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On Rational Equivalence in Tropical
Geometry

Lars Allermann, Simon Hampe, and Johannes Rau

Abstract. _is article discusses the concept of rational equivalence in tropical geometry (and re-
places an older, imperfect version). We give the basic deûnitions in the context of tropical varieties
without boundary points and prove some basic properties. We then compute the “bounded” Chow
groups of Rn by showing that they are isomorphic to the group of fan cycles. _e main step in the
proof is of independent interest. We show that every tropical cycle in Rn is a sum of (translated)
fan cycles. _is also proves that the intersection ring of tropical cycles is generated in codimension
1 (by hypersurfaces).

1 Introduction

_e concept of rational equivalence plays a fundamental role in algebraic geometry,
and it is therefore natural to study analogue notions in tropical geometry. _is has
been done quite extensively in the case of divisors on a curve (e.g., [3, 4, 7, 9, 16]),
whereas there are relatively few instances in higher dimensions where rational equiv-
alence is mentioned explicitly (cf. [2, 12, 14], for example).

_is paper is devoted to the basic deûnitions and properties of rational equivalence
for tropical varieties. We limit ourselves to non-compact tropical varieties without
“boundary” points here and study usual as well as “bounded” rational equivalence
(the latter using bounded rational functions). We prove some basic properties (in
particular the compatibility with the constructions from [2]) and show that bounded
rational equivalence can also be expressed in terms of families of cycles over R.

We then turn to the case of cycles in Rn and show that two cycles are bounded
rationally equivalent if and only if they are numerically equivalent if and only if they
have the same recession fan cycle. It follows that the bounded Chow group of Rn is
isomorphic to the group of fan cycles in Rn . _e main step is to prove that a tropical
cycle is rationally equivalent to its recession fan cycle. We deduce this by proving an-
other statement of independent interest; we show that every tropical cycle in Rn can
be decomposed into a sum of (translated) fan cycles. _is also proves the fact that
every such tropical cycle can be written as a sum of intersection products of hyper-
surfaces. In other words, hypersurfaces V( f ) with f a tropical polynomial generate
the ring of tropical cycles Z∗(Rn).
An older and imperfect version of this paper exists by the ûrst and third authors on

arXiv (cf. [1]). Our main motivation for this new version is to replace the proof of the
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“main step”mentioned above (i.e., rational equivalence of a cycle and its recession fan
cycle) by a simpler and more transparent argument. To us, the cleanest way to update
the older paper seemed to be to replace it completely and therefore to include the older
material in this new version. In doing so, we also updated the terminology slightly.
Rational equivalence in the older paper is now called bounded rational equivalence (as
it is generated by bounded rational functions). We added the concept of usual rational
equivalence (generated by (arbitrary) rational functions) and rational equivalence over
R (generated by families over R).

2 Preliminaries

_is article is, to some extent, a continuation of [2], and we mostly follow the deûni-
tions and notations introduced there. However, for the reader’s convenience, we start
by recalling the most important terminology. For more details, we kindly refer the
reader to the cited work.

2.1 Cycles

A tropical polyhedral complex X is a balanced (weighted, pure-dimensional, rational,
ûnite) polyhedral complex in Rn (with underlying lattice Zn). _e top-dimensional
polyhedra in X are called facets; the codimension one polyhedra are called ridges.
Balanced means that for each ridge τ ∈ X, the following balancing condition at τ is
satisûed. _e weighted sum of the primitive vectors of the facets σ around τ is zero,
i.e.,

∑

σ∈X(dim(X))

τ<σ

ω(σ)vσ/τ = 0.

Here, ω(σ) denotes the weight of the facet, and vσ/τ is the primitive integer generator
of the ray obtained from projecting σ to Rn/Vτ , where Vτ denotes the linear vector
space spanned by τ. _e support of X, denoted by ∣X∣, is the union of all facets in X

with non-zero weight.
Two tropical polyhedral complexes are called equivalent if they admit a common

reûnement and if the induced weights are the same. A tropical cycle X is an equiv-
alence class of tropical polyhedral complexes. A representative X of X is called a
polyhedral structure for X. Obviously, the support of X is well deûned, and we of-
ten denote it by the same letter X. Consistent with this abuse of notation, we can
think of a tropical cycle X as a polyhedral set with weights ωX(p) for generic points
p ∈ Xgen such that (a�er choosing a polyhedral structure) the balancing condition is
satisûed. A tropical cycle F supported on a fan (i.e., a union of cones with vertex at 0)
is called a fan cycle.

2.2 The Divisor of a Rational Function

A map ϕ∶Rn ⊇ S → Rm is called integer aõne if there exist A ∈ Mat(m × n,Z) and
a ∈ Rm such that for all p ∈ S ϕ(p) = Ap + a. A (non-zero) rational function on a
tropical cycle X is a continuous function ϕ∶X → R that is integer aõne on each cell
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of a suitable polyhedral structureX of X. _e divisor of ϕ, denoted by div(ϕ) = ϕ ⋅ X,
is given by the weighted subcomplex ϕ ⋅ X of X constructed in [2, Section 3.3]. It is
supported on the codimension one skeleton ofX and contains each ridge τ ∈ X (now
a facet of ϕ ⋅X) with weight

(2.1) ωϕ⋅X(τ) = ∑

σ∈X(dim X)

τ<σ

ω(σ)ϕσ(ṽσ/τ) − ϕτ( ∑

σ∈X(dim X)

τ<σ

ω(σ)ṽσ/τ) .

