust fraction on the particles (black dots) as a function of
radius at six different times (top to bottom), which may be compared to the
analytic solution given by the red lines.

with density in the ‘vertical’ direction (y) given by

ρ(y) = ρ0 exp

(−y2

2H 2

)
, (330)

where we choose H/R0 = 0.05 giving H = 2.5 au. We use
an isothermal EOS with sound speed cs ≡ H�, where � ≡√

GM/R3
0, corresponding to an orbital time torb ≡ 2π /� ≈

353 yr. We adopt code units with a distance unit of 10 au,
mass in solar masses, and time units such that G = 1, giving
an orbital time of ≈70.2 in code units. We apply an external
acceleration in the form

aext = − GMy√
R2

0 + y2
, (331)

where G = M = 1 in code units.
The particles are placed initially on a close-packed lat-

tice using 32 × 110 × 24 = 84 480 particles in the domain
[x, y, z] ∈ [±0.25,±3H,±√

3/128]. We then use the stretch
mapping routine (Section 3.2) to give the density profile ac-
cording to (330). We set the mid-plane density to 10−3 in
code units, or ≈6 × 10−13g cm−3. The corresponding par-
ticle mass in code units is 1.13 × 10−9. We use periodic
boundaries, with the boundary in the y direction set at ±10H
to avoid periodicity in the vertical direction.

Following the procedure in PL15, we relax the density
profile by evolving for 15 orbits with gas only with damp-
ing switched on. We then restart the calculation with either
(i) a dust fraction added to each particle (one-fluid) or (ii) a
corresponding set of dust particles duplicated from the gas
particles (two-fluid). For the dust, we assume 1-mm grains
with an Epstein drag prescription, such that the stopping time
is given by (250). Since �v is not available when comput-
ing ts with the one-fluid method, we set the factor f = 1 in
(250) when using this method (this is a valid approximation
since by definition �v is small when the one-fluid method
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Figure 49. 3D version of the dust settling test from Price & Laibe (2015a), showing the dust density in the ‘r–z’ plane of a protoplanetary disc. We assume
mm-sized grains with a 1% initial dust-to-gas ratio in a stratified disc atmosphere with H/R0 = 0.05 with R0 = 50 au in (331).

is applicable). The dimensionless stopping time ts� = 8.46
× 10−3 initially at the disc midplane. After adding dust, we
continued the simulation for a further 50 orbits.

Figure 49 shows the dust density at intervals of 10 torb,
showing the cross-section slice through the z = 0 plane of
the 3D box which may be directly compared to the 2D solu-
tions shown in PL15. Settling of the dust layer proceeds as ex-
pected, with close agreement between the one-fluid (top row)
and two-fluid (bottom row) methods, though the two-fluid
method is much slower for this test because of the timestep
constraint imposed by the stopping time, c.f. (261). The dust
resolution is higher in the two-fluid calculation because the
set of dust particles follow the dust mass rather than the total
mass (for the one-fluid method).

5.10. ISM cooling and chemistry

Figure 50 shows the behaviour of the various cooling and
chemistry modules used when modelling the ISM. These
plots were made from the data from a simulation of gas rings
embedded in a static background potential giving a flat ro-
tation curve (Binney & Tremaine 1987). Gas is setup in a
ring of constant surface density from 5 to 10 kpc in radius,
initially at 10 000 K, with a total gas mass of 2 × 109 M�.
The top panels show a temperature and pressure profile of all

gas particles. The temperature plateaus around 10 000 K and
forms a two-phase medium visible in the ‘knee’ in the pres-
sure profile, as expected for ISM thermal models (Wolfire
et al. 1995). Much lower temperatures can be reached if the
gas is given a higher surface density or if self-gravity is ac-
tive. In the case of the latter, some energy delivery scheme,
or the inclusion of a large number of sink particles, is needed
to break apart the cold knots.

The bottom two panels of Figure 50 show the chemical
abundances of H2 and CO. The exact form of the molecular
abundance profiles are a function of many variables that are
set at run time, with the data in the figure made from the de-
fault values. The molecular abundances are strong functions
of total gas density, with the CO being a strong function of
H2 abundance. If a higher gas mass (e.g. × 10 the value used
here) or self-gravity is included then abundances reach a max-
imum of either 0.5 for H2 or the primordial carbon abundance
for CO. See Dobbs et al. (2008) for a detailed discussion of
the features of these abundance curves.

6 EXAMPLE APPLICATIONS

PHANTOM is already a mature code, in the sense that we
have always developed the code with specific applications
in mind. In this final section, we demonstrate five example
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Figure 50. Temperature and pressure profiles resulting from the ISM heating and cooling functions (top) and the abundances of H2 and CO as a
function of gas density (bottom). The behaviour of the H2 and CO fractions close to n = 10 cm−3 is a consequence of H2 self-shielding: In gas
which was initially molecular, this remains effective down to lower densities than is the case in gas which was initially atomic. This behaviour
is discussed in much greater detail in Dobbs et al. (2008).

applications for which the code is well suited. The setup for
each of these applications are provided in the wiki documen-
tation so they can be easily reproduced by the novice user. We
also plan to incorporate these examples into an ‘optimisation
suite’ to benchmark performance improvements to the code.

6.1. Supersonic turbulence

Our first example application employs the turbulence forcing
module described in Section 2.5. Figure 51 shows the gas
column density in simulations of isothermal supersonic tur-
bulence driven to an rms Mach number of M ≈ 10, identical
to those performed by Price & Federrath (2010). The calcu-
lations use 2563 particles and were evolved for 10 turbulent
crossing times, tc = L/(2M). This yields a crossing time of
tc = 0.05 in code units. The gas is isothermal with sound
speed cs = 1 in code units. The initial density is uniform ρ0

= 1.
The gas column density plots in Figure 51 may be di-

rectly compared to the panels in Figure 3 of Price & Feder-

rath (2010). Figure 52 shows the time-averaged probability
distribution function (PDF) of s ≡ ln (ρ/ρ0). This demon-
strates the characteristic signature of isothermal supersonic
turbulence, namely the appearance of a log-normal PDF in
s (e.g. Vazquez-Semadeni 1994; Nordlund & Padoan 1999;
Ostriker, Gammie, & Stone 1999). Indeed, PHANTOM was
used in the study by Price, Federrath, & Brunt (2011) to con-
firm the relationship between the standard deviation and the
Mach number in the form

σ 2
s = ln

(
1 + b2M2

)
, (332)

where b = 1/3 for solenoidally driven turbulence, as earlier
suggested by Federrath et al. (2008, 2010a).

6.2. Star cluster formation

SPH has been used to study star formation since the earli-
est studies by Gingold & Monaghan (1982a, 1983), Phillips
(1982, 1986a, 1986b), and Monaghan & Lattanzio (1986,
1991), even motivating the original development of MHD
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Figure 51. Gas column density in PHANTOM simulations of driven, isothermal, supersonic turbulence at Mach 10, similar to the calculations performed
by Price & Federrath (2010). We show the numerical solutions at t = 1, 2, and 3 crossing times (left to right, respectively). The colour scale is logarithmic
between 10−1 and 10 in code units.

