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Testing Bi-orderability of Knot Groups

Adam Clay, Colin Desmarais, and Patrick Naylor

Abstract. We investigate the bi-orderability of two-bridge knot groups and the groups of knotswith
12 or fewer crossings by applying recent theorems of Chiswell,Glass andWilson. Amongst all knots
with 12 or fewer crossings (of which there are 2977), previous theorems were only able to determine
bi-orderability of 499 of the corresponding knot groups. With our methods we are able to deal with
191 more.

1 Introduction

A group G is called bi-orderable if there exists a strict total ordering of the elements
of G such that g < h implies f g < f h and g f < h f for all f , g , h ∈ G.

With the ongoing investigation into the connection between le�-orderability and
Heegaard–Floer homology [3], one is naturally led to ask about other orderability
conditions on the fundamental group of a 3-manifold, for example, local indicability
and bi-orderability. For compact, connected, P2-irreducible 3-manifolds other than
S3, it turns out that the fundamental group is locally indicable if and only if the ûrst
homology is inûnite [2], but the question of when the fundamental group can be bi-
ordered is not as well understood. _ere are, however, a few available theorems [1, 5,
6, 10, 11, 15, 16], although with the exception of [5] all of these theorems apply only to
3-manifolds which ûbre over S1.
As a test of the eòectiveness of the theorems available at the time, the authors of [6]

computationally investigated the knot groups for knotswith twelve or fewer crossings
appearing in the table available from KnotInfo [4]. At that time, all of the available
theorems applied only to manifolds ûbring over S1. _erefore, of the 2977 knots with
twelve or fewer crossings, since 1246 of them ûbre over S1, the available theoremswere
applicable; from these only 12 were found to have bi-orderable knot groups while 487
were found to have non-bi-orderable knot groups. We could interpret this as a success
rate of about 12+487

2977 ∼ 17%.
_is paper extends the eòorts of [6] to the nonûbered case by using the newly

available theorems of [5]. _e authors of [5] have already observed that theirmethods
can be used to show that the knot group of 52 is not bi-orderable1 (52 is a non-ûbred
knot), and they produce families of Alexander polynomials of degree four for which
the corresponding knots will always have non-bi-orderable knot groups.
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1Naylor and Rolfsen showed independently via a computer program that this group is not bi-

orderable. In fact, their program showed that the group admits generalized torsion [14].
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As the theorems of [5] apply only to groupswith two generators and one relator,we
focus our attention on two sources of knot groups having these properties. Our ûrst
family of such knot groups comes from two-bridge knots,whose groups are known to
have a presentation with two generators and one relator of the form ⟨a, b ∣ aw = wb⟩
(see Section 3). _e second family is all knots from the the KnotInfo table having
twelve or fewer crossings, bridge number greater than two, and a group presentation
(as computed by SnapPy [7]) with two generators and one relator.

With these techniques we were able to determine bi-orderability of many two-
bridge knot groups, all twist knot groups, andûnd 6new bi-orderable knot groups and
185 new non-bi-orderable knot groups arising from knots with fewer than 12 cross-
ings. _is extends the previous success rate of 17% by 6+185

2977 ∼ 6%. Despite these
advances, at the time of this writing the ûrst knot appearing in the tables for which
bi-orderability of the knot group cannot be determined is the knot 82.

_e diõculty in the case of 82 is that its Alexander polynomial has two real roots
and four complex roots, and the available theorems are only applicable when all the
roots of the Alexander polynomial are real and positive, or all the roots are complex.
_e same diõculty arises in the cases of 62 and 76. _eir Alexander polynomials also
have both real and complex roots, and as such non-bi-orderability of their groups had
to be determined directly from their group presentations [1]. _is diõculty highlights
a problem that is made explicit in [14, Corollary 12], namely that the Alexander poly-
nomial alone is not enough to detect non-bi-orderability of knot groups. As such, one
may not be able to address knots whose Alexander polynomials have both real and
complex roots by strengthening existing theorems, as they all depend solely on the
Alexander polynomial.

