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A DECOMPOSITION THEOREM FOR POSITIVE 

SUPERHARMONIC FUNCTIONS 

BY 

SIRKKA-LIISA ERIKSSON-BIQUE 

ABSTRACT. Let X be a harmonic space in the sense of C. Constanti-
nescu and A. Cornea. We show that, for any subset E of X, a positive 
superharmonic function u on X has a representation u = p + h, where p is 
the greatest specific minorant of u satisfying p = R» and h = Rv^ . This 
result is a generalization of a theorem of M. Brelot. We also state some 
characterizations of extremal superharmonic functions. 

Introduction. Let X be a harmonic space in the sense of C. Constantinescu and 
A. Cornea [6], p. 30. The hyperharmonic sheaf on X is denoted by Zl and the set of 
positive hyperharmonic functions on an open set U by <U+(U). The reduced function 
of a positive hyperharmonic function u on X relative to a subset E of X is given by 

RE
U = inf{v G U+(X) :v^uonE}. 

The function /?f = liminf 7?f is the balayage of u G £Z+(X). In this work we mostly 
use only properties of reduced and balayage functions ([6], §4, 5 or [2], VI). 

Our main theorem (Theorem 1.2) states that any positive superharmonic function 
u onX has a representation u = h+p, where h = Rh^ and p is the greatest specific 
minorant of u satisfying p = Rp. M. Brelot proved this result in special Brelot spaces 
([5], Theorem 5) and asked, whether it is true in harmonic spaces of C. Constantinescu 
and A. Cornea. In fact, this result also holds in balayage-spaces presented in [2]. 
Moreover our decomposition applies to the solutions of linear elliptic or parabolic 
partial differential equations of second order, since they form a harmonic space. For 
the Laplace equation it seems that the decomposition is new for an arbitrary set E. 

It is natural to think that our result is connected to the decomposition of R.-M. 
Hervé. According to R.-M. Hervé [10], Theorem 5, a positive superharmonic function 
u on X can be written as u — HE + PE, where HE is the greatest specific minorant of 
u harmonic on an open set E and pE is a potential on X. We are able to show that 
tiE t: h and pE — RE . Moreover, the decomposition of R.-M. Hervé can be obtained 
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POSITIVE SUPERHARMONIC FUNCTIONS 287 

from our result and a decomposition of F. Riesz ([12] or [6], Theorem 2.2.2), which 
states that a positive superharmonic function on an open set E is the sum of its greatest 
harmonic minorant on E and a potential on E. 

Extremal harmonic and superharmonic functions give an integral representation of 
positive superharmonic functions in some harmonic spaces. It is a well-known result 
that extremal superharmonic functions are harmonic except possibly at one point ([6], 
Proposition 11.4.3). We show that in some cases from an extremal superharmonic 
function on an open subset of X we can obtain an extremal superharmonic function on 
the whole space X. We also prove some characterizations of extremal superharmonic 
functions similar to those given in [7], [8], [13]. For example, a positive superharmonic 
function is extremal if and only if, for any finely open subset E of X, the sets E and 
X\E are not both thin relative to u. Applying this we Verify a limit theorem for 
extremal superharmonic functions similar to L. Nairn [11], Theorem 8.17, and K. 
Gowrisankaran [7], Theorem 1.2. 

1. A decomposition theorem for positive superharmonic functions. In the se­
quel, let X be a harmonic space in the sense of C. Constantinescu and A. Cornea [6], 
p. 30. We denote by S+(X) the set of positive superharmonic functions on X. The 
specific order (<) in S+(X) is defined by 

u < v if v = u + u for some u' G S+(X). 

Lattice operations with respect to the specific order are denoted by A and Y. 
A subsemigroup V of S+(X) is called a specific ideal if for any u G S+(X) the 

condition u < v for some v G ^ implies u G 1/. An element p G S+(X) is called a 
specific projection of u G S+(X) on 1/ Ç S+(X) if 

p = sp max{JC G V : x < w}, 

where sp max is the maximum relative to the specific order. If V is a specific ideal 
and p is the specific projection of u on V, we easily see that (u — p) A v = 0 for any 
v G V. Specific ideals and projections are studied by M. Arsove and H. Leutwiler in 
algebraic potential theory [1]. 