Figure 52. Time-averaged PDF of s = ln (ρ/ρ0) for supersonic Mach 10
turbulence, with the shaded region representing the standard deviation of
the averaging. The PDF is close to a log-normal distribution, shown by the
dashed red line.

in SPH by Phillips & Monaghan (1985). The study by Bate
et al. (2003) represented the first simulation of ‘large-scale’
star cluster formation, resolved to the opacity limit for frag-
mentation (Rees 1976; Low & Lynden-Bell 1976). This was
enabled by the earlier development of sink particles by Bate
et al. (1995), allowing star formation simulations to continue
beyond the initial collapse (Bonnell et al. 1997; Bate & Bon-
nell 1997). This heritage is present in PHANTOM which in-
herits many of the ideas and algorithms implemented in the
SPHNG code.

Figure 53 shows a series of snapshots taken from a recent
application of PHANTOM to star cluster formation by Liptai
et al. (2017). The initial setup follows Bate et al. (2003)—a
uniform density sphere of 0.375 pc in diameter with a mass
of 50 M�. The initial velocity field is purely solenoidal, gen-
erated on a 643 uniform grid in Fourier space to give a power
spectrum P(k)∝k−4 consistent with the Larson (1981) scaling
relations, and then linearly interpolated from the grid to the
particles. The initial kinetic energy is set to match the grav-

itational potential energy, (3/5GM2/R), giving a root mean
square Mach number ≈6.4. We set up 3.5 × 106 particles
in the initial sphere placed in a uniform random distribution.
We evolve the simulation using a barotropic EOS P = Kργ

in the form

P

ρ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c2
s,0, ρ < ρ1,

c2
s,0

(
ρ

ρ1

)(γ1−1)

, ρ1 ≤ ρ < ρ2,

c2
s,0

(
ρ2

ρ1

)(γ1−1) (
ρ

ρ1

)(γ2−1)

, ρ2 ≤ ρ < ρ3,

c2
s,0

(
ρ2

ρ1

)(γ1−1) (
ρ3

ρ2

)(γ2−1) (
ρ

ρ3

)(γ3−1)

, ρ ≥ ρ3,

(333)
where we set the initial sound speed cs, 0 = 2 × 104 cm s−1

and set [ρ1, ρ2, ρ3] = [10−13, 10−10, 10−3] g cm−3 and [γ 1,
γ 2, γ 3] = [1.4, 1.1, 5/3], as in Bate et al. (2003). We turn on
automatic sink particle creation with a threshold density of
10−10 g cm−3, with sink particle accretion radii set to 5 au
and particles accreted without checks at 4 au. No sink parti-
cles are allowed to be created within 10 au of another exist-
ing sink. The calculations satisfy the Bate & Burkert (1997)
criterion of resolving the minimum Jeans mass in the calcu-
lation (known as the opacity limit for fragmentation; Rees
1976; Low & Lynden-Bell 1976) by at least the number of
particles contained within one smoothing sphere.

The snapshots shown in Figure 53 show a similar evolution
to the original calculation of Bate et al. (2003). The evolu-
tion is not identical since we used a different realisation of the
initial turbulent velocity field. A more quantitative compari-
son can be found in Liptai et al. (2017) where we performed
seven different realisations of the collapse in order to measure
a statistically meaningful initial mass function (IMF) from
the calculations, finding an IMF in agreement with the one
found by Bate (2009a) in a much larger (500 M�) calculation.
The IMF produced with a barotropic EOS does not match the
observed local IMF in the Milky Way (e.g. Chabrier 2005),
tending to over-produce low mass stars and brown dwarfs.
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Figure 53. Star cluster formation with PHANTOM, showing snapshots of gas column density during the gravitational collapse of a 50 M� molecular cloud
core, following Bate, Bonnell, & Bromm (2003). Snapshots are shown every 0.2 tff (left to right, top to bottom), with the panels after t > tff zoomed in to
show the details of the star formation sequence. As in Bate et al. (2003), we resolve the fragmentation to the opacity limit using a barotropic equation of state.

This is a known artefact of the barotropic EOS (e.g. Matzner
& Levin 2005; Krumholz 2006; Bate 2009b), since material
around the stars remains cold rather than being heated. It can
be fixed by implementing radiative feedback, for example,
by implementing radiation hydrodynamics in the flux-limited
diffusion approximation (Whitehouse & Bate 2004; White-
house, Bate, & Monaghan 2005; Whitehouse & Bate 2006).
This is not yet implemented in PHANTOM but it is high on the
agenda.

6.3. Magnetic outflows during star formation

PHANTOM may also be used to model the formation of indi-
vidual protostars. We present an example following the initial
setup and evolution of Price et al. (2012). A molecular cloud
core with initial density ρ0 = 7.4 × 10−18 g cm−3 is embed-
ded in pressure equilibrium with ambient medium of density
2.5 × 10−19 g cm−3. The barotropic EOS given by (333) is
used, setting cs = 2.2 × 104 cm s−1. The radius of the core
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Figure 54. Magnetically propelled jet of material bursting out of the first hydrostatic core phase of star formation.

is 4 × 1016 cm (≈2700 au), with the length of the cubic do-
main spanning [x, y, z] = ±8 × 1016 cm. The core is in solid
body rotation with angular speed � = 1.77 × 10−13 rad s−1.
The magnetic field is uniform and aligned with the rotation
axis with a mass-to-flux ratio μ = 5, corresponding to B0 ≈
163 μG. A sink particle is inserted once the gas reaches a
density of 10−10 g cm−3, with an accretion radius of 5 au.
Thus, this calculation models only the evolution of the first
hydrostatic core phase of star formation. The core is com-
posed of 1 004 255 particles, with 480 033 particles in the
surrounding medium.

Figure 54 shows the evolution of a magnetised, collimated
bipolar jet of material, similar to that given by Price et al.
(2012). Infalling material is ejected due to the wind up of the
toroidal magnetic field. The sink particle is inserted at t ≈ 25
400 yrs, shortly before the jet begins. The jet continues to be
driven, while material continues to infall, lasting for several
thousand years.

6.4. Galaxy merger

To provide a realistic test of the collisionless N-body and
SPH implementations, we performed a comparison study
where we modelled a galaxy merger, comparing the PHAN-

TOM results with the HYDRA N-body/SPH code (Couchman,
Thomas, & Pearce 1995; Thacker & Couchman 2006). This
test requires gravity along with multiple particle types—gas,
stars, and dark matter. Gas interacts hydrodynamically only
with itself, and all three particle types interact with each other
via gravity (c.f. Table A1).