Here ϕσ ∶Vσ → R denotes the linear part of the aõne function ϕ∣σ , and ṽσ/τ is an
arbitrary representative in Rn of vσ/τ ∈ Rn/Vτ . It was shown in [2, Section 3.7] that
these weights satisfy the balancing condition, hence div(ϕ) is a well-deûned tropical
subcycle of X of codimension one. Note also that div(ϕ) agrees with the intersection
of the balanced graph of ϕ with X × {−∞}. _e balanced graph of ϕ is obtained from
the usual graph of ϕ (not balanced, in general) by adding cells in the (0, . . . , 0,−1)-
direction in order to make it balanced. In this sense, div(ϕ) can be regarded as the
divisor of zeros and poles (if negative weights show up) of ϕ.

2.3 Morphisms and Projection Formula

Given two cycles X ⊆ Rn and Y ⊆ Rm , a integer aõne map f ∶X → Y is called amor-
phism of cycles. Given such amorphism, we can pull back a rational function ϕ onY to
a rational function f ∗(ϕ) = ϕ○ f on X. Furthermore, we can push forward a subcycle
Z of X to a subcycle f∗(Z) of Y . _is is due to [8, 2.24 and 2.25] in the case of fans
and can be generalized to complexes (see [2, Section 7.3]). _e push forward f∗(Z)
is supported on the image f (∣Z∣), and (for suõciently ûne polyhedral structures) the
weights of f∗(Z) are given by

ω f∗(Z)(σ
′
) = ∑

σ facet of Z
f (σ)=σ ′

∣Λσ ′/ f (Λσ)∣ ⋅ ωZ(σ),

where σ ′ is a cell ofY of dimensiondim(Z). Here, Λσ ∶= Vσ∩Zn denotes the sublattice
of Zn spanned by σ (analogously for Λσ ′). It follows that dim( f∗(Z)) = dim(Z) if
f∗(Z) ≠ 0.

_e projection formula (see [2, Section 4.8]) connects all the above constructions
via

(2.2) f∗( f ∗(ϕ) ⋅ Z) = ϕ ⋅ f∗(Z).

2.4 Intersection Product of Two Cycles

Another feature of tropical intersection theory is that for any two cycles X ,Y in Rn ,
we can perform the “stable intersection” X ⋅ Y , which is again a well-deûned cycle in
Rn (not just a cycle class modulo rational equivalence). _e codimension of X ⋅ Y is
always equal to the sum of codimensions of X and Y , regardless of the dimension of
the set-theoretic intersection X ∩ Y . _e deûnition given in [2, Section 9.3] is based
on intersecting the cartesian product X × Y ⊆ Rn × Rn with the diagonal described

https://doi.org/10.4153/CJM-2015-036-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-036-0


244 L. Allermann, S. Hampe, and J. Rau

by the rational functions max{x1 , y1}, . . . , max{xn , yn}, i.e.,
X ⋅ Y ∶= π∗( max{x1 , y1} ⋅ ⋅ ⋅max{xn , yn} ⋅ (X × Y)) .

Here, x i , y i are the coordinates of the ûrst (resp. second) factor ofRn , and π is any of
the two projections. _is intersection product turns Z∗(Rn) into a graded commu-
tative ring and satisûes (ϕ ⋅ X) ⋅ Y = ϕ ⋅ (X ⋅ Y), where ϕ is a rational function on X.
Moreover, Rn (considered as a cycle) is the identity element.

Note that our deûnition is a way of formalizing the concept of stable intersection
based on moving the cycles slightly as proposed in [14, 19] (details can be found e.g.,
in [15]; equivalence was proven in [11, 17]).

3 Rational Equivalence

As discussed in [2, Section 8.6], the deûnition of rational equivalence given there is
not compatible with push-forwards of cycles. _e following deûnition ismore �exible
and resolves this problem. Moreover, we show in Proposition 3.5 that this deûnition
is consistent with the approach of using families over R.

Deûnition 3.1 Let X be a cycle and let Z be a subcycle. We call Z bounded rationally
equivalent to zero on X if there exists a morphism f ∶Y → X and a bounded rational
function ϕ on Y such that f∗(ϕ ⋅Y) = Z . Note that in this case dim(Y) = dim(Z)+ 1.
Two subcycles Z , Z′ of C are called rationally equivalent, denoted by Z ∼ Z′, if Z − Z′
is rationally equivalent to zero.
Furthermore, if the function ϕ from above can chosen to be bounded, we call Z

bounded rationally equivalent to zero. _e corresponding equivalence relation is called
bounded rational equivalence and is denoted by b

∼.

Obviously, both ∼ and b
∼ are additive equivalence relations. It also clear that Z b

∼ Z′
implies Z ∼ Z′, hence bounded rational equivalence is the stronger relation. Even
though ∼ is more natural from the classical point of view, the main interest in this
paper will be on bounded rational equivalence. Some explanations regarding this
are collected in Remark 3.7. (Bounded) rational equivalence satisûes the following
properties.

Proposition 3.2 Let Z be a cycle in X (bounded) rationally equivalent to zero. _en
the following hold:
(i) Let X′ be another cycle. _en Z × X′ ⊆ X × X′ is also (bounded) rationally equiv-

alent to zero.
(ii) Let ϕ be a rational function on X. _en ϕ⋅Z is also (bounded) rationally equivalent

to zero.
(iii) Let g∶X → X̃ be a morphism. _en g∗(Z) is also (bounded) rationally equivalent

to zero.
(iv) Assume X = Rn and let Z′ be another cycle in Rn . _en Z ⋅ Z′ is also (bounded)

rationally equivalent to zero.
(v) If Z b

∼ 0 and dim(Z) = 0, then deg(Z) = 0. Here, as usual, deg(∑m iPi) ∶= ∑m i
denotes the sum of coeõcients.
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Proof Let f ∶Y → X be a morphism and let ϕ be a (bounded) function on Y such
that f∗(ϕ ⋅Y) = Z. _en f × id∶Y ×X′ → X ×X′ shows (i). Restricting f to f ∗(ϕ) ⋅Y
and using the projection formula (2.2) shows (ii). Composing f with g shows (iii).
For (iv) we just have to recall that Z ⋅ Z′ is computed by

π∗(max{x1 , y1} ⋅ ⋅ ⋅max{xn , yn} ⋅ (Z × Z′)) .

