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SUMMARY

Despite the importance of selection for quality characteristics in plant improvement programmes,
literature on experimental design and statistical analysis for these traits is scarce. Most quality traits
are obtained from multi-phase experiments in which plant varieties are first grown in a field trial then
further processed in the laboratory. In the present paper a general mixed model approach for the
analysis of multi-phase data is described, with particular emphasis on quality trait data that are often
highly unbalanced and involve substantial sources of non-genetic variation and correlation. Also
detailed is a new approach for experimental design that employs partial replication in all phases. The
motivation for this was the high cost of obtaining quality trait data, thus the need to limit the total
number of samples tested, but still allow use of the mixed model analysis. A simulation study is used
to show that the combined use of the new designs and mixed model analysis has substantial benefits in

terms of the genetic gain from selection.

INTRODUCTION

Breeding for improved quality is an important aspect
of plant improvement programmes. It is therefore
crucial to obtain accurate and reliable phenotypic
information, both for the purposes of varietal selection
and identification of quantitative trait loci (QTL).
Experimental design and statistical analysis have a
key role to play in this quest. The benefits of sound
design and analysis are well documented in terms of
the key trait of grain yield. There are numerous articles
devoted to methods of field trial design and the stat-
istical analysis of the resultant yield data. The adop-
tion of efficient techniques is reasonably widespread
and the role of replication and randomization and
the notion of spatial heterogeneity are well under-
stood and accepted. The scenario for quality traits is
very different. Key quality traits, such as flour yield
for wheat and malting quality for barley, are obtained
from multi-phase experiments (see Brien 1983, for
example). Specifically, grain samples are taken from
a field experiment (Phase I) then processed further
in a laboratory experiment (Phase II) or sequence
of experiments (Phases II and higher). The level of
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adoption of sound design and analysis techniques
in multi-phase plant breeding experiments is low.
For example, the use of replication is the exception
rather than the rule. Common practice involves
the use of a single field replicate (or composite of
several replicates) of varieties and no randomization
or replication of grain samples in the laboratory
(although a laboratory control sample is often pro-
cessed at regular intervals). It is also common that
raw (un-analysed) data is used for selection and QTL
identification.

In the present paper, the design and analysis of
multi-phase quality trait data are discussed in the
context of variety trials conducted by plant breeding
and evaluation programmes. The data may therefore
relate either to early generation breeding trials or late
stage evaluation trials. It is the present authors’ opin-
ion that in both cases the aim is to maximize the
genetic gain from selection of a subset of superior
varieties (also referred to as genotypes). In early gen-
eration trials, selection is undertaken by breeders in
order to progress the best genotypes through the
breeding programme. In final evaluation trials, selec-
tion takes the form of decisions by farmers and
advisors regarding the best genotypes for commercial
use. Thus the aim, and thence the approach to design
and analysis, is the same for all stages of testing. The
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reader is referred to Smith et al. (2005) for a more
comprehensive discussion of this issue.

The literature on the analysis of quality trait data
from multi-phase plant breeding experiments is scarce.
In a general setting, key references for multi-phase
experiments are Mclntyre (1955), Wood et al. (1988),
Brien (1983) and Brien & Bailey (in press). Those
authors use analysis of variance techniques that aim
to appropriately account for the block structure in
the experiment. As noted by Wood et al. (1988), ‘The
distinctive feature of two-phase [or multi-phase]
experiments is that each phase has its own block
structure and these must be combined to form the
overall variance model.’ In single phase experiments
determination of the block structure is usually
straightforward (see the seminal paper of Nelder
1965) but it may be more difficult in the context of
multi-phase experiments. Brien (1983) provides some
helpful guidelines with the concept of ‘tiers’. The
nature of quality trait data is such that there often
exist sources of variation and correlation additional
to that accounted for by the block structure. In the
present paper, therefore, a mixed model analysis that
incorporates a modelling aspect is proposed. The
approach is based on that of Smith ez al. (2001 a) and
Cullis et al. (2003) and has been motivated by
experience in analysing two key quality traits, namely
milling yield of wheat and malting quality of barley.