To create a Milky Way-like galaxy, we used GALAC-
TICS (Kuijken & Dubinski 1995b; Widrow & Dubinski 2005;
Widrow, Pym, & Dubinski 2008) to first create a galaxy con-
sisting of a stellar bulge, stellar disc, and a dark matter halo.
To create the gas disc, the stellar disc was then duplicated
and reflected in the x = y plane to avoid coincidence with the
star particles. Ten percent of the total stellar mass was then
removed and given to the gas disc. Although the gas disc ini-
tially has a scale height larger than physically motivated, this
will quickly relax into a disc that physically resembles the
Milky Way. Next, we added a hot gas halo embedded within
the dark matter halo. The hot gas halo has an observation-
ally motivated β-profile (e.g. Cavaliere & Fusco-Femiano
1976) and a temperature profile given by Kaufmann et al.
(2007); the mass of the hot gas halo is removed from the
dark matter particles to conserve total halo mass. The mass
of each component, as well as particle numbers and particle
masses are given in Table 5. To model the major merger, the
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Table 5. Component breakdown for each galaxy. For
each component, the total mass is M, the particle mass
is m, and the number of particles is N.

M/M� m/M�
(1010) (105) N

Dark matter halo 89.92 89.92 100 000
Hot gas halo 0.60 2.77 21 619
Stellar bulge 1.34 18.10 7 407
Stellar disc 3.56 18.10 19 662
Gas disc 0.54 2.77 19 662

galaxy is duplicated and the two galaxies are placed 70 kpc
apart on a parabolic trajectory. These initial conditions are
identical to those used in Wurster & Thacker (2013b, 2013a).
To simplify the comparison, there is no star formation recipe,
no black holes, and no feedback from active galactic nu-
clei (there are currently no plans to implement cosmologi-
cal recipes in PHANTOM). Thus, only the SPH and gravity
algorithms are being compared.

Figure 55 shows the gas column density evolution from
t = 100 Myr to t = 1.4 Gyr, comparing PHANTOM (left) to
HYDRA (right), and Figure 56 shows the evolution of the sep-
aration of the galaxies and the mean and maximum gas den-
sity in each model. The evolution of the two galaxy mergers
agree qualitatively with one another, with slight differences
in the trajectories, evolution times, and gas densities between
the two codes. Using the centre of mass of the star particles
that were assigned to each galaxy as a proxy for the galaxy’s
centre, the maximum separation at t ≈ 450 Myr is 59 and 61
kpc for HYDRA and PHANTOM, respectively. Second, peri-
apsis occurs at 875 and 905 Myr for HYDRA and PHANTOM,
respectively, which is a difference of 3.4% since the beginning
of the simulation. The maximum gas density is approximately
two times higher in PHANTOM prior to the merger, and about
1.2 times higher after the merger; the average gas densities
typically differ by less than a factor of 1.2 both before and
after the merger.

There are several differences in the algorithms used in HY-
DRA compared to PHANTOM. The first is the gravity solver.
The long-range gravity in HYDRA uses an adaptive particle-
mesh algorithm (Couchman 1991), while PHANTOM uses a
kd-tree (c.f. Section 2.12.4). For the short-range gravity, HY-
DRA uses a fixed S2 softening length for all particles, where
the S2 softening is scaled to an equivalent Plummer softening
such that εS2 = 2.34εPlummer; for this simulation, εi ≡ εPlummer

= 300 pc. In PHANTOM, εi = hi for each particle, where hi

is calculated using only the particles of the same type as
particle i.

A second difference is the treatment of the smoothing
length in high density regions. In HYDRA, as is common
in most galactic and cosmological codes, the smoothing
length is limited such that hi = max (hi, hmin), where hmin

= εPlummer/8 ( = 37.5 pc). In PHANTOM, hi is always calcu-
lated self-consistently and thus has no imposed lower limit.

Figure 55. Evolution of the gas column density in a major merger of two
Milky Way-sized galaxies, comparing PHANTOM to the HYDRA code. Times
shown are from the onset of the simulation, with each frame (100 kpc)2. The
colour bar is log [column density/(M� pc−1)].

Finally, PHANTOM contains an artificial conductivity term
(Section 2.2.8) that acts to ensure continuous pressure fields
across contact discontinuities (Price 2008).

In Wurster & Thacker (2013b), the HYDRA major merger
model was compared to a simulation run using the publicly
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Figure 56. Top: The evolution of the separation of the galaxies, using centre
of mass of the star particles that were assigned to each galaxy as a proxy
for the galaxy’s centre; the stars are sufficiently mixed after 1000 Myr,
thus a meaningful separation cannot be calculated. Bottom: The evolu-
tion of the maximum (solid) and mean (dashed) gas densities for each
model.

available version of GADGET2 (Springel et al. 2001; Springel
& Hernquist 2002). As here, the comparison was simpli-
fied such that only the gravity and SPH solvers were being
compared. They found that the galaxies in each simulation
followed similar trajectories and both models reached sec-
ond periapsis within 0.2% of one another, as measured from
the beginning of the simulation. Note that both HYDRA and
GADGET2 were both written primarily to solve galactic and
cosmological models.

The quantitive difference in results may be attributed to the
improved SPH algorithms in PHANTOM compared to HY-
DRA. The higher density in HYDRA is consistent with the
results in Richardson et al. (2016), who found higher den-
sities in HYDRA compared to the adaptive mesh refinement
code RAMSES (Teyssier 2002). It was determined that this
was a result of a combination of the artificial viscosity, hmin

and the suppression of ‘mixing’ (which occurs when no ther-
mal conductivity is applied).

6.5. Gap opening in dusty discs

Our final example is taken from Dipierro et al. (2016) and
builds on our recent studies of dust dynamics in protoplan-
etary discs with PHANTOM (e.g. Dipierro et al. 2015; Ra-
gusa et al. 2017). We perform calculations using the two-

fluid approach, setting up a disc with 500 000 gas particles
and 100 000 dust particles with �∝r−0.1 between 1 and 120
au with a total disc mass of 2 × 10−4 M�. The disc mass is
chosen to place the mm dust particles in a regime where the
Stokes number is greater than unity. The initial dust-to-gas
ratio is 0.01 and we assume a locally isothermal EOS with
cs∝r−0.35, normalised such that H/R = 0.05 at 1 au. We use
the minimum disc viscosity possible, setting αAV = 0.1.

Figure 57 shows the results of two calculations employ-
ing planets of mass 0.1 MJupiter (top row) and 1.0 MJupiter

(bottom) embedded in a disc around a 1.3 M� star. Left and
right panels show gas and dust surface densities, respectively.
While the theory of gap opening in gaseous discs is relatively
well understood as a competition between the gravitational
torque from the planet trying to open a gap and the viscous
torques trying to close it (e.g. Goldreich & Tremaine 1979,
1980), gap opening in dusty discs is less well understood (see
e.g. Paardekooper & Mellema 2004, 2006). In Dipierro et al.
(2016), we identified two regimes for gap opening in dusty
discs where gap opening in the dust disc is either resisted
or assisted by the gas–dust drag. The top row of Figure 57
demonstrates that low mass planets can carve a gap which
is visible only in the dust disc, while for high mass plan-
ets (bottom row), there is a gap opened in both gas and
dust but it is deeper in the dust. Moreover, the gap open-
ing mechanism by low mass planets has been further inves-
tigated in Dipierro & Laibe (2017). They derived a grain
size-dependent criterion for dust gap opening in discs, an
estimate of the location of the outer edge of the dust gap
and an estimate of the minimum Stokes number above which
low-mass planets are able to carve gaps which appear only
in the dust disc. These predictions has been tested against
PHANTOM simulations of planet–disc interaction in a broad
range of dusty protoplanetary discs, finding a remarkable
agreement between the theoretical model and the numerical
experiments.