_us, (iv) follows from (i)–(iii). We are le� with (v), the only case where the stronger
concept of bounded rational equivalence is needed. In this case, Y must be one-
dimensional, and we can apply [2, Section 8.3], which shows that the degree of ϕ ⋅ Y ,
when ϕ is bounded, is zero. Pushing forward preserves degree, and hence the state-
ment follows.

Translations are easy examples of bounded rationally equivalent cycles. Given a
vector v⃗ ∈ Rn , in the following, X + v⃗ will always denote the translation of a cycle X
by the vector v⃗. _is should be distinguished from the usual sum of cycles X+Y given
taking unions and adding weights.

Proposition 3.3 Let X be a cycle in Rn and let X + v⃗ denote the translation of X by
an arbitrary vector v⃗ ∈ Rn . _en X b

∼X + v⃗ .

Proof Consider the cycle X ×R in Rn ×R and the morphism

f ∶Rn
×RÐ→ Rn ,

(x , t) z→ x + te⃗ i ,

where e⃗ i is the i-th unit vector in Rn . For µ ∈ R≥ let ϕµ be the bounded function

ϕµ(x , t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 t ≤ 0
t 0 ≤ t ≤ µ
µ t ≥ µ.

_en we can compute

f∗(ϕµ ⋅ (X ×R)) = f∗(C × {0} − C × {µ}) = C − (C + µe⃗ i).

Applying this to each coordinate step by step, we obtain X b
∼X + v⃗.

In algebraic geometry, instead of using the divisors of zeros and poles of rational
functions, one may deûne rational equivalence by considering (�at) families of cycles
over P1. Indeed, two cycles are rationally equivalent if they both appear as ûbers of
some family F. Tropically, we can do the same (cf. [14, Section 4.6]).

Deûnition 3.4 Let X be a cycle and consider a subcycle F ⊆ X ×R. For each point
p ∈ R, we deûne the ûber of F at p by

Fp ∶= ϕp ⋅ F ⊆ X × {p} ≅ X ,

where ϕp is the pull-back ofmax{x , p} along X×R→ R. We think of Fp as a subcycle
of X. _e equivalence relation generated by setting Fp

R
∼Fq for two ûbers Fp , Fq of the

same F is called rational equivalence over R, denoted by R
∼.
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Proposition 3.5 Rational equivalence overR (as in Deûnition 3.4) agrees with boun-
ded rational equivalence (as in Deûnition 3.1).

Proof We ûrst show that, given F ⊆ X × R and p, q ∈ R, any two ûbers Fp and Fq
satisfy Fp

b
∼Fq . To see this, let ϕ be a rational function onRwith divisor ϕ⋅R = ∑m i p i .

Furthermore, let π∶ F → X ×R → R denote the second projection. Pulling back ϕ to
F, we obtain

(3.1) π∗ϕ ⋅ F = ∑m iFp i .

_is follows from the fact that the divisor construction is local (cf. [17, Section 1.1]),
linear, and invariant under change by an aõne function (cf. [2, Section 3.6]). We apply
equation (3.1) to the function

ϕ = max{x , p} −max{x , q},

which is obviously bounded. We obtain

π∗(ϕ ⋅ F) = Fp − Fq ∈ Z∗(X),

which proves Fp
b
∼ Fq .

Now let f ∶Y → X be some morphism of cycles and let ϕ be a bounded rational
function on Y . We have to show f∗(ϕ ⋅Y)

R
∼0. In order to construct a suitable F, let us

ûrst consider the balanced graph of ϕmentioned in Subsection 2.2. It is obtained from
the usual graph of ϕ in Y ×R by adding facets directed downwards in such a way that
the constructed polyhedral complex satisûes the balancing condition (cf. [2, Section
3.3]). Let us denote this subcycle of Y ×R by Γ. As ϕ is bounded from above, we may
choose p ∈ R close to +∞ such that Γp = [∅] = 0. But ϕ is also bounded from below.
Hence, choosing q ∈ R close to −∞ we will only intersect the “additional” facets of Γ,
and therefore Γq = ϕ ⋅ Y . Let us now consider the map f × id∶Y ×R→ X ×R and set

F ∶= ( f × id)∗(Γ) ⊆ C ×R.

Using the projection formula, we easily see that Fx = f∗(Γx) for all x ∈ R. In particu-
lar, Fp = 0 and Fq = f∗(ϕ ⋅ Y). _us, f∗(ϕ ⋅ Y)

R
∼0, and we are done.

In the following we will abandon the terminology “overR” and notation R
∼ in favor

of “bounded” and b
∼.

Deûnition 3.6 _e (bounded) Chow group of X is deûned to be the group of tropical
subcycles of X modulo (bounded) rational equivalence, denoted by

A∗(X) ∶= Z∗(X)/ ∼ and Ab∗(X) ∶= Z∗(X)/
b
∼ .

