
ON ABSOLUTE SUMMABILITY BY RIESZ AND 
GENERALIZED CESÀRO MEANS. II 

H.-H. KORLE 

1. We will use the terminology of part I [9], including the general assumptions 
of [9, § 1]. In that paper we had proved that \R, X, K| = |C, X, K\ in case that 
K is an integer. Now, we turn to non-integral orders K. 

As to ordinary summation, the following inclusion relations (in the 
customary sense; see [9, end of § 1]) for non-integral K have been established 
so far. (Since we are comparing Riesz methods of the same type X and order 
K only, (R, X, K) is written (R), etc., for the moment.) (R) Cj (C) is a result 
by Borwein and Russell [2]. (C) Q (R) was proved by Jurkat [3] in the case 
0 < K < 1, and, after Borwein [1], it holds in the case 1 < K < 2 if 

(1) ^ f \ f o r l a r S e M -

(2) r * 1 ^ ^ for larger 
A» — Aw_i ^ 

(i.e. decreases in the wide sense). 
In the present note we deal with the counterparts of these inclusions for 

absolute summation. In our proof of \R\ C \C\ for non-integral K we need 
the restriction 

(3) max A,X? = 0(A»Xj), An = Xn+_^ , Û = ^ , 

which is weaker than (1). If 0 < K < 1, we know that \C\ C \R\ holds under 
(3), & = 0; this result is contained in [5, Satz 3] and follows from [5, Satz 2; 8] 
(also cf. [4, Satz 1, Satz 4]). For 1 < K < 2, we prove that \C\ Ç \R\ under 
the assumptions required by Borwein in the case of ordinary summation, 
that is, under (1), (2). 

For all inclusions which we are concerned with in the theorems of this 
paper, the analogues for ordinary summability are known to hold at least 
under the restrictions made on X and /c. Therefore we need not pay attention 
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210 H.-H. KÔRLE 

to the values of summation when proving our equivalence theorems. 
Throughout, 

00 

denotes a series with complex terms an. 

2. First, we deal with the inclusion that is easier to handle. 

THEOREM 1. Assume (3). Then \R, X, K\ Ç |C, X, K\ holds. 

Proof. For integral K, the relation holds even without (3), as was shown in 
[9]; we write k = [K], Ô = K — [K] and assume that 8 > 0. The case 0 < K < 1 
is trivial; therefore we also assume that k ^ 1. Property (3) implies that 

« -»(f-r-)-o(r-)r-) 
w^y \ A n A w - f i / \ A „ A„_|_i/ 

and thus 

(5) r - r~ = ° ( f - r - ) • £ = *- 2> • • •fixed-
Ay Ai/-)-p \ A ^ A y + i / 

Let X! #» be summable \R, X, K|. On account of (3), the theorem [5, Satz 2] 
is applicable and yields 

(6) Y,^nKW\ < 00. 

We write (see [9, § 1] ; a;K) = \K
vav) the generalized Cesàro means 

(K) — V 7 7 75 (*> 7 — I JL _J__ 1 I J_ _ i _ 1 

in the form 

w - l / -i -I \k+8 k n-\ / -, -, \k-j-\-S 

v=0 \ A y An_|_^/ ^ = i y = = 0 \ A „ An+k/ 

with certain combinations a^ from 

1 1 / 1 1 \ 
7 - - - — 1 ^ — - - — I , p = n,...,n + k - 1. 
Ap *n+k \ An An+k/ 

This provides the following representation: 

n+k—1 / -i t \ K 
(«) (/c) / . N yr^ I I 1 \ (K) 

T„_I = a (\n+k) — 2J \T~ — 7 / av 
v=n \Ai» An+k^ 

k n~l ( 1 1 \K~ ; 

+ Z)oniS I T - - T—) «^ 
.7 = 1 V=0 \ A j / Aw-|_fc/ 

= 5<» + c(2) + /3> 
say, and ]T «n becomes summable \C, X, K| if each of the sequences (s^) has 
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bounded variation. The case i = 1 is immediately clear, and we (even) obtain 
IL |42 ) | < °° from (6), since (5) implies that 

( f - r-)"x" = 0(Ar)-
\ A „ Aw+fc/ 

j> = n, . . . , n + & — 1. 

As to the case i = 3, we note that anj = 0(XW * — \n+i)j by (5); therefore, 
the proof will be complete if we can (even) show that 

(7) zf1-—Viz1 ( - -—)" «(,< 
n \\n A n+i/ I y=o Wv Aw+A;/ 

Aw+A; 

To this end we subdivide the interval [l/Xw+i, 1/Xj by 

< oo, j = 1, . . . ,k. 