Interestingly, our prediction of dust gaps that are not coin-
cident with gas gaps for low mass planets appears to be ob-
served in recent observations of the TW Hya protoplanetary
disc, by comparing VLT-SPHERE imaging of the scattered
light emission from small dust grains (van Boekel et al. 2017;
tracing the gas) to ALMA images of the mm dust emission
(Andrews et al. 2016).

7 SUMMARY

We have outlined the algorithms and physics currently im-
plemented in the PHANTOM SPH and MHD code in the hope
that this will prove useful to both users and developers of
the code. We have also demonstrated the performance of the
code as it currently stands on a series of standard test prob-
lems, most with known or analytic solutions. While no code
is ever ‘finished’ nor bug free, it is our hope that the code
as it stands will prove useful to the scientific community.
Works in progress for future code releases include radiation
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Figure 57. Gap opening in dusty protoplanetary discs with PHANTOM (from Dipierro et al. 2016), showing surface density
in gas (left) and mm dust grains (right) in two simulations of planet–disc interaction with planet masses of 0.1 MJupiter (top)
and 1 MJupiter (bottom) in orbit around a 1.3 M� star. In the top case, a gap is opened only in the dust disc, while in the bottom
row, the gap is opened in both gas and dust. The colour bar is logarithmic surface density in cgs units.

hydrodynamics, continuing development of the dust algo-
rithms, and an implementation of relativistic hydrodynamics.
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A DETAILS OF CODE IMPLEMENTATION

Figure A1 shows the basic structure of the code. The core of the
code is the timestepping loop, while the most time consuming part
are the repeated calls to evaluate density and acceleration on the
particles via sums over neighbouring particles. Further details of
these steps are given in Section A.3.

A.1 Smoothing kernels
A PYTHON script distributed with PHANTOM can be used to gen-
erate the code module for alternative smoothing kernels, including

Table A1. Particle types in PHANTOM. The density and
smoothing length of each type is computed only from neigh-
bours of the same type (c.f. Section 2.13.3). Sink particles
are handled separately in a different set of arrays.

ID Type Description

1 Gas Default type, all forces applied
2 Dust Drag, external & gravitational forces
3 Boundary Velocity and gas properties fixed
4 Star External and gravitational forces
5 Dark matter Same as star, but different mass
6 Bulge Same as star, but different mass
0 Unknown Usually dead particles

symbolic manipulation of piecewise functions using SYMPY to ob-
tain the relevant functions needed for gravitational force softening
(see below). Pre-output modules for the six kernels described in
Section 2.1.6 are included in the source code, and the code can be
recompiled with any of these replacing the default cubic spline on
the command line, e.g. make KERNEL=quintic.

The double hump kernel functions used in the two-fluid dust algo-
rithm (Section 2.13.4) can be generated automatically from the cor-
responding density kernel by the kernels.py script distributed
with PHANTOM, as described in Section 2.12.2. The pre-generated
modules implementing each of the kernels described in Section 2.1.6
hence automatically contain the corresponding double hump kernel
function, which is used to compute the drag terms.

A.2 Particle types
Particles can be assigned with a ‘type’ from the list (see Table A1 in
the appendix). The main use of this is to be able to apply different
sets of forces to certain particle types (see description for each type).
Densities and smoothing lengths are self-consistently computed for
all of these types except for ‘dead’ particles which are excluded
from the tree build and boundary particles whose properties are
fixed. However, the kernel interpolations used for these involve only
neighbours of the same type. Particle masses in PHANTOM are fixed
to be equal for all particles of the same type, to avoid problems
with unequal mass particles (e.g. Monaghan & Price 2006). We
use adaptive gravitational force softening for all particle types, both
SPH and N-body (see Section 2.12.3). Sink particles are handled
separately to these types, being stored in a separate set of arrays,
carry only a fixed softening length which is set to zero by default
and compute their mutual gravitational force without approximation
(see Section 2.8).

A.3 Evaluating density and acceleration
A.3.1 Tree build
PHANTOM uses a kd-tree for nearest neighbour finding and to com-
pute long range gravitational accelerations. The procedure for the
tree build is given in Figure A2. We use a stack, rather than recursive
subroutines, for efficiency and to aid parallelisation (the parallelisa-
tion strategy for the tree build is discussed further in Section A.4.2).
The stack initially contains only the highest level node for each
thread (in serial, this would be the root node). We loop over all
nodes on the stack and call a subroutine to compute the node prop-
erties, namely the centre of mass position, the node size, s, which
is the radius of a sphere containing all the particles centred on the
centre of mass, the maximum smoothing length for all the particles
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Figure A1. Flowchart showing the basic structure of PHANTOM. To the user what appears is a sequence of output files written at discrete time intervals. The
core of the code is the timestepping loop, while most of the computational cost is spent building the tree and evaluating density and acceleration by summing
over neighbours.

construct_root_node(rootnode,bounds)
push_onto_stack(rootnode,bounds)
number on stack = 1
do while (number on stack > 0)

pop_off_stack(node,bounds)
construct_node(node,bounds,boundsl,boundsr)
if (node was split)

push_onto_stack (leftchild,boundsl)
push_onto_stack (rightchild,boundsr)
number on stack += 2

endif
enddo

Figure A2. Pseudo-code for the tree build. The construct_node procedure
computes, for a given node, the centre of mass, size, maximum smooth-
ing length, quadrupole moments, and the child and parent pointers and the
boundaries of the child nodes.

contained within the node, pointers to the two node children and
the parent node, and, if self-gravity is used, the total mass in the
node as well as the quadrupole moment (see Section 2.12). The

construct_node subroutine also decides whether or not the
node should be split (i.e. if the number of particles >Nmin) and
returns the indices and boundaries of the resultant child nodes.

We access the particles by storing an integer array containing the
index of the first particle in each node (firstinnode), and using
a linked list where each particle stores the index of the next particle
in the node (next), with an index of zero indicating the end of
the list. During the tree build, we start with only the root node, so
firstinnode is simply the first particle that is not dead or accreted
and thenext array is filled to contain the next non-dead-or-accreted
particle using a simple loop. In the construct_node routine,
we convert this to a simple list of the particles in each node and use
this temporary list to update the linked list when creating the child
nodes (i.e., by setting firstinnode to zero for the parent nodes,
and filling firstinnode and next for the child nodes based on
whether the particle position is to the ‘left’ or the ‘right’ of the
bisected parent node).

The tree structure itself stores eight quantities without self-
gravity, requiring 52 bytes per particle (x,y,z,size,hmax: 5 ×
8-byte double precision; leftchild, rightchild, parent:
3 × 4-byte integer). With self-gravity, we store 15 quantities (mass
and quads(6), i.e. seven additional 8-byte doubles) requiring
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rcut = size(node) + radkern*hmax(node)
add_to_stack(root node)
number on stack = 1
do while (number on stack > 0)

nodem = stack(nstack)
distance = node - nodem
if (distance < rcut + size(nodem))

if (node is leaf node)
ipart = firstinnode(nodem)
do while(ipart > 0)

add particle to neighbour list
nneigh = nneigh + 1
if (nneigh <= cache size)

cache positions
endif
ipart = next(ipart)

enddo
else

add_to_stack(leftchild)
add_to_stack(rightchild)
number on stack += 2

endif
endif

enddo

Figure A3. Pseudo-code for the neighbour search (referred to as the
get_neigh routine in Figure A4).