Remark 3.7 A few remarks regarding our deûnitions of rational equivalence might
be helpful at this point. Note that in this paper we only work with spaces that do not
contain “boundary points” (e.g., the points at inûnity in TP1 = R ∪ {±∞}) as intro-
duced for example in [14]. We refer to the book in progress [15] for the corresponding
theory in this more general setting. In particular, Deûnition 3.4 can be changed to al-
low families over TP1 and not justR, in which case we recover rational equivalence ∼
(with unbounded functions). Hence, this equivalence relation is the canonical choice
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from the classical point of view. However, when working with non-compact spaces,
cycles can o�en bemoved oò “to inûnity”, and hence the corresponding Chow groups
contain relatively little information. For example, we will show A∗(Rn) = 0 (cf. 5.5),
in analogy with the classical statement A∗((C∗)n) = 0.

In contrast, bounded rational equivalence in essence prohibits moving cycles to
inûnity, and therefore provides richer Chow groups in the non-compact case as well.
_e main idea is that two cycles are bounded rationally equivalent in X if and only
if they are rationally equivalent in any (toric) compactiûcation X of X. For example,
in the case of X = Rn , our main result, _eorem 5.7, together with [6, Section 4.2]
shows that Ab∗(Rn) can be described as the direct limit of the Chow groups of all toric
varieties compactifying (C∗)n .

4 Numerical Equivalence

Let us now compare bounded rational equivalence to numerical equivalence.

Deûnition 4.1 Let X be a cycle in Rn of codimension k. _en we deûne dX to be
the map

dX ∶ Zk(Rn
) Ð→ Z,
Z z→ deg(X ⋅ Z).

We call two cycles C ,D numerically equivalent if the two functions dC and dD coin-
cide.

Note that Lemma 3.2 implies that bounded rationally equivalent cycles are also
numerically equivalent. In _eorem 5.7 we will also prove the converse. In this sec-
tion, our goal is to show that two bounded rationally (resp. numerically) equivalent
fan cycles have to be equal.

Proposition 4.2 Let F1 and F2 be fan cycles in Rn . If F1
b
∼ F2 or dF1 = dF2 , then F1

and F2 are equal.

We need the following technical result.

Lemma 4.3 Let F be a d-dimensional fan cycle in Rn . _en there exists a complete
simplicial rational fan Θ in Rn such that F can be represented by a tropical fan F that
is a subfan of Θ (i.e., each cone of F is a cone of Θ).

Proof We start with some fan F0 = {σ1 , . . . , σN} representing F. Each cone σi is
described by certain integer linear inequalities, say

σi = {x ∈ Rn
∶ ⟨ f i1 , x⟩ ≥ 0, . . . , ⟨ f ik i

, x⟩ ≥ 0},

with f ij ∈ Zn . Let H f ij
be the fan consisting of the two halfspaces and the hyperplane

deûned by f ij , i.e.,

H f ij
∶= {{x ∶ ⟨ f ij , x⟩ ≥ 0}, {x ∶ ⟨ f ij , x⟩ = 0}, {x ∶ ⟨ f ij , x⟩ ≤ 0}} .
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Consider the “intersection” of all these fans,

Θ′
∶=

N
⋂
i=1

k i

⋂
j=1

H f ij

as described in [8, 2.5(e)]. In other words, Θ′ is the complete fan inRn containing any
cone that can be described by some collection of inequalities of the form ± f ij (x) ≥ 0.
By construction, F can be represented by a subfanF′ of Θ′. By subdividing Θ′ further,
we can construct a simplicial fan Θ (cf. [5, 48]). As Θ is a reûnement of Θ′, F can still
be represented by a subfan of Θ (namely by F ∶= F′ ∩Θ), and we are done.

Proof of Proposition 4.2 As mentioned before, note that F1
b
∼ F2 implies dF1 = dF2

by Proposition 3.2(iv) and (v). Hence, it suõces to show the following. If F is a tropical
cycle with dF = 0, then F = 0. We prove this by induction on d ∶= dim(F). For d = 0
the situation is trivial: F is equal to the origin {0} with a certain multiplicity ω. But
this multiplicity can be computed as ω = dF(Rn). Hence, assuming that dF is the zero
map, ω is zero as well.

To prove the induction step, we ûrst use Lemma 4.3, which shows that we can
assume that F can be represented as the d-skeleton of a complete simplicial rational
fan Θ with certain (possibly zero) weights on the d-dimensional cones. We have to
show that the assumption dF = 0 implies that all these weights are zero. Let σ be a
d-cone of Θ. As Θ is simplicial, we can ûnd primitive vectors v1 , . . . , vd that generate
σ and a piecewise linear function ϕ on Θ such that for each ray of Θ with primitive
generator v, we have

ϕ(v) =
⎧⎪⎪
⎨
⎪⎪⎩

a ≠ 0 for v = v1 ,
0 otherwise.

Let us now consider ϕ ⋅ F. _e compatibility of the divisor construction with the
intersection product, i.e., (ϕ ⋅ F) ⋅ Z = F ⋅ (ϕ ⋅ Z) for all Z ∈ Zn−d+1(Rn), shows
that dϕ⋅F = 0. We apply the induction hypothesis and conclude that ϕ ⋅ F = 0. In
particular, the weight ωϕ⋅F(τ) of τ ∶= ⟨v2 , . . . , vd⟩R≥0 has to be zero. So let us compute
this weight by hand. Note that the primitive generator vσ/τ of the projection of σ in
Rn/Vτ is equal to the projection of 1

∣Λσ/(Λτ+Zv1)∣v1 (even though this vector itselfmight
not be integer). Recall that ϕ is identically zero on all facets containing τ except for
σ (in particular, ϕ is identically zero on τ). Hence, formula (2.1) for the weight of τ
gives

ωϕ⋅C(τ) = ωC(σ)
1

∣Λσ/(Λτ +Zv1)∣
ϕ(v1).