Question 1.1 Can non-bi-orderability of the knot group be determined by examin-
ing knot invariants other than the Alexander polynomial?

2 Background

For the reader’s convenience,we state the results of [5] thatwewill use here. Wewrite
ba in place of a−1ba, and for a word w ∈ F(a, b) in the free group on generators a
and b, write wb and wa for the total exponent sum (which we will call the weight) of
b and a in the word w. Given such a word w, if wa = 0, then we can rewrite w as

w = bm1ad1 ⋅ ⋅ ⋅ bmr adr

for some integers m i , d i , and r ≥ 1. For all j ∈ Z, set τ j(w) = {i ∶ d i = j} and let
Sw = { j ∶ ∑i∈τ j(w) m i /= 0}.

We say that awordw of the form above is tidy if τ j(w) = ∅ for all j satisfying either
j > max{Sw} or j < min{Sw}. Set ℓ = max{Sw}; we say that w is principal if it is tidy
and ∣τℓ(w)∣ = 1. In the case that w is principal and τℓ(w) = {k}, we call w monic if in
addition mk = 1. Set s = min{Sw}. When π1(S3 ∖K) = ⟨a, b ∣ w⟩withw as above, the
Alexander polynomial has formula ∆K(t) = ∑r

i=1 m i td i−s . We can group like powers
and rewrite this as

(∗) ∆K(t) =∑
j∈Z

( ∑
i∈τ j(w)

m i) t j−s ,
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where we understand that the coeõcient of t j−s is zero when τ j(w) = ∅.

_eorem 2.1 ([5, Corollary 2.5]) Let K be a knot in S3, and suppose that π1(S3 ∖K)

has a presentation of the form ⟨a, b ∣ w⟩wherew is tidy. Let∆K(t) denote the Alexander
polynomial of K.
(i) If π1(S3 ∖ K) is bi-orderable, then ∆K(t) has a positive real root.
(ii) If w is monic and all the roots of ∆K(t) are real and positive, then π1(S3 ∖ K) is

bi-orderable.
(iii) If w is principal, ∆K(t) = a0 + ⋅ ⋅ ⋅ + ad−1 td−1 −mtd where gcd{a0 , . . . , ad−1} = 1

and ad−1 is not divisible by m, and all the roots of ∆K(t) are real and positive,
then π1(S3 ∖ K) is bi-orderable.

3 Two-Bridge Knots

Recall that according to Schubert, 2-bridge knots are classiûed by coprime pairs of
odd integers p and q, with 0 < p < q. _us every two-bridge knot may be written as
K p

q
where p

q is a reduced fraction. _e fundamental group has presentation

π1(S3
∖ K p

q
) = ⟨a, b ∣ aw = wb⟩,

wherew = bє1aє2 ⋅ ⋅ ⋅ bєq−2aєq−1 and є i = (−1)⌊
i p
q ⌋. _is formula follows from Schubert’s

normal form [18] (see the discussion in [13]).

Lemma 3.1 If ∆K p
q
(t) = a0 + a1 t + ⋅ ⋅ ⋅ + an tn , then ∆K p

q
(−1) = ∑n

i=1 ∣a i ∣ = q.

Proof From the group presentation above, one can use Fox calculus to compute
(see [9]) ∆Kp/q(t) = 1 − tє1 + tє1+є2 − tє1+є2+є3 + ⋅ ⋅ ⋅ + tє1+⋅⋅⋅+єq−1 . Since є i = ±1, ∑ℓ

i=1 є i
is odd if and only if ℓ is odd. From this we draw two conclusions. First, if we regroup
terms and write ∆Kp/q(t) = a0 + a1 t + ⋅ ⋅ ⋅ + an tn , then a i is negative if and only if
i is odd. _erefore ∆Kp/q(−1) = ∑

n
i=1 ∣a i ∣. Second, we may compute from the above

formula that
∆K p

q
(−1) = 1 + 1 + ⋅ ⋅ ⋅ + 1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
q times

= q.