108 bytes per particle. We implement the node indexing scheme
outlined by Gafton & Rosswog (2011) where the tree nodes on
each level l are stored starting from 2l − 1, where level 1 is the ‘root
node’ containing all the particles, to avoid the need for thread lock-
ing when different sections of the tree are built in parallel. How-
ever, the requirement of allocating storage for all leaf nodes on
all levels regardless of whether or not they contain particles either
limits the maximum extent of the tree or can lead to prohibitive
memory requirements, particularly for problems with high dynamic
range, such as star formation, where a small fraction of the particles
collapse to high density. Hence, we use this indexing scheme only
up to a maximum level (maxlevel_indexed) which is set such
that 2maxlevel_indexed is less than the maximum number of particles
(maxp). We do, however, allow the tree build to proceed beyond
this level, whereupon the leftchild, rightchild and par-
ent indices are used and additional nodes are added in the order
that they are created (requiring limited thread locking).

A.3.2 Neighbour search
The neighbour search for a given ‘leaf node’, n, proceeds from
the top down. As with the tree build, this is implemented using
a stack, which initially contains only the root node. The procedure
is summarised in Figure A3. We loop over the nodes on the stack,
checking the criterion

r2
nm < (sn + sm + Rkernhn

max)2, (A1)

where r2
nm ≡ (xn − xm )2 + (yn − ym )2 + (zn − zm )2 is the square of

the separation between the node centres and s is the node size. Any
node m satisfying this criteria, that is not a leaf node, has its chil-
dren added to the stack and the search continues. If node m is a
leaf node, then the list of particles it contains are added to the trial
neighbour list and the positions cached. The end product is a list
of trial neighbours (listneigh), its length nneigh, and a cache
containing the trial neighbour positions (xyzcache) up to some
maximum size (12 000 by default, the exact size not being impor-
tant except that it is negligible compared to the number of particles).
Trial neighbours exceeding this number are retrieved directly from
memory during the density calculation rather than from the cache.
This occurs rarely, but the overflow mechanism allows for the pos-
sibility of a few particles with a large number of neighbours, as
happens under certain circumstances.

A.3.3 Density and force calculation
Once the neighbour list has been obtained for a given leaf node, we
proceed to perform density iterations for each member particle. The
neighbours only have to be re-cached if the smoothing length of a
given particle exceeds hmax for the node, which is sufficiently rare so
as not to influence the code performance significantly. In the original
version of PHANTOM (on the nogravity branch), this neighbour
cache was re-used immediately for the force calculation but this is no
longer the case on the master branch (see Section A.3.4). Figure A4
summarises the resulting procedure for calculating the density.

The corresponding force calculation is given in Figure A5.

A.3.4 SPH in a single loop
A key difference in the force calculation compared to the density
calculation (Section 2.1.2) is that computation of the acceleration
[Equation (34)] involves searching for neighbours using both ha and
hb. One may avoid this requirement, and the need to store various
intermediate quantities, by noticing that the hb term can be computed
by ‘giving back’ a contribution to one’s neighbours. In this way, the
whole SPH algorithm can be performed in a single giant outer loop,
but with multiple loops over the same set of neighbours, following
the outline in Figure A4. This also greatly simplifies the neighbour
search, since one can simply search for neighbours within a known
search radius (2ha) without needing to search for neighbours that
‘might’ contribute if their hb is large. Hence, a simple fixed grid can
be used to find neighbours, as already discussed in Section 2.1.7,
and the same neighbour positions can be efficiently cached and re-
used (one or more times for the density iterations, and once for the
force calculation). This is the original reason we decided to average
the dissipation terms as above, since at the end of the density loop
one can immediately compute quantities that depend on ρa (i.e. Pa

and qa
ab) and use these to ‘give back’ the b contribution to ones

neighbours. This means that the density and force calculations can
be done in a single subroutine with effectively only one neighbour
call, in principle, saving a factor of two in computational cost.

The two disadvantages to this approach are (i) that particles may
receive simultaneous updates in a parallel calculation, requiring
locking which hurts the overall scalability of the code and (ii) that
when using individual timesteps only a few particles are updated at
any given timestep, but with the simple neighbour search algorithms
one is required to loop over all the inactive particles to see if they
might contribute to an active particle. Hence, although we employed
this approach for a number of years, we have now abandoned it for a
more traditional approach, where the density and force calculations
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!$omp parallel do
do node = 1, number of nodes

if (node is leaf node)
call get_neigh(node,listneigh,nneigh)
i = firstinnode(node)
do while (i > 0)

do while not converged
if (h > hmax(node)) call get_neigh
do k=1,nneigh

j = listneigh(k)
if (n <= cache size)

get j position from cache
else

get j position from memory
endif
if (actual neighbour)

evaluate kernel and dwdh
add to density sum
add to gradh sum
add to div v sum

endif
enddo
update h
check convergence

enddo
i = next(i)

enddo
endif

enddo
!$omp end parallel do

Figure A4. Pseudo-code for the density evaluation in PHANTOM, show-
ing how Equations (3)–(5) are computed. The force evaluation [evaluating
Equations (34) and (35)] is similar except that get_neigh returns neighbours
within the kernel radius computed with both hi and hj and there is no need
to update/iterate h (see Figure A5).

are done in separate subroutines and the kd-tree is used to search for
neighbours checking both ha and hb for the force calculation.

A.4 OpenMP parallelisation
A.4.1 Density and force calculation
Shared memory parallelisation of the density and force calculation is
described in pseudo-code in Figure A4. The parallelisation is done
over the ‘leaf nodes’, each containing around 10 particles. Since the
leaf nodes can be done in any order, this can be parallelised with a
simple $omp parallel do statement. The neighbour search is
performed once for each leaf node, so each thread must store a pri-
vate cache of the neighbour list. This is not an onerous requirement,
but care is required to ensure that sufficient per-thread memory is
available. This usually requires setting the OMP_STACKSIZE en-
vironment variable at runtime. No thread locking is required during
the density or force evaluations (unless the single loop algorithm is
employed; see Section A.3.4) and the threads can be scheduled at
runtime to give the best performance using either dynamic, guided or
static scheduling (the default is dynamic). Static scheduling is faster
when there are few density contrasts and the work per node is simi-
lar, e.g. for subsonic turbulence in a periodic box (c.f. Price 2012b).

!$omp parallel do
do node = 1, number of nodes

if (node is leaf node)
call get_neigh(node,listneigh,nneigh,fnode)
i = firstinnode(node)
do while (i > 0)

do n=1,nneigh
j = listneigh(n)
if (n <= cache size)

get j position from cache
else

get j position from memory
endif
if (dr < Rkern*hi or dr < Rkern*hj)

evaluate kernel and softening
add to force sum

else
add 1/r^2 forces to force sum

endif
enddo
get i distance from node centre
expand fnode at position of i
add long range terms to force sum
i = next(i)

enddo
endif

enddo
!$omp end parallel do

Figure A5. Pseudo-code for the force calculation, showing how the short
and long-range accelerations caused by self-gravity are computed. The quan-
tity fnode refers to the long-range gravitational force on the node computed
from interaction with distant nodes not satisfying the tree-opening criterion.