Since ∣Λσ/(Λτ +Zv1)∣ and ϕ(v1) are non-zero numbers, ωC(σ) must be zero, which
ûnishes the proof.

5 The Recession Cycle

Our goal is to compute the bounded Chow group Ab∗(Rn) of Rn . In Proposition 4.2
we showed that the group of fan cycles embeds into the boundedChow group. Wewill
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now show that the bounded Chow group is in fact isomorphic to the group of fan cy-
cles. To do so, we have to show that any tropical cycle is bounded rationally equivalent
to a fan cycle. Let us ûrst describe this (necessarily unique) fan cycle explicitly.

Deûnition 5.1 Let σ be a polyhedron inRn . We deûne the recession cone of σ to be

Rec(σ) ∶= {v ∈ Rn
∶ x +R≥0v ⊆ σ∀x ∈ σ}

= {v ∈ Rn
∶ ∃x ∈ σ s.t. x +R≥v ⊆ σ}.

_e two sets coincide, as σ is closed and convex. Let X be a tropical d-dimensional
cycle. It admits a polyhedral structure X such that

Rec(X) ∶= {Rec(σ) ∶ σ ∈ X}

forms a fan; i.e., no cones overlap (cf. [18, Section 1.4.10]). We equip the d-cones of
Rec(X) with weights by

ωRec(X)(σ) ∶= ∑
σ ′∈X

σ=Rec(σ ′)

ωX(σ ′).

_ismakes Rec(X) a balanced fan (cf. [18, 61]), andwe denote the corresponding cycle
by Rec(X). We call Rec(X) the recession fan ofX and Rec(X) the recession (fan) cycle
of X. Note that

(5.1) Rec(X + Y) = Rec(X) + Rec(Y).

Example 5.2 Let F be a fan cycle in Rn and let v⃗ ∈ Rn be a vector. _en obviously

Rec(F + v⃗) = F .

Indeed, when F = {σi}i is a fan representing F, F + v⃗ = {σi + v⃗}i is a polyhedral
structure for F + v⃗ and Rec(F + v⃗) = F.

Our main result is the following theorem.

_eorem 5.3 Let X be a cycle in Rn . _en X b
∼Rec(X).

To prove this, we will use another theorem of independent interest.

_eorem 5.4 Let X ∈ Rn be a tropical cycle. _en X can be decomposed into a sum
of translated fan cycles; i.e., there are fan cycles F1 , . . . , Fl and points p⃗1 , . . . , p⃗ l ∈ Rn

such that

X =
l

∑
i=1
Fi + p⃗ i .

_eproof of this theorem (as it does not rely on the concept of rational equivalence)
will be postponed until Section 7. Instead, we continue with the proof of_eorem 5.3,
which of course is now straightforward.
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Proof of_eorem 5.3 We write X as a sum of translated fans X = ∑
l
i=1 Fi + p⃗ i by

_eorem 5.4. By equation (5.1) and Example 5.2, we have

Rec(X) =
l

∑
i=1
Fi .

On the other hand, each translated fan Fi + p⃗ i is bounded rationally equivalent to Fi
by Proposition 3.3. As rational equivalence is additive, X b

∼Rec(X) follows.

Let us also mention another consequence of _eorem 5.4.

Corollary 5.5 Let Z∗(Rn) denote the ring of tropical cycles in Rn , with + the usual
sum of cycles and ⋅ the stable intersection. _en Z∗(Rn) is generated by the set of hy-
persurfaces V( f ) ∈ Zn−1(Rn) of tropical Laurent polynomials f ∈ T[x±1 , . . . , x±n ]. In
particular, A∗(Rn) = 0.

Proof By [15, Section 2.5.10], every codimension one cycle can be written as a dif-
ference of two hypersurfaces V( f ) − V(g). Hence, it suõces to show that Z∗(Rn)

is generated in codimension one. In the case of fan cycles, we can deduce this from
the corresponding statement for (smooth) toric varieties and the equivalence of stable
intersection and the toric intersection product (cf. [6, 11, 17]). Alternatively, a proof in
purely combinatorial terms can be obtained via the polytope algebra (cf. [6, 10]). Fi-
nally, via _eorem 5.4 we can reduce our case to that of fan cycles, and hence we are
done.

Remark 5.6 In [6,10], the authors establish a link between the algebra of tropical fan
cycles and McMullen’s polytope algebra [13]. In the context of general cycles, one can
consider a generalized polytope algebra generated by all polyhedra with a ûxed given
recession cone σ (in the ordinary case, σ = {0}). Technically, this algebra might be
constructed as a quotient of the ordinary polytope algebra by the additional relation

[P] = [Q] if P + σ = Q + σ .
_e cases of interest for us are polytopes in Rn+1 and σ = R≥0en+1, and hence the
generators correspond, in some sense, to convex subdivisions of polytopes inRn . Ge-
ometrically, this corresponds to taking tropical fan cycles in Rn+1 and intersecting
them with the hyperplane {xn+1 = −1}. Conjecturally, this generalized polytope alge-
bra is isomorphic to the algebra of general tropical cycles Z∗(Rn) (not just fan cycles).
However, the exact deûnitions and a subsequent proof of isomorphy still require care-
ful analysis; we do not pursue this here.