The fine topology on X is the coarsest topology on X in which any hyperharmonic 
function on any open set of X is continuous ([6], p. 116). Open or closed sets with 
respect to the fine topology are called finely open or finely closed, respectively. 

Let E be an arbitrary subset of X. We use the notation SE for the set of positive 
superharmonic functions s on X satisfying s = /?f. 

LEMMA 1.1. The set SE is a specific ideal in S+(X). If E is finely open, the specific 
projection p of u G S+(X) on SE is p = u A R%. In the general case, the specific 
projection of u G S*(X) on SE for an arbitrary subset EofX is 

U<E<B 
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288 S. ERIKSSON-BIQUE [September 

where *B is the collection of finely open sets containing E Pi {x G X | u(x) < 00}. 

PROOF. Note that 

(1.1) RfH=R?+Rf and Âf+(=/?f+/?f 

for all s,t G S+(X) by [6], Theorem 4.2.1. Using this we easily see that SE is a 
subsemigroup of S+(X). 

Suppose that u G S+(X) and u < v for some v G ^ . The equality (1.1) results in 

11 + 1/= v = < = * £ + / $ , 

for some w' G 5+(X). Since u ^ /?f and w' è /?^, we have u = R^. Hence SE is a 
specific ideal. 

Let M be a positive superharmonic function on X. Assume that E is finely open. 
Then we have 

DE QE pE 
Ku ~ Ku - KRE 

by [6], Corollary 5.1.3, and therefore 7?f G & . Since SE is a specific ideal, u A /?£ G 
5E. Assuming v + v' = u for v G SE and v' G J>+(X) we obtain 

Ru
 = ^ v + ^v ' = v + ^v' 

by (1.1). Hence v < R^, which yields v < u x R^. This accomplishes the proof that 
u xR„ is the specific projection of u on SE for any finely open set E contained in X. 

Suppose next that E is an arbitrary subset of X. Since the set F — {x G X : u(x) < 
00} is dense in X we have 

r>E _ KEHF 
Ku - Ku • 

Applying [6], Proposition 4.2.1, we conclude 

< n F = inf Ru
u. 

In order to shorten the notations, set p = f\Uet3(u X R^). If £/, V belongs to *B and 
[ / Ç V then 

uxRu =RukRu ^ / ^ A ^ ^uXRV, 

whence u x R^ G 5v- Combining this with u x R1^ ^ « , we see that 

u A /?^ < sp max{v G 5v : v < u} — u X Rv
u . 

Thus the family (u x R^)UerB is specifically decreasing and therefore 

p= x (uxRv
u) 

ue(B 
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by [6], Proposition 4.1.4. Hence Lemma 1.1 assures us that p = Rp for all U G fB. 
This results in the equality 

ue'B 

Put G = {x G X : p(x) < oo} and denote by J the family of finely open subsets of 
X containing G DE. Since p is finite on a dense set, we have Rp = Rp(1G. Moreover, 
RY = Rp™ for any set V G jF. Applying again [6], Proposition 4.2.1, we obtain 

R^° = inf RY = inf RY™ ^ inf RU
D = p. 

p vef p ve? p ueB p 

Note that the inequality follows from V (IF G (B for all V G 7. Hence p = Rp, and 
so p G 5E. On the other hand, if x < u and x = R% = R1;™\ then x = R% for all 
U e<B. This implies x < u A R% for all U G îB and therefore 

x :< A (M xR")=p. 
ue'B 

Consequently, /? is the specific projection of u on SE- This completes the proof. 

Let X be an 5 -harmonic space possessing a countable base and satisfying the axiom 
of polarity ([6], p. 219). Then 

nE nE 
KRE

U ~ K" 

for any subset E of X by [6], Theorem 9.2.1. Using the same arguments as in the 
finely open case of Lemma 1.1, we see that the specific projection of any positive 
superharmonic function u on SE is u k R% for all subsets E of X. 