A.4.2 Parallel tree build
We use a domain decomposition to parallelise the tree build, similar
to Gafton & Rosswog (2011). That is, we first build the tree nodes
as in Figure A2, starting from the root-level node and proceeding
to its children and so forth, putting each node into a queue until the
number of nodes in the queue is equal to the number of OPENMP
threads. Since the queue itself is executed in serial, we parallelise
the loop over the particles inside the construct_node routine
during the construction of each node. Once the queue is built, each
thread proceeds to build its own sub-tree independently.

By default, we place each new node into a stack, so the only
locking required during the build of each sub-tree is to increment
the stack counter. We avoid this by adopting the indexing scheme
proposed by Gafton & Rosswog (2011) (discussed in Section 2.1.7)
where the levels of the tree are stored contiguously in memory.
However, to avoid excessive memory consumption, we only use
this scheme while 2nlevel < npart . For levels deeper than this, we revert
to using a stack which therefore requires a (small) critical section
around the increment of the stack counter.

A.4.3 Performance
Figure A6 shows strong scaling results for the pure OPENMP code.
For the scaling tests, we wanted to employ a more representative
problem than the idealised tests shown in Section 5. With this in
mind, we tested the scaling using a problem involving the collapse
of a molecular cloud core to form a star, as described in Section 6.3.
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Figure A6. Strong scaling results for the pure OPENMP code for the magne-
tised star formation problem, showing wall time as a function of the number
of OPENMP threads.

We used 106 particles in the initial sphere, corresponding to 1.44 mil-
lion particles in total. We recorded the wall time of each simulation
evolved for one free-fall time of the collapsing sphere, correspond-
ing to t = 0.88 in code units.

To show scaling of the OPENMP code to a reasonable number
of cpus, we performed the test on the Knights LandingTM (KNL)
nodes of the Raijin supercomputer (the main supercomputer of the
National Computational Infrastructure in Australia). Each CPU of
this machine is an Intel® Xeon PhiTM CPU 7230 with a clock speed of
1.30 GHz and a 1 024 kB cache size. The results shown in Figure A6
demonstrate strong scaling to 64 CPUs on this architecture. We
used the Intel® Fortran Compiler to compile the code. Timings are
also shown for the same calculation performed on two different
nodes of the Swinstar supercomputer, namely the ‘largemem’ queue,
consisting of up to 32 CPUs using Intel® XeonTM E7-8837 chips
running at 2.66 GHz with cache size 24 576 kB, and the ‘normal’
queue, consisting of up to 16 Intel® XeonTM E5-2660 chips running
at 2.20 GHz with cache size 20 480 kB. Our shortest wall time is
achieved on the largemem queue using 32 CPUs. Figure A7 shows
the corresponding speedup (wall time on single cpu divided by wall
time on multiple cpus) for each architecture. We find the best scaling
on the Swinstar ‘normal’ nodes, which show super-linear scaling and
100% parallel efficiency on 16 cpus. The parallel efficiency on KNL
is 60% on 64 cpus.

A.5 MPI parallelisation
The code has been recently parallelised for distributed memory ar-
chitecture using the Message Passing Interface (MPI), using a hybrid
MPI-OPENMP implementation. However, PHANTOM does not yet
compete with GADGET variants in terms of the ability to use large
numbers of particles [e.g. the most recent calculations by Bocquet
et al. (2016) employed more than 1011 particles], since almost all
of our published simulations to date have been performed with the
OPENMP code. Nevertheless, we describe the implementation be-
low.

We decompose the domain using the kd-tree in a similar manner
to the OPENMP parallelisation strategy described above. That is, we
build a global tree from the top down until the number of tree nodes
exceeds the number of MPI threads. Storing a global tree across all

Figure A7. Strong scaling results for the pure OPENMP code for the mag-
netised star formation problem, showing speedup as a function of the number
of OPENMP threads.

MPI threads is not too memory intensive since there are only as many
nodes in the global tree as there are MPI threads. Each thread then
proceeds to build its own independent subtree. During the neighbour
search (performed for each leaf node of the tree), we then flag if a
node hits parts of the tree that require remote contributions. If this is
the case, we send the information for all active particles contained
within the leaf node to the remote processor. Once all nodes have
computed density (or force) on their local particles, they proceed to
compute the contributions of local particles to the density sums of
particles they have received. The results of these partial summations
are then passed back to their host processors.

Particles are strictly assigned to a thread by their location in the
tree. During the tree build, we exchange particles between threads
to ensure that all particles are hosted by the thread allocated to their
subdomain.

Within each MPI domain, the OPENMP parallelisation then op-
erates as usual. That is, the OPENMP threads decompose the tree
further into sub-trees for parallelisation.

A.6 Timestepping algorithm
When employing individual particle timesteps, we assign particles
to bins numbered from zero, where zero would indicate a particle
with �t = �tmax, such that the bin identifier is

ibin,a = max

{
int

[
log2

(
2�tmax

�ta

)
− εtiny

]
, 0

}
, (A2)

where εtiny is a small number to prevent round-off error (equal to the
epsilon function in Fortran). The timestep on which the particles
move is simply

�t = �tmax

2nmax
, (A3)

where nmax is the maximum bin identifier over all the particles.
Each timestep increments a counter, istepfrac, which if the timestep
hierarchy remains fixed simply counts up to 2nmax . If nmax changes
after each step, then istepfrac is adjusted accordingly (istepfrac =
istepfrac/2(nmax,old−nmax,new )). A particle is active if

mod
[
istepfrac, 2(nmax−ibin,a )

] = 0. (A4)
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Active particles are moved onto a smaller timestep at any time
(meaning any time that they are active and hence have their timesteps
re-evaluated), but can only move onto a larger timestep if it is syn-
chronised with the next-largest bin, determined by the condition

mod
[
istepfrac, 2(nmax−ibin,a+1)

] = 0. (A5)

In keeping with the above, particles are only allowed to move to a
larger timestep by one bin at any given time.

We interpolate the positions of inactive particles by keeping
all particles synchronised in time at the beginning and end of the
timestep routine. This is achieved by storing an additional variable
per particle, twas. All particles begin the calculation with twas set to
half of their initial timestep, that is

twas,a = 1

2

(
�tmax

ibin,a

)
. (A6)

To be consistent with the RESPA algorithm (Section 2.3.3), we first
update all particles to their half timestep. These velocities are then
used to move the particle positions according to the inner loop of
the RESPA algorithm [Equations (80)–(83)]. We then interpolate all
velocities to the current time in order to evaluate the SPH derivative,
finishing with the Leapfrog corrector step. Figure A8 shows the
resulting pseudo-code for the entire timestepping procedure.