We ûnish this section by listing some consequences of_eorem 5.3. First, we con-
clude that the notions of bounded rational equivalence, numerical equivalence, and
“having the same recession cycle” coincide.

_eorem 5.7 Let X ,Y be two tropical cycles inRn . _en the following are equivalent:

(i) X b
∼Y;

(ii) dX = dY ;
(iii) Rec(X) = Rec(Y).
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In particular, the equation Ab∗(Rn) ≅ Zfan∗ (Rn) holds, where Ab∗(Rn) is the bounded
Chow group of Rn and Zfan∗ (Rn) is the group of fan cycles.

Proof (i)⇒ (ii) follows from Proposition 3.2(iv) and (v). (iii)⇒ (i) is an immediate
consequence of _eorem 5.3. (ii) ⇒ (iii) follows from _eorem 5.3, (i) ⇒ (ii), and
Proposition 4.2.

_e second corollary is the following general Bézout-type statement, whereRec(X)

plays the role of the degree of X.

_eorem 5.8 (General Bézout’s theorem) Let X ,Y be two tropical cycles inRn . _en

Rec(X ⋅ Y) = Rec(X) ⋅ Rec(Y).

Proof We apply _eorem 5.3 and get

Rec(X ⋅ Y)
b
∼X ⋅ Y b

∼Rec(X) ⋅ Rec(Y)

(the second equivalence also uses Lemma 3.2(iv)). By Proposition 4.2, two rationally
equivalent fan cycles are equal.

6 Lineality Spaces and Splitting Dimension

In this section, we collect some additional deûnitions and notations that we need to
prove_eorem 5.4.

Let X be a tropical cycle. A function f ∶X → R is called lower semiconstant if for
any polyhedral structure on X,
(a) f is constant on each relatively open cell RelInt(σ) (and hence we can set f (σ) ∶=

f (p), where p is some point in the relative interior of σ),
(b) for any face τ ⊆ σ we have f (τ) ≤ f (σ) (i.e., f is lower semicontinuous in the

Euclidean topology).
Given such a function f and k ∈ R, the sublevel set

Xk = {x ∈ X ∶ f (x) ≤ k}

is again a polyhedral set.
Let X be a tropical cycle and let p ∈ X be a point. Locally around p, X looks like a

fan and this fan cycle is denoted by StarX(p). As a set, StarX(p) is the set of vectors
v ∈ Rn such that p + єv ∈ X for arbitrarily small є > 0. Given a polyhedral structure
on X, we get an induced polyhedral structure on StarX(p) such that the facets of
StarX(p) are in one-to-one correspondence with the facets of X that contain p. Using
theweights from X for StarX(p) accordingly, the balancing condition is obviously still
satisûed. Hence, StarX(p) is a fan cycle. It is easy to check the following formulas:

StarX+Y(p) = StarX(p) + StarY(p),(6.1)
StarX(p + єq) = StarStarX(p)(q).(6.2)

Let F ⊆ Rn be a fan cycle. _e lineality space of F is deûned to be

LinSp(F) ∶= {v ∈ Rn
∶ F = F + v},
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where F +v denotes the tropical cycle translated by v. Obviously, LinSp(F) is a linear
subspace of Rn . Its dimension is denoted by lindim(F) and is called the lineality
dimension of F. Examples are given in Figure 1. In the special case F = 0, we set
lindim(F) = ∞. When taking stars, we have

(6.3) LinSp(F) ⊆ LinSp(StarF(p))

for all p. When taking the sum of two fan cycles F and G, we have

LinSp(F +G) ⊇ LinSp(F) ∩ LinSp(G).

We denote by

Fansk ∶= {F fan cycle ∶ lindim(F) = k},

Fans≥k
∶= {F fan cycle ∶ lindim(F) ≥ k},

the sets of fan cycles in Rn with lineality space of dimension (greater than) k.

Deûnition 6.1 Let F ⊆ Rn be a fan cycle. We deûne the splitting dimension of F by

spldim(F) ∶= max{ k ∶ F = ∑
i
Fi for Fi ∈ Fans≥k} .

_us spldim(F) is the largest integer k such that F can be split into a sum of fan cycles
with lineality dimension at least k. When F = 0, we have spldim(F) = ∞. Let X ⊆ Rn

be a tropical cycle and let p ∈ X be a point. We deûne the lineality dimension (resp.
splitting dimension) of p in X by

l(p) ∶= lX(p) ∶= lindim(StarX(p)),
s(p) ∶= sX(p) ∶= spldim(StarX(p)).

In accordance with the previous conventions, we set l(p) = s(p) = ∞ if p ∉ X.

p1 p2

p3

Figure 1: We calculate the lineality and splitting dimension of this one-dimensional tropical
cycle at various points: l(p1) = l(p3) = 0, while l(p2) = 1. s(p1) = s(p2) = 1, while s(p3) = 0.

Obviously, the chain of inequalities

l(p) ≤ s(p) ≤ dim(StarX(p))

holds and l (resp. s) are lower semiconstant functions on X (by equation (6.3)). It
follows that the sets

X(k)
∶= {p ∈ X ∶ l(p) ≤ k}, X[k]

∶= {p ∈ X ∶ s(p) ≤ k},
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are polyhedral sets. We call X(k) the k-skeleton of X. Given a polyhedral structure for
X, for each cell σ we have dim(σ) ≤ l(σ) ≤ s(σ), and it follows that

X[k]
⊆ X(k)

⊆ ⋃
dim(σ)=k

σ .

Moreover, these subsets are compatible with taking stars.

Lemma 6.2 For any cycle X and p ∈ X we have

StarX(p)(k) = StarX(k)(p), StarX(p)[k] = StarX[k](p).