Our main theorem is a generalization of the result of M. Brelot [5], Theorem 5. 

THEOREM 1.2. Every positive superharmonic function u onX can be represented as 

(1.2) u=p + h 

where p is the specific projection of u on SE and h = K^ . 

PROOF. Let « be a positive superharmonic function on X. Set/? equal to the specific 
projection of u on SE and h = u — p. Here u — p means the unique superharmonic 
functionp' satisfying u = p+pf. 

In order to show the assertion h = K^ , we first assume that E is finely open. 
Then we have 

(1.3) Rf=RE
h=RE

REh 

by [6], Corollary 5.1.3. On account of [6], Proposition 5.3.4, we have h < Rf +/?£ • 
Since the specific Riesz-decomposition property holds in S+(X) ([3], Theorem 2.1.5), 
we obtain h = h\ + hi for some hi < Rf and h2 < ^ . Lemma 1.1 and (1.3) ensure 
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hi — R% , whence p + h\ G SE and p + h\ <u. But this leads to h\ = 0, since p is the 
specific projection of u on SE- Therefore we have 

h = h2<R^E û F$E ^ h 

and, so h = / ? ^ . 
Assume secondly that £ is an arbitrary subset of X. Denote by C the set {x G 

X\E : h(x) < oo}. Since h is finite on a dense subset of X we have 

for all s G S+(X). Let # be the family of finely open sets containing C. Using the 
preceding part of the proof, we find for any U G *B the functions pv G S+(X) and 
Atf G 5+(X) satisfying the conditions u— pu + hy, pu = Rpa and hy = . Since 
X\U C X\C we have 

This yields 

for any U E (B. Hence //£/ G 5 Ê , and so hy <p. This leads by Lemma 1.1 to R% — h 
for all U G # . Finally, applying [6], Proposition 4.2.1, we conclude 

A ^ R*:XE ^Rc
h = inf tf^ = h. 

Hence h — Kh , completing the proof. 

COROLLARY 1.3. Let p and h be as in Theorem 12. Then the specific projection 
of h on SE is zero. Furthermore the functions p and h are harmonic on X\cl E and 
int E, respectively. 

The preceding result follows from [6], Proposition 5.3.1, since p -< R% and h < 

2. Comparison of Theorem 1.2 with other decomposition theorems. We com­
pare Theorem 1.2 with the decomposition theorem of R.-M. Hervé [10], Theorem 
12.2, stated in Brelot spaces. We also show how one obtains the decompostion theo­
rem of R.-M. Hervé using Theorem 1.2 and the decomposition theorem of F. Riesz, 
[12]. 

For the sake of completeness, we first prove the decomposition theorem of R.-M. 
Hervé in a harmonic space X defined by C. Constantinescu and A. Cornea [6], p. 30. 

THEOREM 2.1. (R.-M. Hervé) Let E be an open subset of a harmonic space X and 
u be a positive superharmonic function on X. Then u has a decomposition 

(2.1) u = hE+PE, 
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where HE G S+(X) is the greatest specific minorant of u harmonic on E and PE G 
S+(X) is a potential on X. 

The ideas of the proof are the same as in Theorem 1.2. In fact, we only need to 
verify the following result: 

LEMMA 2.2. Let E be an open subset ofX. Denote by ZIE the set of positive super-
harmonic functions on X which are harmonic on E. Then ZIE is a specific ideal and 
every positive superharmonic function admits the specific projection on ZIE. 

PROOF. The first statement is obvious. In order to prove the second one, let u be a 
positive superharmonic function on X. If h\ G S+(X) and hi G S+(X) are harmonic 
on E and specifically smaller than u, then h\ Y hi is harmonic on E and specifically 
smaller than u. Hence the set 

<pu = {x e Z1E : x < u} 

is specifically directed upwards. This implies 

sup2>tt = YVU 

by [6], Proposition 4.1.4. Therefore sup̂ PM is the specific projection of u on ZIE. 
Using Theorem 1.2, we are able to establish an additional property for the potential 

part of the decomposition (2.1). 