In particular, the first and last steps in the above (involvingtwas)
interpolate the velocity to the current time. All other variables de-
fined on the particles, including the thermal energy, magnetic field,
and dust fraction, are timestepped following the velocity field.

To prevent scenarios were active particles quickly flow into an
inactive region (e.g. the Sedov blast wave; see Section 5.1.3), in-
active particles can be woken at any time. On each step, parti-
cles who should be woken up will be identified by comparing the
ibin(i) of the active particles to ibin(j) of all i’s neigh-
bours, both active and inactive. If ibin(i)+1 > ibin(j),
then j will be woken up to ensure that its timestep is within a fac-
tor of two of its neighbours. At the end of the step, these particles
will have their ibin(j) adjusted as required, and their twas(j)
will be reset to the value of a particle with ibin that has perpetu-
ally been evolved on that timestep. Finally, the predicted timestep
will be replaced with dt_av=dt_evolved(j)+0.5dt(j),
where dt_evolved(j) is the time between the current time and
the time the particle was last active, and dt(j) is the particle’s new
timestep.

A.7 Initial conditions: Monte Carlo particle
placement

For setting up the surface density profile in discs, we use a Monte
Carlo particle placement (Section 3.3.1). This is implemented as
follows: We first choose the azimuthal angle as a uniform ran-
dom deviate u1 ∈ [φmin, φmax] (0 → 2π by default). We then con-
struct a power-law surface density profile �∝R−p using the rejection
method, choosing a sequence of random numbers u2 ∈ [0, fmax] and
iterating until we find a random number that satisfies

u2 < f , (A7)

where f ≡ R� = R1 − p and fmax = R1−p
in (or fmax = R1−p

out if p � 1).
Finally, the z position is chosen with a third random number u3 ∈
[− zmax, zmax] such that u3 < g, where g = exp [ − z2/(2H2)] and
zmax = √

6H .

init_step:
t = 0
do i=1,n

twas(i) = 0.5*dt(i)
enddo

step:
dt_long = min(dt(1:n))
do i=1,n

v(i) = v(i) + (twas(i)-t)*asph(i)
enddo
t1 = t + dt_long
do while (t < t1)

t = t + dt_short
do i=1,n

v(i) = v(i) + 0.5*dt_short*aext(i)
x(i) = x(i) + dt_short*v(i)

enddo
get_external_force(x,aext,dtshort_new)
get_vdependent_external_force(x,v,aext)
do i=1,n

v(i) = v(i) + 0.5*dt_short*aext(i)
enddo
dt_short = min(dtshort_new, t1-t)

enddo
do i=1,n

vstar(i) = v(i) + (t-twas(i))*asph(i)
dtold(i) = dt(i)

enddo
get_sph_force(x,vstar,asph,dt)
do i=1,n

if (active)
dt_av = 0.5*(dtold(i)+dt(i))
v(i) = v(i) + dt_av*asph(i)
twas(i) = twas(i) + dt_av

endif
v(i) = v(i) + (t - twas(i))*asph(i)
wake_inactive_particles(ibin(i),twas(i),dt_av)

enddo

Figure A8. Pseudo-code for the timestepping routine, showing how the in-
teraction between individual timestepping and the RESPA algorithm is im-
plemented. External forces and sink–gas interactions are computed on the
fastest timescale �tshort ≡ �text. Additional quantities defined on the par-
ticles follow the velocity terms. The variable twas stores the last time the
particle was active and is used to interpolate and synchronise the velocities
at the beginning and end of each timestep.

A.8 Runtime parameters in PHANTOM in relation to
this paper

Table A2 lists a dictionary of compile time and run time parameters
used in the code in relation to the notation used in this paper.

A.9 The PHANTOM testsuite
Most numerical codes in astrophysics are tested entirely by their
performance on physical problems with known solutions, with so-
lutions that can be compared with other codes and by maintenance
of various conservation properties at run time (see Section 5). We
also unit test code modules. This allows issues to be identified at
a much earlier stage in development. The tests are wrapped into
the nightly testsuite. When a bug that escapes the testsuite has been
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Table A2. Various runtime parameters in the code and their relation to this paper.

Quantity Code variable Description Reference

hfact hfact Ratio of smoothing length to particle spacing 2.1.2
1/�a gradh Smoothing length gradient correction term 2.1.2
εh tolh Tolerance in smoothing length–density iterations 2.1.4
Fab grkern Scalar part of kernel gradient 2.1.5
∂Wab(h)/∂ha dwdh Derivative of kernel with respect to smoothing length 2.1.5
K polyk Polytropic constant used for barotropic equations of state 2.2.2
utime utime Code time unit (cgs) 2.2.3
umass umass Code mass unit (cgs) 2.2.3
udist udist Code distance unit (cgs) 2.2.3
Equation (24) ipdv_heating Option to turn on/off PdV work term in energy equation 2.2.5

shock ishock_heating Option to turn on/off shock heating in energy equation 2.2.5
σ decay avdecayconst Decay constant in artificial viscosity switch 2.2.9
εv tolv Tolerance on velocity error during timestepping 2.3.1
�tmax dtmax Maximum time between output files 2.3.4
Racc accradius1 Accretion radius for central potential 2.4.1
M binarymassr Binary mass ratio for fixed binary potential 2.4.2
Racc, 2 accradius2 Accretion radius for secondary in fixed binary potential 2.4.2
k0 RadiationPressure Radiation pressure in Poynting–Robertson drag 2.4.7
k1 Redshift Gravitational redshift in Poynting–Robertson drag 2.4.7
k2 TransverseDrag Transverse component of Poynting–Robertson drag 2.4.7
Em st_energy Energy in turbulent stirring pattern 2.5
tdecay st_decay Decay time in turbulent stirring pattern 2.5
w st_solweight Solenoidal fraction in turbulent stirring pattern 2.5
kmin st_stirmin Minimum wavenumber in turbulent stirring pattern 2.5
kmax st_stirmax Minimum wavenumber in turbulent stirring pattern 2.5
fsol st_solweightnorm Solenoidal weighting in turbulent stirring pattern 2.5
ε h_soft_sinksink Fixed gravitational softening length between sink particles 2.8.1
σ c psidecayfac Dimensionless ratio of parabolic to hyperbolic ∇ · B cleaning 2.10.8
fclean overcleanfac Multiplier on maximum speed in divergence cleaning 2.10.9
ρgrain graindenscgs Intrinsic dust density in cgs units 2.13.6
fd damp Damping parameter for relaxing initial particle distributions 3.6

discovered, we have endeavoured to create a unit test to prevent a
future recurrence.

A.9.1 Unit tests of derivative evaluations
The unit test of the density and force calculations checks that various
derivatives evaluate to within some tolerance of the expected value.
To achieve this, the test sets up 100 × 100 × 100 SPH particles
in a periodic, unit cube, and specifies the input variables in terms
of known functions. For example, the evaluation of the pressure
gradient is checked by setting the thermal energy of each particle
according to

ua(x, y, z) = 1

2π

[
3 + sin

(
2πx
Lx

)
+ cos

(
2πy
Ly

)
+ sin

(
2πz
Lz

)]
, (A8)

where Lx, Ly, and Lz are the length of the domain in each direction and
the positions are relative to the edge of the box. We then compute the
acceleration according to (34) with the artificial viscosity and other
terms switched off, assuming an adiabatic EOS [Equation (25)] with
ρ = constant. We then test that numerical acceleration on all 106

particles is within some tolerance of the analytic pressure gradient
expected from (341), namely

−∇Pa

ρa
(x, y, z) = −(γ − 1)∇ua(x, y, z), (A9)

where typically we use a tolerance of 10−3 in the relative error E(x)
= |x − xexact|/xexact.