Proof Using equation (6.2), we get the following chain of equivalences.

q ∈ StarX(p)[k] ⇐⇒ spldim(StarStarX(p)(q)) = spldim(StarX(p + єq)) ≤ k

⇐⇒ p + єq ∈ X[k]

⇐⇒ q ∈ StarX[k](p).

_e case lindim is analogous.

Here is another straightforward fact about lineality dimensions.

Lemma 6.3 Let F ⊆ Rn be a fan cycle and let p ∈ F be a point. _en lF(p) ≥

lindim(F) and the equivalences

lF(p) = lindim(F) ⇐⇒ p ∈ LinSp(F) ⇐⇒ StarF(p) = F

hold.

Proof _e inequality lF(p) ≥ lindim(F) is clear (lF is lower semiconstant). For the
equivalences, we reduce to the case lindim(F) = 0 by taking the quotient F/LinSp(F).
_en the statement boils down to show

lF(p) = 0Ô⇒ p = 0Ô⇒ StarF(p) = F Ô⇒ lF(p) = 0.

_e ûrst conclusion follows from the fact that each non-zero point in F is contained
in a positive-dimensional cell and therefore has positive lineality dimension. _e re-
maining arrows are clear.

7 Decompose Cycles into Sums of Fan Cycles

In this section we prove_eorem 5.4; i.e.,we show that every tropical cycle can be de-
composed into a sum of (translated) fan cycles. _e strategy of the proof is as follows.
We recursively remove points in X of minimal splitting dimension by subtracting the
corresponding star fans. _e main step is to show that this subtraction process does
not create new points of minimal splitting dimension somewhere else. Based on this,
we show that the process terminates (i.e., we obtain the zero-cycle) a�er a ûnite num-
ber of steps.

Let X ⊆ Rn be a tropical cycle of dimension dim(X) = m. We set

s ∶= s(X) ∶= min{sX(p) ∶ p ∈ Rn
}.
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−1

−1 −1

−1

Figure 2: We iteratively subtract the local fans at the marked points from this plane tropical
one-cycle until we arrive at a fan cycle. Note that in the ûrst reduction step we obtain a new
vertex on the bottom right leg of the one-cycle. _is reduces the lineality dimension of this
point to 0, but its splitting dimension is still 1. (Of course, in the case of curves our approach is
unnecessarily complicated, andwe could instead give an explicit formula for the decomposition
into fans.)

Our goal is to ûnd a ûnite process that increases s(X) by subtracting star fans. It stops
when s(X) = ∞, whichmeans that X = 0. _emain step is contained in the following
proposition.

Proposition 7.1 _e set of points of minimal splitting dimension X[s] is a ûnite union
of aõne subspaces Wi ⊆ Rn of dimension s,

X[s]
=

l
⋃
i=1

Wi .

To prove this, we use the following local condition.

Lemma 7.2 Let Y ⊆ Rn be a polyhedral set such that for any p⃗ ∈ Y we have

StarY(p⃗) =
l p⃗
⋃
i=1

Vp⃗, i ,

where Vp⃗, i ⊆ Rn are k-dimensional linear subspaces. _en Y is a ûnite union of aõne
subspaces of dimension k.

Proof We choose a polyhedral structure for Y with k-cells σ1 , . . . , σr . We pick a
point p⃗ j in the relative interior of σ j for all cells. _en StarY(p⃗ j) = Vj is a k-dimen-
sional linear subspace. We want to show

Y =
r
⋃
j=1

Vj + p⃗ j ;

i.e., Y is equal to the union of translated spaces appearing in StarY(p⃗ j). _e direction
“⊆” is obvious, as each cell σ j is contained in Vj + p⃗ j . For the other inclusion, pick a
vector space V ∶= Vj at a point p⃗ ∶= p⃗ j . In order to show V + p⃗ ⊆ Y , consider

Z ∶= V ∩ (Y − p⃗) ⊆ V .

By our assumptions, Z is a full-dimensional polyhedral subset of V with 0 ∈ Z○.
Assuming Z ≠ V , we ûnd a point q⃗ in the boundary of Z○. But StarY(p⃗+ q⃗) is a union
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of k-dimensional vector spaces, and one of them must be V , as StarY(p⃗ + q⃗) ∩ V is
k-dimensional. It follows that q⃗ ∈ Z○, a contradiction.

Proof of Proposition 7.1 Let s ∶= s(X) as above and pick p⃗ ∈ X[s]. By Lemma 7.2 it
suõces to show that StarX[s](p⃗) is a union of linear subspaces of dimension s.

We start by splitting StarX(p⃗) into a sums of fan cycles with lineality dimension at
least s, or more precisely,

(7.1) StarX(p⃗) = F1 + ⋅ ⋅ ⋅ + Fl +∑
i
G i ,

where Fi ∈ Fanss and G i ∈ Fans≥s+1. We set Vi ∶= LinSp(Fi), hence V1 , . . . ,Vl is a
collection of s-dimensional linear subspaces ofRn . We want to show that StarX[s](p⃗)
is equal to a union of some of those Vi . First we show

(7.2) StarX[s](p⃗) ⊆ L ∶= V1 ∪ ⋅ ⋅ ⋅ ∪ Vl .