In terms of experimental design for multi-phase
quality data, the focus in the present paper is on the
second (and higher) phases. Thus, it is assumed that
the field trial has already been conducted and, given
the field layout, a design is required for the laboratory
phase(s). It may seem more desirable to construct the
designs for all phases simultaneously, as is done in
some other areas of research that employ multi-phase
testing (manufacturing and the food industry, for
example). In these settings the number of treatments is
relatively small and often comprise factorial combi-
nations where different treatment factors are applied
in different phases. The design for such experiments is
well accepted and involves standard techniques. The
application under consideration in the present paper
is more complex. An important issue is that it is
common for only a subset of the varieties grown in
the field trial to be quality tested. Additionally, the
subset is not known prior to the conduct of the field
trial. Thus, it is impossible to design the field phase in
conjunction with the laboratory phases.

With respect to the design for the field phase of
plant breeding experiments, there are differences
between the designs used for early and late stage
testing. Historically, grid-plot designs (with single
plots of test varieties and multiple plots of standard
varieties arranged in a grid throughout the trial) have
been used for early stage trials. More recently, Cullis
et al. (in press) proposed an alternative that
uses replication of a percentage p of test varieties as a
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replacement for the multiple grid plots. Cullis et al.
(in press) showed that, for a fixed total number of
field plots, their partially replicated designs resulted
in higher genetic gains than grid-plot designs. In
later stages of testing fully replicated designs are
standard practice. In both the partially and fully
replicated designs, the use of blocking and strategies
to accommodate spatial trend are recommended.

In terms of the design for the laboratory phases, a
key issue is the amount of replication. It can be shown
(see Kempton 1984, for example) that for given levels
of genetic and error variance and a fixed amount of
resources, increasing the number of replicates (and
therefore reducing the number of genotypes) will
resultin a reduction in expected genetic gain (due to the
reduction in selection intensity). Thus, for this scen-
ario, genetic gain is maximized with the use of an
experimental ‘design’ with no replication, then basing
selection on the raw data. The absence of replication,
however, precludes a statistical analysis. If an appro-
priate analysis causes a reduction in effective error
variance then an increase in genetic gain may result.
Thus, knowledge and understanding of the sources of
variation affecting quality traits is essential in order to
make recommendations about experimental design.
This can only be achieved by conducting appropriate
statistical analyses of suitable data-sets, namely data
characterized by replication and randomization in all
phases. Such data are relatively rare. Since the work
of Smith et al. (2001 a) and Cullis ez al. (2003), how-
ever, a substantial number of wheat milling exper-
iments (and a lesser number of barley malting quality
experiments) in Australian plant breeding and mol-
ecular marker programmes have incorporated some
level of field and laboratory replication. This has
enabled mixed model analyses of the data to be con-
ducted. In the majority of cases the modelling of non-
genetic (error) variation resulted in reductions in
effective error variance. In the present paper, there-
fore, an approach for the design of multi-phase
quality experiments that uses replication in all phases
of the experiment is proposed, thereby allowing a
rigorous statistical analysis of the data with the
expectation of an associated increase in genetic gain.

The paper is arranged as follows. In the following
section, 10 motivating multi-phase quality trait data-
sets are described. In the section ‘Statistical analysis’,
an approach for the statistical analysis of such data
is presented, then applied to the motivating examples.
The new designs are described in the section ‘A new
class of experimental design’ and assessed via a
simulation study. Concluding remarks are presented
in the Discussion.