L = _L = JL _ ± (l. _ jJ) i = 0, . . . , k + 1 = K, 

and form differences of the orders 1, . . . , K from the numbers 

namely 

< /%„) , <rw0*i) - ( l - M ' a » , . . . . «r^G*) - ( l - ^ V o » , 
\ Mi/ \ te/ 

By virtue of £ k ( K )(^,z-i) ~ <r{K) (nm)\ < co, i = 1, . . . , K, and of (6), we 
have X) l^n^l < O O , / = 1 , . . . , J K ' . Through that, we arrive at the hypotheses 

(8) E(i_j_yig(_i__±)" A*) < 00, J = 1, . . . ,K, 

with certain mean values 6nJ £ (Xw, Xn+i), according to [10, Kap. 1, (29)]. 
Consider (7) for a fixed j . In terms of 

ra-l / 1 l \ K _ * 

•s£*~0(*)=E(f-£) a - *>^i . 
the inner sum of (7) is 

s r ' W ) = sir»(oni) + (K-J) (~ - r±-) sir *-»(&,) 

with certain B'ni £ (6nj, \n+k)> Thus, the proof of (7) for fixed j can be reduced 
by (8), with J = j , and (5) to the proof of 

n \ A n Arc+i/ 

We now ''approximate" S^" ' " " 1 ^ , ) by 5iK~ J '_1)(^,y+i), then apply (8), with 
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212 H.-H. KORLE 

/ = j + 1, and (5). After introducing (8), with / = j , j + 1, . . . , K, in the 
same way, it remains to prove 

n \XW Aw+i/ 

for certain ûnj G (Xn, \n+k)> 
We may begin with the estimate 

n(~-Y-)K+\si'-K-l\ên])\<^ 

y=0 \ A y î /W J7 \ A w _ i tfw;/ 

- Aa) + A{2) 

say. Observing (4), we have: 

\AW A w + i / 

and can apply (6). Due to (4), 

\K+\ 

n \\n Xw+i/ 

holds if 

E f - ^ ' 4 ! < « 

is true. By means of fn„ G (Xw-i, Xre) such that 

(è-ï9~-fe-*r-Gh-£)<*-->fe-£)~ 
the inner sum of (9) is seen to be 

°w (f ~ r-)"* = 0(1)xr (f ~ r-)"̂ 7"-
\A„ Ay+i/ \A^ Ay+i/ 

Hence, (9) results from (6) as well. 

3. Regarding non-integral orders, the proof of Theorem 1 relied upon (6), 
i.e. an information on the "order of magnitude" of series summable \R, X, K\. 
On the other hand, the problem \C, X, K\ C \Rf A, K\, 0 < K < 1, was also 
attacked via (6) (see [4; 5]). Since we are now concerned with this inclusion 
in the case of 1 < K < 2, we will first provide a limitation theorem for 
summability | C, X, K\ , too. The problem bears analogy to the problem \R*, X, K\ CI 
\R, \, K\, 1 < K < 2, where another matrix method takes the place of \C, X, K\. 
Thus, the limitation theorem we need here will, to some extent, be obtained 
on the line of the proofs for the limitation theorems in [6; 7]. It is prepared 
by the following key lemma, in the course of whose proof we will express the 
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generalized Cesàro means in terms of an auxiliary function h, namely by 

similar to the procedure used by Borwein [1]. (For higher orders we suggest 
representations \n+\ = h(h(\n+z)) and the like.) 

LEMMA. Suppose that 0 < Xn < An+i —> oo (n = 0, 1, . . .), 0 < 5 < 1, and 
let 

dnv = fn (^ J - fn ( ~^J (» = 0, 1, . . . ; V = 0, . . . , fl), 

where 

^4-£)(<-à)'-(-à)(<-à)' (-à)-
Then anv > 0 holds for all n ^ 0, 0 ^ v ^ n. 

If, moreover, (1) and (2) are satisfied, then 

(10) - ^ - ^ —n-^±- (0^v^n-2) 
(ln—l,v an—itV+i 

holds for large n ^ 2. 

Proof. Let us write 

/i_i(0 = g(Xn, /) - s(Aw+1, /) (/ > ^-, n ^ l j , 

where 

A(W) = pn(u ~ X„) + X„_i, £„ = T^ "T^ (Xn^U < Xn+i, » ^ 1 ) 
A w + 1 — Aw 

(note the graph of h to be the polygon joining the points (Xn, Xw_i)). The 
partial derivative of g(u, t),\n < u < Xw+i, with respect to u, i.e. 