Lemma 3.2 Every two-bridge knot group admits a presentation of the form ⟨x , y ∣ r⟩
where the relator r is a tidy word in the generators x , y.

Proof Consider an arbitrary two-bridge knot Kp/q , and the presentation of its knot
group with notation as deûned above π1(S3 ∖ Kp/q) = ⟨a, b ∣ aw = wb⟩. Deûne a
homomorphism ϕ∶ F(a, b) → F(x , y) by ϕ(a) = xy, ϕ(b) = y. _is descends to an
isomorphism of the group ⟨a, b ∣ aw = wb⟩ with the group presented by ⟨x , y ∣ R⟩
where R = xyϕ(w)y−1ϕ(w)−1. Note that y has weight zero in R. We claim that R is a
tidy word in {x , y}.

Observe that since each occurrence of either a or a−1 in theword awb−1w−1 results
in exactly one occurrence of x or x−1 in R, the letters x and x−1 occur a total of q times
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in R. _us upon rewriting R in the form xm1 yd1 ⋅ ⋅ ⋅ xmr ydr ,we have∑r
i=1 ∣m i ∣ = q, since

the rewriting is accomplished without cancelling any powers of x.
Now suppose that R is not tidy, so there exists j0 such that τ j0(R) /= ∅ and j0 ∉ SR ,

and therefore∑i∈τ j0 (R) m i = 0. We compute

q =∑
j∈Z

∣ ∑
i∈τ j(R)

m i ∣ by Lemma 3.1 and (∗)

= ∑
j/= j0

∣ ∑
i∈τ j(R)

m i ∣ since ∑
i∈τ j0 (R)

m i = 0

≤ ∑
i∈Z

i∉τ j0 (R)

∣m i ∣

<
r
∑
i=1

∣m i ∣ = q

and this contradiction completes the proof.

As an immediate consequence,we can apply_eorem 2.1 (i) to all two-bridge knot
groups.

_eorem 3.3 Suppose that K is a two-bridge knotwithAlexander polynomial ∆K(t).
If π1(S3 ∖ K) is bi-orderable, then ∆K(t) has a positive real root.

4 Twist Knots

Twist knots are a subfamily of two-bridge knots whose diagrams appears as in Fig-
ure 1. Considered as a two-bridge knot Kp/q , the twist knotwith r positive half-twists
corresponds to the case p = 2r − 1 and q = 2r + 1. We simplify notation by writing Kr
instead of K 2r−1

2r+1
. By positive half-twists we mean twisting in the direction illustrated

in Figure 2.

r twists

Figure 1: _e twist knot Kr .

_eorem 4.1 Let r > 0 be an integer. If r is even, then π1(S3 ∖ Kr) is bi-orderable,
otherwise π1(S3 ∖ Kr) is not bi-orderable.
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Figure 2: Our twisting convention illustrated in the case r = 3.

Proof _e Alexander polynomial of the twist knot with r twists is [17, p. 80]:

∆(t) =
⎧⎪⎪
⎨
⎪⎪⎩

−( r
2) + (1 + r)t − ( r

2) t2 if r is even,
( 1+r

2 ) − rt + ( 1+r
2 ) t2 if r is odd.

One can check thatwhen r is odd, the Alexander polynomial has no real roots and
thus π1(S3 ∖ Kr) is not bi-orderable by _eorem 3.3.

Henceforth we assume r is even. _en both roots of the Alexander polynomial
are real and positive, so we can prove bi-orderability by applying _eorem 2.1 (ii) and
(iii). Note that 1 + r = 2( r

2 ) + 1, so −r
2 and r + 1 are relatively prime. _us when

r > 2, the coeõcients of the Alexander polynomial satisfy the necessary divisibility
conditions to apply _eorem 3.3 (iii); when r = 2, we can apply _eorem 3.3 (ii). To
do this, we show that π1(S3 ∖ Kr) admits a presentation with two generators and a
single principal relator, and when r = 2, the relator is also monic. We begin with the
standard two-bridge presentation of Kr .