MOTIVATING EXAMPLES

Here, 10 wheat milling data-sets are considered. They
are typical of Australian plant breeding milling data.
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Table 1. NSW field trials : numbers of genotypes and plots

Genotypes Plots
Control Control Layout

Trial Test Grid Other Test Grid Other Columns x Rows
NSW-1 426 6 4 426 111 15 12 x46=552
NSW-2 443 6 4 443 113 8 12 x47=564
NSW-3 1415 5 7 1415 371 38 12x152=1824
NSW-4 1464 5 7 1464 382 38 12x157=1884
NSW-5 794 5 10 794 204 22 12x85=1020

Each is characterized by having some degree of
replication in both the field and milling phases of the
experiment. This allows a statistical analysis to
be conducted in which the major sources of variation
and correlation affecting the trait can be accom-
modated. Five of the data-sets relate to early gener-
ation trials from the NSW Department of Primary
Industries (NSWDPI) wheat breeding programme.
The remaining five data-sets relate to mapping popu-
lations from the Australian Winter Cereals Molecular
Marker Programme (AWCMMP). Unlike the NSW
data, the aim of these experiments was not varietal
selection but the detection of QTL. They are con-
sidered here, however, since the phenotypic data still
require a statistical analysis and the methods pro-
posed for selection trials are also appropriate in this
setting (see Eckermann er al. 2001; Verbyla et al.
2003, for example).

In terms of the NSW data-sets, all field trials were
grid plot designs in which there was a single plot for
each test genotype and multiple plots of control
varieties arranged in a systematic grid throughout the
trial. Additionally, there were multiple plots of some
other commercial control varieties. Each trial was laid
out in a rectangular array indexed by field rows and
columns. Details of the field trial layouts are given in
Table 1.

The milling of grain samples from a field trial is
conducted as a sequential process that usually
requires more than a single day of processing. Each
grain sample is ground in a mill until all bran has been
removed and the endosperm has been reduced to
flour. The data of interest here is the flour yield, which
is the weight of flour expressed as a proportion of the
weight of the original grain sample. Grain samples
from the NSWDPI trials were milled in the Wagga
Wagga Agricultural Institute cereal chemistry lab-
oratory using a Quadramat Junior mill. The plots
milled in the laboratory corresponded to the subset of
test genotypes of interest to the breeder (so some
genotypes had already been discarded on the basis of
other traits such as grain yield) and a sample of con-
trol plots chosen on the basis of their spatial location

to provide reasonable coverage of the field trial. A
proportion of the plots was replicated in the labora-
tory. These usually corresponded to the test geno-
types. In designing the milling trial, all samples were
randomized to days and times of processing within
days. This involved a two-stage process. First, a
design was generated for the replicated samples only,
involving a reduced layout compared with the full set
of samples (same number of days but fewer samples
per day as appropriate). The design for these samples
was a resolvable incomplete block design with milling
days being used as the block factor. A complete rep-
licate was milled in the first half of the trial (i.e. on
days 1 to d/2, where d is the total number of days for
the trial); the other replicate in the second half. This
design was then expanded to the full dimensions by
increasing the number of samples per day (achieved
by inserting samples between those occupied by
replicated samples) and allocating the remaining
samples to the vacant positions at random. Details of
the milling trial layouts are given in Table 2. Note
that the proportion of each field trial milled in the
laboratory ranged from 0-52 of the plots for NSW-5
down to 0-29 for NSW-3. The number of control
plots milled as a proportion of the total number of
plots milled was fairly consistent, ranging from 0-15
for NSW-3 down to 0-10 for NSW-4. This represents
the field replication present in the milling process. In
terms of laboratory replication, the proportion
of field plots that were tested with laboratory repli-
cation ranged from 0-32 for NSW-5 down to 0-20
for NSW-1.

In terms of the AWCMMP data-sets, all field trials
were designed as RCB with either two or three
replicates (with additional plots of control varieties
in some cases). The genotypes comprised doubled
haploid (DH) genotypes together with their parental
varieties and sometimes commercial control varieties.
Details of the field trial layouts are given in Table 3.