This procedure is repeated for the various derivatives of velocity,
including the velocity divergence, curl, and all components of the
strain tensor. We also test the artificial viscosity terms this way—
checking that they translate correctly according to (119)—as well as
the magnetic field derivatives and time derivatives, magnetic forces,
artificial resistivity terms, physical viscosity terms, time derivatives
of the dust fraction, and the time derivative of the velocity divergence
required in the viscosity switch. We perform each of these tests also
for the case where derivatives are evaluated on only a subset of the
particles, as occurs when individual particle timesteps are employed.

We additionally check that various conservation properties are
maintained. For example, energy conservation for hydrodynamics
requires (37) to be satisfied. Hence, we include a test that checks
that this summation is zero to machine precision. Similar tests are
performed for magnetic fields, and for subsets of the forces that
balance subsets of the thermal energy derivatives (e.g. the artificial
viscosity terms).

A.9.2 Unit tests of sink particles
Unit tests for sink particles include (i) integrating a sink particle
binary for 1 000 orbits and checking that this conserves total energy
to a relative error of 10−6 and linear and angular momentum to ma-
chine precision; (ii) setting up a circumbinary disc of gas particles
evolved for a few orbits to check that linear and angular momen-
tum and energy are conserved; (iii) checking that circular orbits are
correct in the presence of sink-sink softening; (iv) checking that
accreting a gas particle onto a sink particle conserves linear and
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angular momentum, and that the resulting centre of mass position,
velocity, and acceleration are set correctly (c.f. Section 2.8.2); and
(v) checking that sink particle creation from a uniform sphere of gas
particles (Section 2.8.4) succeeds and that the procedure conserves
linear and angular momentum.

A.9.3 Unit tests of external forces
For external forces, we implement general tests that can be applied
to any implemented external potential: (i) we check that the acceler-
ation is the gradient of the potential by comparing a finite difference
derivative of the potential, �, in each direction to the acceleration
returned by the external force routine; and (ii) we check that the rou-
tines to solve matrix equations for velocity-dependent forces (e.g.
Sections 2.4.5–2.4.7) agree with an iterative solution to the Leapfrog
corrector step [Equation (69)].

A.9.4 Unit tests of neighbour finding routines
In order to unit test the neighbour finding modules (Section 2.1.7),
we set up particles in a uniform random distribution with randomly
assigned smoothing lengths. We then check that the neighbour list
computed with the treecode agrees with a brute-force evaluation of
actual neighbours. We also perform several sanity checks (i) that no
dead or accreted particles appear in the neighbour list; (ii) that all
particles can be reached by traversing the tree or link list structure;
(iii) that nodes tagged as active contain at least one active particle and
conversely that (iv) inactive cells contain only inactive particles; (v)
that there is no double counting of neighbours in the neighbour lists;
and (vi) that the cached and uncached neighbour lists are identical.
We further check that particle neighbours are found correctly in
pathological configurations, e.g. when all particles lie in a 1D line
along each of the coordinate axes.

A.9.5 Unit tests of timestepping and periodic boundaries
As a simple unit test of both the timestepping and periodic bound-
aries, we set up 50 × 50 × 50 particles in a uniform periodic box
with a constant velocity (vx = vy = v z = 1) along the box diagonal.
We then evolve this for 10 timesteps and check that the density on
each particle remains constant and that the acceleration and other
time derivatives remain zero to machine precision.

A.9.6 Unit tests of file read/write
We check that variables written to the header of the (binary) output
files are successfully recovered by the corresponding read routine,
and similarly for the particle arrays written to the body of the file.
This quickly and easily picks up mistakes made in reading/writing
variables from/to the output file.

A.9.7 Unit tests of kernel module
We ensure that calls to different kernel routines return the same
answer, and check that gradients of the kernel and kernel softening
functions returned by the routines are within some small tolerance
of a finite difference evaluation of these gradients.

A.9.8 Unit tests of self-gravity routines
In order to unit test the treecode self-gravity computation
(Section 2.12), we (i) check that the Taylor series expansion of the

force on each leaf node matches the exact force for a particle placed
close to the node centre; (ii) that the Taylor series expansion of
the force and potential around the distant node are within a small
(∼10−5) tolerance of the exact values; (iii) that the combined expan-
sion about both the local and distant nodes produces a force within
a small tolerance of the exact value; and finally (iv) that the gravita-
tional force computed on the tree for a uniform sphere of particles
is within a small tolerance (∼10−3) of the force computed by direct
summation.

A.9.9 Unit tests of dust physics

We unit test the dust modules by first performing sanity checks
of the dust–gas drag routine—namely that the transition between
Stokes and Epstein drag is continuous and that the initialisation
routine completes without error. We then perform a low-resolution
DUSTYBOX test (Section 5.9.1), checking the solution matches the
analytic solution as in Figure 46. For one-fluid dust, we perform
a low-resolution version of the dust diffusion test (Section 5.9.3),
checking against the solution at every timestep is within a small
tolerance of the analytic solution. Dust mass, gas mass, and energy
conservation in the one-fluid dust derivatives are also checked au-
tomatically.

A.9.10 Unit tests of non-ideal MHD

We perform three unit tests on non-ideal MHD. The first is the
wave damping test (see Section 5.7.1). This test also uses the super-
timestepping algorithm to verify the diffusive [Equation (202) but
considering only Ohmic resistivity and ambipolar diffusion] and
minimum stable timesteps [Equation (72)], but then evolves the
system on the smallest of the two timesteps. The second test is the
standing shock test (see Section 5.7.2). This test is also designed
as a secondary check on boundary particles. Both tests used fixed
coefficients for the non-ideal terms, and for speed, both tests are
performed at much lower resolutions than presented in the paper.
The third test self-consistently calculates the non-ideal coefficients
for given gas properties.

A.9.11 Other unit tests

Various other unit tests are employed, including sanity checks of in-
dividual timestepping utility routines, checking that the barotropic
EOS is continuous, of the Coriolis and centrifugal force routines,
checks of conservation in the generalised Newtonian potential
(Section 2.4.6), of the routine to revise the tree, and of the fast
inverse square root routines.

A.9.12 Sedov unit test

As a final ‘real’ unit test, the code performs a low-resolution (163)
version of the Sedov blast wave test (Section 5.1.3). We check that
energy and momentum are conserved at a precision appropriate to
the timestepping algorithm (for global timesteps, this means mo-
mentum conservation to machine precision and energy conservation
to �E/E0 < 5 × 10−4; for individual timesteps, we ensure linear mo-
mentum conservation to 2 × 10−4 and energy conservation to 2 ×
10−2).
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