(' - i ) " 1 *<*• <>• *«• '> = t1 - ô ) T ^ + © V + ». 
is positive since h(u) < u, hf > 0, and thus we have/»(0 < 0 f° r ^ > l/Xn+i, 
w ^ 0 . From this we conclude, in the first place, that anv > 0 for n ^ 0, 
0 S v g w. 

(10) may be written in the form 

(10') # % ^ r ^ ^ % 4 r (O^v^n-2) 
Jn-l\Pv) Jn-l{tv+l) 

with mean values £M = ^ Ç (1/X^+i, 1/XM), /x = i>, ̂  + 1 (here, and in what 
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follows, we omit irrelevant indications). All terms in (10') have the same 
sign. Hence, (10') is equivalent to 

g(\n+i,tp) - g(K+2,tv) > g(K,tv) - g(K+i,tv) (0 < v < n - 2) 
gO^n+1, tv+l) — g(^n+2, tv+i) ~ g(\m h+l) ~ gÇ^n+U tv+l) ~~ ~ 

and this, in terms of mean values 6m = dmvn Ç (Xw, XTO+i), m — n, n + 1, 
assumes the form 

(10 ; ln+1Z?n ;—\ = Jn^fn /—ï (° = v = n ~ 2)> 
y\Pn+l> tv+l) y\Pn, tv+l) 

where 

tv 1/̂ m \ _ ( tv — tv+i T- = T™ = \T^=TjfJ = V;x - {/dm + V ' «-«.« + 1-
(Note that /m > /„+i,n (>l/X„+ 2 è 1/Xn) for all n ^ v + 2 and 0»+if„,n > 
Own (>K) for all ^ = 0, . . . , n — 2.) All terms in (10") are positive, and 
since Tn+i > Tn always, it suffices to prove that, from a certain n, 

is satisfied for each v = 0, . . . , n — 2. This holds if 

(11) G(en, t) g G(6n+1, t) (U+1 < K / „ 0 | ^ » - 2 ) for large », 

where 

T(«, 0 G(w, /) = 
-(d/dt)y(u,t) 

_(ttl 
/ft 

/ l \ , 1 (u/h)2h' + 8 ( l V 

Condition (1) implies that 

(12) ^ / for large u 

(i.e. increases in the wide sense), since 

(13) ^ = pn-^fLn (A. £ « < W , » è 1) 

with 

Condition (2) takes the form 

h'(0n) = Pn S Pn+i = h' (0n+i) for large #. 
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By these reasons, (11) reduces to 

riA\ x?f i\ (u/h)2u(t — 1/u)2 / -
(14) F(u, t) = — /7- 1 / for large u. 

u/n — 1 / 
Let u —> oo ; by (12) we have x(u) = h(u)/u - > g g l , say. If g = 1 (in 

fact, the argument applies to 1/2 < q ^ 1) we write 

\ U/ X — X 

In this case, (14) follows from d(x — x2)/dx-+ 1 — 2g < 0. If g < 1 (the 
so-called "high indices" case), we write 

Now, pn—
> Ç. (>0 ) , Ln —» 0, and hence, in view of (13), we have 

d(x(u)/u)/du < 0 for large ^ ^ Xo, Xi, . . . . This completes the proof. 

The limitation theorem we need is the following. 

THEOREM 2. Let 1 < K < 2, awd assume (1), (2). If ]£ aw w summable 
\C, X, K|, /Ae« 

y = 0 
< 00 , An — X w + i / (X / i + i — Xw). (15) £ A-"X"1 

Proof. We set ô = K — 1, 

Pw"= \\~ ~ T)\V ~ \—/ ' ^ = 53 XX? 
\ A „ An/ \ A „ An+l / M=0 

and thus have 
n—l n—1 

say (note that Qnn = 0). This leads us to the transformation 
n n 

&Tn = Tn — Tn-i = 22 (Qn+l,v — Qnv)rv = ] C anvTv, 71 ^ 1 , 

with anv, n ^ 1, the same as in the Lemma. Define Ar0 = «oo/'o for arbitrary 
<20o > 0. 