Grain samples from the first four DH trials were
milled using a Buhler mill and the last using a
Quadramat Junior mill. In contrast to the NSW data,
all (or nearly all) field plots were milled for all trials
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Table 2. NSW milling trials : numbers of genotypes and plots (milled either as single samples or replicated)

Genotypes Test plots Control plots Layout

Total ———
Trial Test Control Singles Rep’d Singles Rep’d plots Days x Times
NSW-1 214 7 167 47 33 3 250 10 x 30=300
NSW-2 201 7 136 65 34 0 235 10 x30=300
NSW-3 449 7 340 109 78 1 528 22 x29=0638
NSwW-4 622 7 412 210 68 0 690 30 x30=900
NSW-5 463 7 295 168 69 0 532 14 x 50=700

Table 3. DH field trials : numbers of genotypes

and plots
Genotypes Plots Layout
Trial DH Other DH Other Columns x Rows
DH-1 144 4 288 8 8x37=296
DH-2 174 8 348 24 12x31=372
DH-3 181 2 543 33 12x48=576
DH-4 175 8 350 22 12x31=372
DH-5 116 4 348 12 12 x30=360

except DH-3, in which two out of the three field plots
for each genotype were milled (see Table 4). In the
first three trials, none of the field plots was replicated
in the laboratory but a number of milling control
samples was processed, usually with at least two per
day. Trial DH-4 employed partial replication in the
laboratory with 0-23 of field plots having two rep-
licates. All field plots from DH-5 were replicated in
the laboratory. All milling trials apart from DH-5
were conducted with a fixed number of samples per
day. In trial DH-5, the number per day varied be-
tween 65 and 80. Full details of the milling layouts are
given in Table 4. In terms of randomization of sam-
ples for the trials with milling replication, in DH-4 the
replicated samples were allocated to days and times
within days completely at random. In DH-5 an RCB
design was used with a single replicate of all field plots
being milled in days 1-5 and then in days 6—-10.

STATISTICAL ANALYSIS

In most multi-phase plant breeding experiments, the
first phase corresponds to a field trial. It is therefore
important to consider issues associated with the
analysis of data from field trials.

The literature on methods for the analysis of field
trials (which includes the specific setting of variety
trials) is quite expansive but the methods can be
broadly classified as either randomization- or model-
based. In the former, the model for the random and

residual effects is determined purely from the block
structure, whereas in the latter it is either assumed or
selected with the objective of providing a good fit to
the data. Model-based approaches for the analysis of
variety trials aim to account for the effect of spatial
heterogeneity on the prediction of genotype contrasts.
Typically, the heterogeneity reflects the fact that, in
the absence of design effects (i.e. treatment and block
effects), data from plots that are close together (i.e.
neighbouring plots) are more similar (positively cor-
related) than those that are further apart. Numerous
authors have proposed analytical methods to remove
the effects of such trend. In the present paper the
mixed model approach of Gilmour et al. (1997) is
used. Those authors assume that field trials are
arranged as rectangular arrays indexed by rows and
columns (extensions to other arrangements are
straightforward). Gilmour et al. (1997) extended the
approach of Cullis & Gleeson (1991) by partitioning
spatial variation into two types of smooth trend (local
and global) and extraneous variation. Local trend
reflects, for example, small-scale soil depth and fer-
tility fluctuations. Global trend reflects nonstationary
trend across the field. Extraneous variation is often
linked to trial management, in particular, procedures
that are aligned with the field rows and columns (e.g.
the sowing and harvesting of plots). Certain proce-
dures may result in row and column effects (system-
atic and/or random). In the Gilmour et al. (1997)
approach, global trend and extraneous variation are
accommodated in the mixed model by including
appropriate fixed and/or random effects. Local
stationary trend is modelled using a covariance
structure for the residuals. A plausible model that
has broad application for two-dimensional (row by
column) field trials is a separable autoregressive
process of order 1 (hereafter denoted AR1 x AR1) as
originally proposed by Cullis & Gleeson (1991) and
used by Gilmour et al. (1997).