We recall that a twist knot with r twists has a two-bridge representation as K 2r−1
2r+1

.
We beginwith the standard two-bridge presentation π1(S3∖Kp/q) = ⟨a, b ∣ aw = wb⟩
and ûrst determine the values of є i appearing in the formula for w.
For i satisfying 1 ≤ i ≤ r we have i > i(2r−1)

2r+1 > i−1, and so ⌊
i(2r−1)
2r+1 ⌋ = i−1. Whereas

for i satisfying r < i ≤ 2r, we have i − 1 > i(2r−1)
2r+1 > i − 2,and thus ⌊

i(2r−1)
2r+1 ⌋ = i − 2.

Recalling that r is even, this allows us to compute

w = (ba−1ba−1
⋅ ⋅ ⋅ ba−1ba−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
r letters

)(b−1ab−1a ⋅ ⋅ ⋅ b−1ab−1a
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r letters

)

As in the proof of Lemma 3.2, we will apply the homomorphism
ϕ∶ F(a, b)→ F(x , y)

with ϕ(a) = xy, ϕ(b) = y to create a new presentation ⟨x , y ∣ R⟩ of π1(S3 ∖ Kr) with
relator R = xyϕ(w)y−1ϕ(w)−1. From the calculations above we ûnd

ϕ(w) = x−
r
2 y−1x

r
2 y

and thus R = xyx− r
2 y−1x r

2 y−1x− r
2 yx r

2 . We replace R with the relator y−1Ry to get

y−1Ry = (y−1xy)(x−
r
2 )(y−1x

r
2 y)(y−2x−

r
2 y2

)(y−1x
r
2 y)

from which we read oò the sets τ j for j = 0, 1, 2, ûnding

τ0(y−1Ry) = {2}, τ1(y−1Ry) = {1, 3, 5}, τ2(y−1Ry) = {4},
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and Sy−1Ry = {0, 1, 2}. Since ∣τ2(y−1Ry)∣ = 1, the relator y−1Ry is principal. Note that
when r = 2, we ûnd τ2(y−1Ry) = {4} and m4 = − r

2 = −1 so that the word is not
monic. We can ûx this by considering, in the case r = 2, the inverse relator y−1R−1 y.
_is relator is monic, and thus π1(S3 ∖ Kr) is bi-orderable when r = 2 as well.

5 Computational Results and Knots With Bridge Number Greater
Than Two

Our computationalmethods for knotswith fewer than 12 crossings involved two steps.
First, we attempted to ûnd a presentation of the knot group having a tidy, principal
or monic relator. In the event that our methods succeeded, we then determined the
number of positive real roots of the Alexander polynomial using a combination of
Rouché’s _eorem and Sturm’s _eorem [8, §24]. _is approach to root counting
allows for all the computations to be done symbolically, and avoids the problem of
rounding error (which produced two erroneous claims in [6], see §B.1). _ese two
steps are detailed below, combining them yields the results of Appendix B.

5.1 Finding a Suitable Presentation of the Knot Group

In order to apply _eorem 2.1 to a group G = ⟨a, b ∣ w⟩ onemust ûnd a presentation
of G where the relator w has the form w = bm1ad1 ⋅ ⋅ ⋅ bmr adr . Finding a presentation
with a relator of this form is always possible when the group admits two generators
and one relator, though there are possibly many diòerent ways of doing so. _e key
to our method is contained in the following lemma.

Lemma 5.1 ([12, Chapter V, Lemma 11.8]) Suppose that G = ⟨a, b ∣ w⟩ and denote
theweight of a and b inw by wa ,wb , respectively. Assumewithout loss of generality that
0 < wa ≤ wb . Set k = −⌊wbwa ⌋, ϕ(a) = xyk , and ϕ(b) = y. _is deûnes an isomorphism
ϕ∶ ⟨a, b ∣ w⟩ → ⟨x , y ∣ ϕ(w)⟩. Moreover the weights ϕ(w)x and ϕ(w)y of x and y in
ϕ(w) satisfy ∣ϕ(w)x ∣ + ∣ϕ(w)y ∣ < ∣wa ∣ + ∣wb ∣.