THEOREM 2.3. Let E be an open subset of a harmonic space X {[6], p. 30). Then 
the potential part PE of the decomposition (2.1) of u satisfies the condition R^E = PE-

PROOF. From Theorem 1.2 it follows that u = p+h, where p is the specific projection 
on SE = {s G S+(X) : s = /?f } and h = K^ is harmonic on E. This leads to h < hE, 
and so 

u — PE+hE = h+p < hE +p. 

Hence we have p >ZPE- Since p — R^, Lemma 1.1 results in pE = R^E. 

COROLLARY 2.4. Let E be an open subset of a harmonic space X ([6], p. 30) and u 
be a positive superharmonic function on X. If p is the specific projection of u on SE 
and h G S+(X) satisfies u — p + h, then h<hE and p >ZPE, where hE and PE are the 
same as in the decomposition (2.1). 

We recall the decomposition theorem of F. Riesz. 

THEOREM 2.5. Let E be an open subset of a harmonic space X ([6], p. 30). If u is 
a superharmonic function on E possessing a subharmonic minorant then u has the 
representation 

(2.2) U — hr +Pri 
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where hr is the greatest harmonic minorant of u on E and pr is a potential on E. 

Let E be an open set contained in a harmonic space X and u a positive superhar-
monic function on X. Then the functions hr andpr defined in (2.2) can be approximated 
from above by positive superharmonic functions on X. We define 

Rhr = inf{v G S+(X) : v ^ hr on E} 

and similarly Rpr. Since u ^ Rhr and u ^ Rpr both functions Rhr and Rpr are 
superharmonic functions harmonic on X\cl E ([6], Proposition 2.2.3). 

Note that Rhr = hr on E. Indeed, Rhr ^ u and /?/zr is harmonic on E by [6], 
Proposition 2.2.3. However, Rpr is not generally equal to pr on E. 

THEOREM 2.6. Let E be an open subset of a harmonic space X ([6], p. 30) a«d w be 
a positive superharmonic function on X. Denote by hr the greatest harmonic minorant 
of u on E. Then u A Rhr is the greatest specific minorant of u harmonic on E if and 
only ifR% — u. 

PROOF. Assume that u A Rhr is the greatest specific minorant of u harmonic on E. 
On account of Theorem 2.1 and 2.3 we have 

u — u kRhr +PE, 

where pE = RpE. Since Rhr = hr on E, it follows what R%h = Rhr. Therefore Lemma 
1.1 results in 

RuxRhr = u kRhr. 

Hence we obtain 
BE

u=RE
HXRhr+RE

PE=uxRhr+pE = u. 

Conversely, assume that u = /?f. Then the function u^,Rhr is a candidate for the 
greatest specific minorant of u harmonic on E. Suppose that s G S+(X) is harmonic 
on E and specifically smaller than u. Then hr = s +f for some harmonic function / 
on E and /?f = s by lemma 1.1. This leads to 

Rhr ÛRï +Rf = s+Rf. 

Since u = s + s' ^ s +f on E for some s' G 5+(X), we have s' ^ Rf and further 
s + Rf ^ w. But s + Rf is also harmonic on £ by [6], Proposition 2.2.3, whence 
s +Rf = hr = 7?/*r on £. From /<!/zr ^ s +/?/ it follows that 7?/zr = si + 52 for some 
si,^2 G 5+(X) satisfying si ^ s and 52 ^ Rf. Then the equality 

fl/v = si + s2 = s + Rf 

holds on E. Using the properties si ^ 5 and 52 ^ Rf we obtain si = s on £ and 
£2 = Rf = f on E. Hence si ^ Rf = s and 2̂ = /?/• Consequently, s\ = s and 
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5*2 = Rf, which leads to Rhr = s +Rf. Therefore s < u x Rhr. This establishes that 
u x Rhr is the greatest specific minorant of u harmonic on E, completing the proof. 