The approach presented in the current paper for
the analysis of multi-phase plant breeding exper-
iments builds on that of Brien (1983) and Wood ef al.
(1988). In both of those papers the analysis of multi-
phase experiments is conducted by determining the
experimental structure then including appropriate
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Table 4. DH milling trials : numbers of genotypes, plots (milled either as single samples or replicated) and
milling control samples

Genotypes Plots Layout
Milling
Trial DH Other Singles Rep’d Total controls Days x Times
DH-1 133 4 296 0 296 78 34x11=374
DH-2 174 8 371 0 371 47 38 x11=418
DH-3 181 2 388 0 388 96 44 x 11=484
DH-4 175 8 284 86 370 0 38 x 12=456
DH-5 116 4 0 360 360 0 10 x (65-80)=720

terms in an ANOVA table. The experiments con-
sidered by Brien (1983) and Wood et al. (1988) are
restrictive, however, in the sense that some degree
of orthogonality is required. Brien (1983) discusses
orthogonal designs that can be analysed using stan-
dard ANOVA. Wood et al. (1988) consider a class
of two-phase designs with non-orthogonal block
structure and provide an ANOVA approach to
analysis but comment that a full analysis involving
recovery of information would require a more soph-
isticated procedure based on REML estimation of
variance parameters. Thus, the linear mixed model
provides a natural framework for the analysis of
multi-phase experiments. In the present paper, a
general linear mixed model that removes any restric-
tions concerning orthogonality of block structures
is proposed. In simple orthogonal cases the approach
provides equivalent analyses to those proposed in
Brien (1983) and Wood et al. (1988).

Hypothetical milling experiment

Before considering this general mixed model, a simple
orthogonal two-phase milling experiment that can be
analysed using ANOVA is examined. It is assumed
that r field replicates of g genotypes are grown in a
field trial that is designed as an RCB. Grain samples
from each of the rg field plots are split into d smaller
samples to be used as replicates in the laboratory
process. Thus there is a total of n=rgd samples to be
milled. It is assumed that rg samples can be processed
each day so that the full trial requires d days. Field
plots are randomized to times in the milling process
using an RCB design with days as blocks. A single
sample from each of the rg field plots is processed
each day and the plots are allocated completely at
random within a day. The data measured for each
sample is the flour yield.

In order to develop the analysis within an ANOVA
framework the usual practice of assuming that block
effects are random and treatment effects are fixed is
followed. Thus, for illustrative purposes it is assumed
herein that genotype effects are fixed. As previously

noted, the determination of the block structure can
be difficult in the context of multi-phase experiments
and the concepts in Brien (1983) may be helpful. The
basic principle is to include terms in the model that
capture the randomization processes used in each
phase of the experiment. In the two-phase quality
experiment there are two randomizations, namely the
randomization of genotypes to field plots then the
randomization of field plots to ‘positions’ in the lab-
oratory process. Thus the effects for block factors
associated with each of these randomizations must be
included in the analysis. Accordingly, and based on
the randomization processes described above, the
symbolic model formula for the hypothetical example
can be written as

y~1+ genotype +mrep + frep + frep.plot
(D

where ‘1’ represents an overall mean, genotype is a
factor with g levels, mrep is a factor (for replicates in
the milling process) with d levels, frep is a factor (for
field replicates) with r levels, plot is a factor (for plots
within field replicates) with g levels and order is a
factor (indexing the order of processing of samples
within days) with rg levels. Thus, the final term in
Eqn (1) is the residual term that is also represented
generically as units. Note the convention in the model
formula of underlining to indicate those terms that
correspond to fixed effects. The ANOVA table
associated with the model in Eqn (1) is given in
Table 5. A key feature of the analysis is the existence
of a residual term for each of the two phases. The first
phase (field plot) residuals are represented in the
model by the term frep.plot and the second phase
(laboratory) residuals by mrep.order (or units).