Proof _emap ϕ is an isomorphism since it has inverse ϕ−1(x) = ab−k , ϕ−1(y) = b.
Note that the weights ϕ(w)x and ϕ(w)y satisfy ϕ(w)x = wa and ϕ(w)y = wb + kwa .
In particular, there are bounds 0 ≤ wb + kwa < wb so that

∣ϕ(w)x ∣ + ∣ϕ(w)y ∣ = ∣ϕ(w)x ∣ + ∣wb + kwa ∣ < ∣wa ∣ + ∣wb ∣.

as claimed.

_e conclusion ∣ϕ(w)x ∣+∣ϕ(w)y ∣ < ∣wa ∣+∣wb ∣means that upon iteratively applying
this lemma to a group presentation (with appropriate variable changes made at each
step to guarantee that the hypothesis 0 < wa ≤ wb is satisûed by the input), one will
eventually produce a two generator, one relator presentation of the group G such that
one of the generators has weight zero in the relator. Supposing that the generator a
has weight zero, it is then possible to rewrite the relator in the form:

w = bm1ad1 ⋅ ⋅ ⋅ bmr adr .
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Pseudocode for the procedure is found in Appendix A. We applied this algorithm to
all knots with 12 or fewer crossings in order to produce group presentations having
a single relator of the required form, and then checked if the relator was also tidy,
principal, or monic.

Remark 5.2 Note that in Lemma 5.1we could alsohaveused the substitution ϕ(a) =
xyk and ϕ(b) = xyx−1 with k as above. _erefore one can also iterate the substitution
ϕ(a) = xyk and ϕ(b) = xyx−1 in order to ûnd a relator having weight zero in one
of the generators, although in practice we found that this yielded few new results.
Indeed, SnapPy gives a presentation for the knot 916 which has one non-tidy relator
which becomes tidy upon iterating the substitution ϕ(a) = xyk and ϕ(b) = xyx−1,
but it does not become tidy by iterating ϕ(a) = xyk and ϕ(b) = y. Of all knots with
twelve or fewer crossings, this was the only instance where one algorithm yielded a
tidy relator while the other did not.

5.2 Computing the Number of Real Roots of the Alexander Polynomial

By a straightforward application of Rouché’s _eorem, all the roots of the polynomial
p(x) = a0 + a1x + a2x2 + ⋅ ⋅ ⋅ + anxn are bounded above by

R = 1 +
1

∣an ∣
max{∣a0∣, ∣a1∣, . . . , ∣an−1∣},

and thus the positive real roots of p(x)will be contained in the interval [0, R]. Sturm’s
_eorem can then be used to compute the number of roots, counted without multi-
plicity, of p(x) in the interval [0, R] [8, §24]. _us, for each knot K having fewer than
12 crossings and a tidy, principal, or monic relator, we applied this approach to the
Alexander polynomial ∆K(t) in order to determine if all the roots of ∆K(t) are real,
or if none of them are.

Whenever Sturm’s _eorem yields a count of 0 or deg∆K(t) roots, we know that
this quantity is exactly the total number of positive real roots of ∆K(t). On the other
hand, if Sturm’s _eorem yields a count of m roots in [0, R] with 0 < m < deg∆K(t),
thenwe cannot say that ∆K(t) has exactlym positive real roots, as some repeated real
roots may have been counted without multiplicity. _is occurred for the knots 10137,
11a5, 11a103, 11a201, 12a348, 12a1202, 12n49, 12n145, 12n279, 12n394, 12n462, 12n553, and
12n838. In these caseswe found itwas possible to factor ∆K(t) into a product of linear
and quadratic factors and conûrm the number of positive real roots directly.