For all q ∈ Rn , we have

(7.3) StarStarX( p⃗)(q⃗) = ∑
i

StarFi (q⃗) +∑
i

StarG i (q⃗)

by equation (6.1). If q⃗ ∉ L, then q⃗ is not contained in the lineality space of Fi for all i
and thus lindim(StarFi (q⃗)) > s for all i (cf. Lemma 6.3). Hence on the right side of
equation (7.3), all fans have lineality dimension at least s + 1, and thus sStarX( p⃗)(q⃗) ≥
s + 1. We conclude that q ∉ StarX(p⃗)[s], which by Lemma 6.2 is the same as q⃗ ∉

StarX[s](p⃗). Equation (7.2) follows.
We now show the following:

(7.4) Vl ⊈ StarX[s](p⃗) Ô⇒ StarX[s](p⃗) ⊆ V1 ∪ ⋅ ⋅ ⋅ ∪ Vl−1 .

_is ûnishes the proof, as it allows us to recursively remove from equation (7.2) all
vector spaces Vi that are not contained in StarX[s](p⃗) until we reach equality. To
prove equation (7.4), pick a point q⃗ ∈ Vl ∖ StarX[s](p⃗). Let us reorder the spaces Vi
(and Fi) such that

q⃗ ∉ Vi for all i = 1, . . . , r, q⃗ ∈ Vi for all i = r + 1, . . . , l .

We will prove the somewhat stronger statement StarX[s](p⃗) ⊆ V1 ∪ ⋅ ⋅ ⋅ ∪ Vr . Again
by Lemma 6.2, we conclude from q ∉ StarX[s](p⃗) = StarX(p⃗)[s] that sStarX( p⃗)(q⃗) > s.
_us, we can write

(7.5) StarStarX( p⃗)(q⃗) = ∑
i

H i

for suitable fan cycles H i ∈ Fans≥s+1. Combining equations (7.3) and (7.5) we get the
expression

Fr+1 + ⋅ ⋅ ⋅ + Fl = ∑
i

H i − (StarF1(q⃗) + ⋅ ⋅ ⋅ + StarFr(q⃗) +∑
i

StarG i (q⃗)) .

Here we used the fact that StarFi (q⃗) = Fi for all i = r + 1, . . . , l by Lemma 6.3. Using
this lemma again, we see that on the right-hand side of this equation all fans have
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lineality dimension at least s + 1. Finally, replacing the summands Fr+1 + ⋅ ⋅ ⋅ + Fl in
equation (7.1) by this expression, we get a new splitting of StarX(p) of the form

StarX(p⃗) = F1 + ⋅ ⋅ ⋅ + Fr +∑
i
G′

i ,

with fan cycles G′
i ∈ Fans

≥s+1. Now the same reasoning as above (which proved equa-
tion (7.2)) shows that StarX[s](p⃗) ⊆ V1 ∪ ⋅ ⋅ ⋅ ∪ Vr . _is ûnishes the proof.

Based on Proposition 7.1, we now consider the process of subtracting the star of a
point of minimal splitting dimension.

Proposition 7.3 Let X ⊆ Rn be a tropical cycle with minimal splitting dimension
s ∶= s(X). Write X[s] = W1 ∪ ⋅ ⋅ ⋅ ∪Wl , Wi s-dimensional aõne subspaces. _en there
exists a point p⃗ ∈ Wl such that Wl = LinSp(StarX(p⃗)) + p⃗. Moreover, for the tropical
cycle X̃ ∶= X − (StarX(p⃗) + p⃗), we have

X̃[s]
⊆W1 ∪ ⋅ ⋅ ⋅ ∪Wl−1 .

Proof First, we show the existence of such a point p⃗. Fix a polyhedral structure of X
and let σ be a s-dimensional cell that is contained inWl . Pick a point p in the relative
interior of σ . _is implies lX(p⃗) ≥ dim(σ) = s. But we also have lX(p⃗) ≤ sX(p⃗) = s,
and thus lX(p⃗) = s. Hence the lineality space of StarX(p⃗) is s-dimensional and is
contained in StarX(p)[s] = StarX[s](p⃗) (by Lemma 6.2). But X[s] =W1 ∪ ⋅ ⋅ ⋅∪Wl and
p ∈Wl , hence StarX[s](p⃗) =Wl − p⃗, and we are done.

Now let us check the second statement. Pick q⃗ ∉ X[s]. From q⃗ ∉ Wl that it follows
q⃗ − p⃗ ∉ LinSp(StarX(p⃗)) by assumption, and thus lindim(StarStarX( p⃗)+ p⃗(q⃗)) > s by
Lemma 6.3. Write

StarX(q⃗) = ∑
i
Fi

with fan cycles Fi ∈ Fans≥s+1. Using equation (6.1) we get

StarX̃(q⃗) = ∑
i
Fi − StarStarX( p⃗)+ p⃗(q⃗),

which implies sX̃(q⃗) ≥ s+ 1 and q⃗ ∉ X̃[s]. _is proves X̃[s] ⊆ X[s]. By Proposition 7.1,
X̃[s] must be equal to the union of some subcollection of the aõne spaces Wi . Hence
it suõces to showWl ⊈ X̃[s]. _is follows from the fact that by construction, we have
p⃗ ∉ X̃, since X and StarX(p⃗) + p⃗ coincide in a neighbourhood of p⃗.

We can now prove_eorem 5.4.

Proof of_eorem 5.4 We repeatedly subtract star fans as in Proposition 7.3 in order
to remove all points of splitting dimension s, i.e., X̃[s] = ∅. _is implies s(X̃) > s, and
we can repeat the process until we reach s(X̃) = ∞, and hence X̃ = 0 (alternatively,
one may stop when s(X̃) = dim(X̃)— in this case X̃ = X̃s is a union/sum of aõne
subspaces). As during this procedure we only subtract translated fan cycles (namely
of the form StarX(p⃗) + p⃗), the statement follows.
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