Now we are ready to state the relationship between the decomposition of R.-M. 
Hervé and the decomposition of F. Riesz and Theorem 1.2. 

THEOREM 2.7. Let E be an open subset of a harmonic space X ([6], p. 30) and u 
be a positive super harmonic function on X. Denote by p the specific projection of u 
on SE — {y € S+(X) : v = /?f} and h = u— p. Then the greatest specific minorant 
h£ of u harmonic on E is given by 

hg = h+pXRs = uX (Rs + /*), 

where s is the greatest harmonic minorant of p on E. 

PROOF. According to Corollary 1.3, h is harmonic on E. Moreover,/? A Rs is harmonic 
on £, since p x Rs < Rs and Rs is harmonic on E by [6], Proposition 2.2.3. Hence 
h+p xRs is a candidate for the greatest specific minorant of u harmonic on E. Suppose 
that/ G S+(X) is harmonic on E and specifically smaller than u. Then/ -< h+p and 
therefore there exist/i and/2 in S+(X) such that/ = / i +/2 and/i <Kfi <p by [2], 
Theorem 2.1.5. Theorem 2.6 asserts that p x Rs is the greatest specific minorant of p 
harmonic on E. Since fi is harmonic on £ and/2 ^P we have/2 <p ARs, whence 

/ = / l + / 2 ^ * + p A i ? 5 . 

Consequently, h+p xRs is the greatest specific minorant of u harmonic on E, finishing 
the proof. 

Note that by Theorem 2.7 the decompositions of R.-M. Hervé and Theorem 1.2 
are equal if and only if p x Rs = 0. 

3. Extremal superharmonic functions. Extremal harmonic and superharmonic 
functions play an important role in finding an integral representation of superharmonic 
functions. For references we mention M. Brelot [4], K. Gowrisankaran [7], [8], [9], 
C. Constantinescu and A. Cornea [6] and M. Sieveking [13]. 

In the sequel, let X be a harmonic space in the sense of [6], p. 30. We recall the 
definition of extremal superharmonic functions. 

DEFINITION 3.1. A positive superharmonic function u(^ 0) is called extremal if every 
specific minorant v of u satisfies v = au for some positive a ^ 1. 

There exist many characterizations of extremal harmonic functions given by K. 
Gowrisankaran [7], [8]. We use those ideas and Theorem 1.2 to characterize extremal 
superharmonic functions. 

Note that extremal superharmonic functions are either potentials or harmonic func­
tions on X. This fact follows easily from Theorem 2.5. 

In some cases from an extremal superharmonic function on an open set we can get 
an extremal superharmonic function on the whole space X. 
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THEOREM 3.2 Let s be an extremal superharmonic function on an open set U 
contained in X. If there exists a superharmonic function on X majorizing s on U, 
the function 

Rs = inf{w G S+(X) :w^s on U} 

is extremal. 

PROOF. Let s be extremal superharmonic function on U majorized by a superhar­
monic function on X. Then Rs is superharmonic by [6], Proposition 2.2.3. Suppose 
that Rs = s\ + S2 for some s\,S2 G S+(X). Since s ^ s\ + S2 on U, by [6], Theorem 
5.1.1, there exist positive superharmonic functions sf and s on U such that s = s' + s 
and sf ^ s\,s = ^2- Using extremality of s, we see that sf = as and s = (1 — a)s 
for some positive a ^ 1. From s\ ^ / and S2 = s" it follows that s\ ^ a/fa and 
2̂ = (1 — a)Rs. Hence the equality Rs = s\ + S2 = aRs + (1 — a)Rs asserts that 

si = a/fa and 52 = (1 — a)/fa. Therefore Rs is an extremal superharmonic function 
onX. 

We use the following definition of K. Gowrisankaran [7], p. 313: 

DEFINITION 3.3. A subset EofX is called thin relative to u G S+(X) if R^ ^ u. 

Let E C X be given. M. Brelot noted in [5], p. 299, that E and its complement 
X\E are not both thin relative to an extremal superharmonic function. Next we state 
some characterizations of extremal superharmonic functions. 