Example 5.3 _e knot 1052 is non-ûbered, so none of the theorems available from
[6, 11, 15, 16] apply. Moreover, it has bridge index 3, so _eorem 3.3 does not apply
either; it is the ûrst knot in the tables for which the algorithm in Appendix A suc-
ceeds where these theorems fail. SnapPy gives the group presentation π1(S3 ∖ 1052) =
⟨a, b∣w⟩, where

w =ab2a2b2aBab2a2bAB2A2B2AbAB2A2Bab2a2b2aBab2a2bAB2A2B2Aba2b2

aBab2a2b2aBA2B2AbAB2A2B2Aba2b2aBab2a2b2aBA2B2AbAB2A2B.

Here we write capital letters in place of inverses in order to simplify notation. Note
that in the above word, neither generator has weight zero: we ûndwa = 3 andwb = 3.
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Applying the algorithm described in Appendix A, yields the substitution a ↦ bA3

and b ↦ a4B, giving a new presentation of the form ⟨a, b ∣ w′⟩, where

w′
=baBabaBabA4baBabaBAbABAbABa4BAbABAbaBabaBabA4

baBabaBAbABAbABabaBabA4baBabaBabABAbABa4

BAbABAbABabaBabA4baBabaBabABAbABa4BAbABA.

_e generator a now has weight zero in w′. A�er writing w′ in the form

w′
= bm1ad1 ⋅ ⋅ ⋅ bmr adr ,

and conjugating so that min{d1 , . . . , dr} = 0, we ûnd

w′
=ba

4
b−a

3
ba

2
b−abba

4
b−a

3
ba

2
b−aba

2
b−a

3
ba

4
b−a

5
b−aba

2
b−a

3
ba

4
b−a

3
ba

2
b−abba

4

b−a
3
ba

2
b−aba

2
b−a

3
ba

4
b−a

5
ba

4
b−a

3
ba

2
ba

6
b−a

5
ba

4
b−a

3
ba

2
b−a

3
ba

4
b−a

5
b−a

ba
2
b−a

3
ba

4
b−a

5
b−a

3
ba

2
ba

4
ba

6
b−a

5
ba

4
b−a

3
ba

2
b−a

3
ba

4
b−a

5
b−aba

2
b−a

3
.

One can easily check by hand from this expression that min Sw′ = 0 andmax Sw′ = 6,
and clearly τ j is empty for j > 6 and j < 0. _erefore thewordw′ is tidy. _eAlexander
polynomial of 1052 is∆(t) = 2−7t+13t2−15t3+13t4−7t5+2t6. An upper bound on the
real roots of this polynomial is found, as in Section 5.2, to be 15

2 . Sturm’s_eorem then
shows that∆(t) hasno real roots in the interval [0, 15

2 ]. _us, ∆(t) hasno positive real
roots and by _eorem 2.1 (i) the knot 1052 does not have a bi-orderable knot group.

A Finding a Presentation Having a Relator With Zero Weight

function Zero_weight(String w)
int wa ;
int wb ;
while weight of a in w is not 0 do

wa = weight of a in w;
wb = weight of b in w;
if wa < 0 then

swap a’s and a−1’s;
wa = −wa ;

end if
if wb < 0 then

swap b’s and b−1’s;
wb = −wb ;

end if
if wa > wb then

swap a’s and b’s in w;
swap a−1’s and b−1’s in w;
swap wa and wb ;

end if
if weight of a in w is not 0 then

replace a’s with ab−⌊wb/wa⌋;
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replace a−1 with b⌊wb/wa⌋a−1;
end if

end while
end function

Now that the weight of a in w is zero, w can be written as bm1ad1 ⋅ ⋅ ⋅ bmr adr . Addition-
ally,we normalize by conjugatingw by a until min{d1 , . . . , dr} = 0. _en it is possible
to check if the relator is tidy, principal, or monic by directly applying the deûnitions
from the paragraph preceding _eorem 2.1.

B Bi-orderable and Non-bi-orderable Knot Groups

All group presentations were initially calculated using SnapPy by Nathan Dunûeld.
_e presentations were then changed using the algorithm of Appendix A in order to
apply _eorem 2.1 (i) and (ii).