+mrep.order

General linear mixed model for multi-phase
experiments

The hypothetical milling example is atypical of trials
for measuring quality trait data in that the data are
rarely balanced, nor are the designs orthogonal. As
can be seen from the motivating examples in the
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Table 5. ANOV A table for hypothetical milling

example
Model
Strata/Decomposition D.F. term
mean 1 1
mrep d—1 mrep
mrep.order dirg—1)
frep r—1 frep
frep.plot rg—1)
genotype g—1 genotype
esidual r—1(g—-1) frep.plot
residual (d—1)(rg—1) units
total rgd

section ‘Motivating examples’, the data-sets are quite
complex. Typically, there is partial rather than com-
plete replication in terms of both the field and lab-
oratory. The data from plant breeding trials have an
added component of non-orthogonality due to the
fact that only a subset of genotypes from the field trial
is quality tested. Thus, in general, ANOVA cannot be
used but a mixed model analysis must be conducted.
However, the same general principles are followed, in
particular the inclusion of residual terms for all
phases of the experiment.

As with the analysis of field trials, trend in multi-
phase trial data can be modelled in order to improve
the response to selection. In multi-phase quality trials,
the potential exists to model trend (spatial or tem-
poral) associated with the residuals for any of the
phases. The type of trend modelling depends on the
trait and/or measurement process. Since the present
authors’ experience has largely been in terms of the
analysis of flour yield in wheat and malting quality in
barley, modelling is discussed in the context of these
data but the concepts generalize to other traits. The
modelling approach in the present paper is analogous
to that of Gilmour et al. (1997) in that trend (either
field or laboratory) is partitioned into global trend,
extraneous variation and local stationary trend. The
latter is accommodated using covariance models. It is
important to note that, in the spirit of a randomiza-
tion-based analysis, terms in the mixed model that are
associated with the block structure are maintained
irrespective of their level of significance. In contrast,
model-based terms and covariance structures are only
included if found to be statistically significant.

For simplicity, attention is restricted to two-phase
experiments but the extension to more phases is
straightforward. An experiment is considered in
which the first phase field trial consists of a rec-
tangular array indexed by field rows (1... r) and col-
umns (1... ¢) making a total of n,=rc plots. In the
second phase laboratory trial, it is assumed that a
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total of n samples is tested. It should be noted that,
like the field trial, many laboratory trials can be in-
dexed using a two-dimensional co-ordinate system.
For example, in a wheat milling trial the samples
may be milled as a set number, s, of samples per day
for d days (so that n=sd). In a barley malting trial
the samples are placed in a machine known as a
micro-malter. This has a two dimensional spatial lay-
out of m, rows and m, columns so often n=m,m,.
Thus, a rectangular structure for the laboratory pro-
cess is assumed here. Extensions to non-rectangular
or noncontiguous arrays for either the field or lab-
oratory layouts are straightforward. The mixed
model for the n x 1 data vector y may be written as

y=Xt+Zu, + Zus+ Zyu, +e 2)

where 7 is a px 1 vector of fixed effects with asso-
ciated n x p design matrix X (assumed to have full
column rank), u, is the g x 1 vector of random geno-
type effects (g is the number of genotypes quality
tested) with associated n x g design matrix Z,, u; is a
b x 1 vector of random block effects with associated
n x b design matrix Z,, uyis the n, x 1 vector of ran-
dom field plot effects with associated 7 xn, design
matrix Z, and e is the vector of residual effects. In the
simplest case the fixed effects in Eqn (2) comprise a
single effect, namely an overall mean, but may include
effects for missing values or covariates to model
trend. The vector u;, comprises block effects associ-
ated with the experimental design in each phase and
other effects as required to model variation. The vec-
tor u, represents the ‘error’ or residual term for the
first (field) phase and e the residual term for the
second (laboratory) phase. It should be noted that not
all field plots may be quality tested, in which case the
matrix Zwill contain columns whose elements are all
zero. Also, note the assumption of random (rather
than fixed) genotype effects, which is consistent with
the aim of plant breeding experiments: namely the
selection of the ‘best’ genotypes or the identification
of QTL (in which case the genotype effects represent
residual genetic effects unexplained by the markers).