THEOREM 3.4. Let u be a positive superharmonic functions on a harmonic space X 
in the sense of [6], p. 30. Then the following statements are mutually equivalent: 

(i) u is extremal; 
(ii) The family % = {EC_X\ R^E ^ u} is a filter; 

(iii) For any subset EofX the sets E and X\E are not both thin relative to u; 
(iv) For any finely open set E the sets E and X\E are not both thin relative to u. 

PROOF. Assume that a superharmonic function u is extremal. Let U and V be 
arbitrary sets in %. In order to prove (ii) it is enough to show that U H V G %. On 
the contrary, suppose that Ru ^ ^ = u. By [6], Proposition 5.3.4, we have 

u = RX\(unv)^kx\u+kx\v 

and therefore u + s = Ku^ + /G for some s G S+(X). Applying (3], Theorem 2.1.5, 
we obtain — x\ + s\ for some x\, s\ G S+(X) such that x\ < u and s\ < s. Then 
extremality of u yields x\ = au for some positive real number a < 1. In case a > 0 
we see that 

Rx
u\

u(x) = au(x) + si(x) > aRX
u
Xu(x) + sY(x) ^ Rx^u(x) ^ Rx^u(x) 

for some x G X, which is impossible. Hence a = 0 and R% = u + 52 for some 
s2 G S+(X) such that s2 :< s. This leads to s2 = 0 and = w, which is a 
contradiction. Thus U DV E !FU. Consequently (ii) holds. 
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It is clear that (ii) implies (iii) and (iii) implies (iv). Lastly we show that (iv) implies 
(i). Suppose that v G S+(X) is a spécifie minorant of u. Denote by a the smallest 
real number satisfying v ^ au. Let (3 be an arbitrary positive real number such that 
f3 < a. We consider the set 

Ep = {x G X : V(JC) > (3u(x)}. 

Since Ep is finely open, we have u = Ru
0 or u = Ku 0. Assume first that u = /C 0. 

The condition v <u implies v 'p by Lemma 1.1. Since 

X\Ep = {x£X: V(JC) Û f3u(x)} 

we see that 
(3u ^ ^ = v, 

which is a contradiction. Hence u = Ru
p for all positive (3 < a, and so /3M = /?Z for 

all positive (3 < a. Therefore v ^ f3u for all positive /3 < a, which yields v ^ aw. 
Since v ^ aw, we have v = au. Consequently, u is extremal finishing the proof. 

The equivalence (/) «=>• (//) in strongly harmonic spaces is proved by Sieveking 
[13], p. 21. 

The preceding theorem enables us to show a limit theorem for extremal super-
harmonic functions similar to K. Gowrisankaran [7], Theorem 1.3, or L. Nairn [11], 
Theorem 8.17. 

THEOREM 3.5. Let u be an extremal super harmonic function and v be an arbitrary 
positive superharmonic function. Denote by D the set where v/u is defined. Then v/u 
has a finite limit along Ju \ D = {U DD : U G 7u\- Moreover, this limit is equal to 

sup{/3 : 3u ^ v} = inf ——. 
XED u(x) 

PROOF. Note that the sets E0 = {x G X : u(x) = 0} and £QO = {x eX : u(x) = oo} 
are both thin relative to u. Therefore D = (X\Eo)n(X\EOQ) belongs to Ju. This means 
that D H U is nonempty for any U G 7U. Denote a — sup{/3 : (3u ^ v}. Then a is 
finite, since A«GN v/« = 0. Set, for any e > 0, 

E£ = {x G X : V(JC) ^ (e + a)w(x)}. 

On account o f / ^ e ^ v/(e +a), we see that X\E£ is thin relative to u. Hence E£ G Ju 

and 
v 

lim sup - ^ a + e. 
%\D U 

The number e being arbitrary, we have 

v 
lim sup - ^ a. 
%\D U 
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Finally, it is easy to notice that 

a ^ inf ^ lim inf - ^ lim sup - = a, 
x£D U(X) %\D U %\D U 

completing the proof. 
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