B.1 Fibered Knots

For ûbered knots, our program found the same results as [6], with two exceptions
which we believe came about due to rounding error in the numerical method used to
solve for the roots of the Alexander polynomial. _ere are two exceptions.
● _e knot 12n0019 is listed having a non-bi-orderable group, when in fact bi-ordera-
bility of its group cannot be determined by known theorems since its Alexander
polynomial has both positive and negative real roots (and it is not a special polyno-
mial, as deûned in [11]).

● _e knot 12a0477 is ûbered, and its Alexander polynomial is

∆(t) = 1 − 11t + 41t2 − 63t3 + 41t4 − 11t5 + t6 ,

which has all real positive roots. _erefore it has a bi-orderable knot group by the
main theorem of [6], though it is listed as non-bi-orderable there.

B.2 Non-fibered Knots

_e following 5 nonûbered knots have bi-orderable groups, by applying either _eo-
rem 2.1 (ii) or (iii): 61 , 81 , 101 , 1013 , 12a803.

_e following 79 nonûbered knots are two-bridge and their Alexander polynomi-
als have no positive real roots, and so their groups are not bi-orderable: 52, 72, 73,
74, 75, 88, 813, 92, 93, 94, 95, 96, 97, 99, 910, 913, 914, 918, 919, 923, 1010, 1012,
1015, 1019, 1023, 1027, 1028, 1031, 1033, 1034, 1037, 1040, 11a13, 11a75, 11a77, 11a85,
11a89, 11a90, 11a95, 11a98, 11a111, 11a119, 11a178, 11a183, 11a186, 11a188, 11a191, 11a192,
11a193, 11a195, 11a205, 11a210, 11a234, 11a235, 11a236, 11a238, 11a242, 11a243, 11a246,
11a247, 11a307, 11a333, 11a334, 11a335, 11a336, 11a337, 11a339, 11a341, 11a342, 11a343,
11a355, 11a356, 11a357 , 11a358, 11a359, 11a360, 11a363, 11a364, 11a365.

_e following 15 knots have bridge index greater than two, admit a two-generator
presentationwith a single tidy relator, and theirAlexander polynomials have no posi-
tive real roots. _erefore their groups arenotbi-orderable: 916 , 1052 , 1057 , 10128 , 10129,
10130 , 10134 , 10135 , 11a12 , 11a32, 11a46 , 11a241 , 11a258 , 11n18 , 11n62.

https://doi.org/10.4153/CMB-2016-023-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-023-6


Testing Bi-orderability of Knot Groups 481

_e following 92 knots admit a two-generator presentation with a single tidy rela-
tor and their Alexander polynomials have no positive real roots, so their groups are
not bi-orderable (we do not know their bridge index, as that information is not listed
onKnotinfo for knotswith twelve ormore crossings): 12a9, 12a31, 12a32, 12a42, 12a81,
12a96, 12a143, 12a147, 12a148, 12a151, 12a169, 12a212, 12a235, 12a241, 12a247, 12a251,
12a302, 12a378, 12a379, 12a424, 12a511, 12a514, 12a534, 12a537, 12a580, 12a581, 12a582,
12a595, 12a596, 12a643, 12a669, 12a718, 12a720, 12a728, 12a732, 12a744, 12a759, 12a760,
12a761, 12a774, 12a791, 12a792, 12a826, 12a827, 12a836, 12a876, 12a879, 12a880, 12a882,
12a1029, 12a1030, 12a1033, 12a1034, 12a1129, 12a1130, 12a1132, 12a1133, 12a1138, 12a1139,
12n46, 12n78, 12n153, 12n154, 12n166, 12n167, 12n169, 12n170, 12n200, 12n236, 12n239,
12n241, 12n243, 12n244, 12n248, 12n250, 12n251, 12n288, 12n289, 12n305, 12n307, 12n308,
12n310, 12n374, 12n404, 12n501, 12n502, 12n503, 12n575, 12n594, 12n650, 12n723, 12n851.
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