By the Lemma we have anv > 0 for n ^ 1, 0 ^ *> ^ w, and may assume 
(10) to apply for n ^ 2. (If (10) holds for ^ ^ m > 2 only, set anv = aOT_i,„ 
(j> = 0, . . . , m — 2; » = v, . . . , m — 2), for example, thus possibly changing 
finitely many Arn; then resume the former notation.) Resulting from 
[11, Theorem 5], for instance (also cf. [12, p. 261, Bemerkung 2]), the inverse 

n 

rn = 22 <CAT„ (W ^ 0) 

f I wish to thank the referee for his useful hint with regards to the representation of F(u, t), 
which helped simplify the argument in this case. 
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0 0 . 

of the transformation above has the property a'nv ^Oiorn^l,0^vtkn — 1 
(a'nn > 0), and this implies that 

(16) X \a'nv\ X <bnn ^ X anv (" ^ 0 ) , 

by virtue of [4, Lemma 2]. 
To prove (15), we start from 

n-l 

(An\n)~
K\rn\ ^ (AWXJ~KX Wnv\ |Ar„| + |Ar„| = Sn + |Arre|, 

say (observe that ann = l/ann, ann = Pn+i,n). By hypothesis, X |Ar„| < oo. 
Due to (1), X! ŵ < °° follows from 

(17) E |AT„|A7S E Kl ( f - r-)xi~€ < 
y n^H-1 \ A n A W + 1 / 

Through mean values 6n Ç (Xw, Xw+i) satisfying 

(is) xr - x»+i = * ( f - r~) tf~", 
\Ara A r e +i/ 

we realize (note that 0n = 0(Xn), by (1)) that 

i i ^n _ 0(xn — Xre+i). 
\ A n A w + i / 

Now, 

2^t anv = \ v — Xy+i, 

whence the inner sum of (17) turns out to be 

0(1) X) \a'nA X <**» 

and thus, in view of (16), 

0(1) -f-E a., = 0(1) ( f - ~) \\7* - X7+"i). 

But the latter is 0(A*), by (18), and we conclude (17). 

Remark. In case of integral orders k, all series summable \C, X, k\ are subject 
to (15), without any additional assumptions on X. This follows from 
[5, footnote 2; 9, Theorem]. 

We are now in the position to prove that \C, X, K\ C \R, X, K|, 1 < K < 2, 
for X according to (1), (2). Let £ an be summable \C, X, K|. Then Theorem 2 
yields (15) which, since An\n = 0(An+i\n+1) by (1), implies that 

(19) E A-%-" 
n - l 

X) X*a> < oo. 
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From (15) and (19) we obtain (6). Now, the Tauberian theorem [8] asserts 
that, under a condition on X less restrictive than (1), X! an is summable 
\R, X, K\ if (6) and 

(20) Ek<*>(Xn) -*<">(X»+i)l < o o 

hold. Furthermore, the condition 

(21) l ( ! _ J ^ ) 2 > J _ ( ! _ £ * ! ) f o r larger 
An \ A w +i / A w + i \ Aw+2/ 

is weaker than (1). Thus it suffices to prove the following result. 

THEOREM 3. Let 1 < K < 2, awd assume (21). / / XI ^ ^ summable \C, X, K| 
awtZ satisfies (15), /Ae» i/ satisfies (20). 

Proof. We have (with <5 = K — 1) 

:a-à)-fe-à)]fe-à)> 
= o-(K)(Xw+1) —^2pnva[K\ pnv = (— - - — ) ( • — — - — ) , 

y=0 \AW A w + i / \ A V A w + i / 

and (with dnv = pnv — pn+i,v) 

(K) (K) _ (K)/- , , \ (JC) /X \ V " 7̂ ^Y (K) 

Tw-1 — Tw — 0" V,An+lJ — (7 (,An+2j — Z^ anvClv -

In order to verify that 

E / ^ oinvav 
y=0 

< oo, 

we write 

»+l 

2^ dnvav — ^ (<zw„ dntV+i)rv + aw,w+i^w+i, 

with rv as in the proof of Theorem 2. Since dn>n+i = — (Aw+iXn+i)""K, we may 
apply (15), and it remains to show tha t 

(22) J2 X) \dnv — dn>v+1\ \rv\ < oo. 

When 0 ^ v S n, l/X„+i ^ / ^ 1/X„ we set 

(note that dn(l/\v) = dnv), so that 

i«^fe-à)('-ir-(à-à)('-àr 
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if 1/Xy+i < t < 1/X„. By (21) we obtain d'n(t) > 0, and hence dnv — dn,v+1 > 0 
for n ^ ni, say. Thus, apart from an additive constant, the series of (22) is 

X ) lf"l X ) {(Pn» — Pn,v+l) — (Pn+l,v ~ pn+l,v+l)\ = zl Pw\rv\, 

and (15) yields (22). 

4. We have previously obtained \R, X, K\ = \C, X, K\, 0 < K < 1, (3) with 
& = 0 (cf. § 1). From Theorem 1, from what was proved in the foregoing 
section, and observing (1) to imply (3), we finally arrive at the following 
result. 

THEOREM 4. Let 1 < K < 2, and assume (1), (2). Then \R, X, K\ = \C, X, K\ 

holds. 

Acknowledgement. I am indebted to the referee for some useful remarks. 
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