It is assumed that the joint distribution of (ug, uy,
u,, ¢') is Gaussian with zero mean and variance
matrix

Ger) O 0 0

_ g2 0 Gf’(i’/) 0 0
V=o"| 0 Gy, 0
0 0 0 R

where y = (yg, v/, ¥5) is a vector of unknown variance
parameters associated with the random effects, ¢ is a
vector of unknown variance parameters associated
with the residuals and o? is the (unknown) scale par-
ameter. The matrix G, is often a scaled identity matrix,
that is, G, =v,.l,. The associated variance component,
03=0%,, is often termed the genetic variance.
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Another possibility is G, =y,4, where 4 is a known
relationship matrix. At present, pedigrees are not
generally used in routine analyses of variety trials so
will not be considered in the present paper. The matrix
G, is usually a direct sum of scaled identity matrices,
each component corresponding to different terms
within u,. Forms for Grand R are discussed below.

As an illustration, consider the ANOVA for the
hypothetical milling experiment discussed earlier, but
now regard the genotype effects as random rather
than fixed. The vector u, in Eqn (2) corresponds to the
term genotype in Eqn (1); u,corresponds to frep.plot;
u;, contains sub-vectors corresponding to mrep and
frep; e corresponds to mrep.order (or units) and
contains a single parameter only, namely an overall
mean. In the ANOVA model, each set of random
effects is assumed to be independent and each has an
associated variance component so that G,=y,l,
Gr=vy, Gy = diag(y,, 1, v I,) and R=1,. Thus, the
general mixed model of Eqn (2) encompasses
ANOVA models for multi-phase data (as discussed in
Brien 1983; Wood et al. 1988, for example) but has
much broader application since non-orthogonal
designs and unbalanced data are easily handled and
more general covariance structures can be considered.
The latter is particularly important for the modelling
of local stationary trend associated with either the
field or laboratory phase.

Covariance models for stationary trend

In terms of covariance models for the field residuals,
the approach is as for the spatial analysis of a field
trial. The vector of field residuals is assumed ordered
as field rows within columns so that

Gf: G((J’L) ® G:(V,)

where G, is the ¢ x ¢ correlation matrix for columns
and G, is the r x r matrix for rows and 7y, and y, are
vectors of unknown parameters. As previously dis-
cussed, autoregressive processes of order one provide
plausible models for G. and G.. The associated vari-
ance parameters are simply p. and p, (so that y,=(p,,
p,)) and these are known as the autocorrelation
parameters for columns and rows respectively.

In terms of the laboratory phase, first consider
flour yield data. Recall that the milling of samples
from a field trial involves a sequential process that
usually requires more than a single day. There is
potential for temporal correlation linked to the order
of processing samples within a day. If a rectangular
trial layout is assumed, with d days and s samples
per day (making a total of n=ds samples) and the
data are ordered sequentially within days, then the
temporal correlation leads to a correlation matrix
for the residuals of the form

R:Id ® Ro(ﬂ,,)

399

where R, is the sx s correlation matrix for sample
order within days. As in the spatial modelling of field
trials, a range of covariance models is possible. The
present authors have found that an autoregressive
process of order 1 provides a plausible model for R,.
The full correlation model for e is therefore denoted
by ID x ARI1. The associated autocorrelation par-
ameter is denoted p, so that ¢ =p,.

In terms of the measurement of malting quality,
recall that grain samples are tested in a micro-malter
machine. Due to the arrangement of samples in the
micro-malter, there is potential for spatial variation.
Let m, and m, denote the numbers of rows and col-
umns in the micro-malter. For simplicity it is initially
assumed that all samples can be processed in a single
‘run’ of the micro-malter so that n=m,m.. If the data
are ordered as micro-malter rows within columns
then

R=R,, (pm(v) ® Rm,-(pm,.)

where R, and R, are the correlation matrices for the
micro-malter row and column dimensions. Once
again, the present authors have found the AR1 x AR1
model to be reasonable so that ¢=(p,,, p,, ) If the
data comprises several runs of the micro-malter then
independence of the errors between runs is assumed
and often the autocorrelation parameters are con-
strained to be the same for all runs.

Estimation and inference

Estimation of a linear mixed model involves two
processes. First the variance parameters (y, ¢ and o%)
are estimated, with residual maximum likelihood
(REML, Patterson & Thompson 1971) being the
preferred method. Given estimates of the variance
parameters, the fixed effects in the model are esti-
mated using empirical best linear unbiased estimation
(E-BLUE) and the random effects predicted using
empirical best linear unbiased prediction (E-BLUP).
In particular E-BLUPs for the genotype effects are
obtained, denoted by #,, and these are the basis of
selection decisions. In addition, an approximate pre-
diction error variance matrix for the genotype effects,
denoted V,,, is obtained. Cullis et al. (in press) show
how this matrix may be used to calculate heritability
and Expected Genetic Gain (EGG) for complex data-
sets such as those generated in multi-phase trials.
Cullis et al. (in press) obtain a generalized measure
of heritability as

a
A p———
g 20y,

(©)

where a is the average pairwise prediction error vari-
ance of genotype effects, that is

2 1
a=——tr(Vg)— 1.V, 1)
g—l( ) T e Vel
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Note that 1,¥V,,1,=0 unless selection (and hence the
heritability calculation) is limited to a subset of the
genotypes (for example, if the genotypes comprise
test and standard lines with the latter being excluded
from the selection process). The expected genetic gain
from selection of the top m genotypes is then calcu-

lated as
EGG=i\/a%y h 4

where i is the ‘selection intensity’ corresponding to
m (that is, the mean of the top m order statistics
from a standard normal distribution of size g). Note
that in the present paper a key element is the impact
of statistical modelling on genetic gain. Modelling
may increase /% (and thence genetic gain as shown in
Eqn (4)) by causing a reduction in error variance (or
effective error variance for those analyses, including
the analysis of multi-phase data, that do not include
an explicit error variance).

The significance of fixed effects in the mixed model
may be assessed using Wald tests. These are asymp-
totic tests that may be anti-conservative for small
samples sizes. In these cases, the adjustments of
Kenward & Roger (1997) may be used. Nested vari-
ance models may be compared using residual maxi-
mum likelihood ratio tests (REMLRT). If the test
involves a null hypothesis with a parameter on the
boundary of the parameter space (e.g. a test of a zero
value for a variance component when the component
has been constrained to be non-negative), then an
adjustment is required for the significance level (see
Stram & Lee 1994, for example).

All analyses in the present paper were conducted
using either ASReml (Gilmour et al. 2002) an efficient
program for fitting complex mixed models or the
samm (Butler ez al. 2003) suite of functions (written
for use within S-language environments; Becker et al.
1988) that uses the core routines of ASReml.

Analysis of example data-sets

First, a detailed account of the analysis of the flour
yield data from trial DH-5 is presented (see Tables 3
and 4 for trial details). Note that these data do not
comprise a rectangular array since the number of
samples milled each day was not constant (varying
from 65 to 80). For simplicity, the data-set has been
expanded from 720 to 800 observations indexed as
10 days by 80 samples per day so that a rectangular
layout is achieved. This is not necessary, but allows
the computational advantages of separability for the
residual variance structure to be exploited. The 80
additional observations have a missing value indi-
cator for the dependent variable.

The analysis commenced by considering the base-
line mixed model that contains random effects for all
block terms. The design for this trial involved an RCB
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in both the field and laboratory phases so that the
model can be written in symbolic notation as

y ~ 1+ gfac+ genotype + mrep + frep

+column.row +day.order (%).

where gfac is a factor with 5 levels (levels 1 to 4 cor-
respond to the parental genotypes and commercial
varieties and level 5 is assigned to all DH genotypes),
genotype is a factor with 120 levels, frep is a factor
with 3 levels (indexing field replicate blocks), column
and row are factors with 12 and 30 levels indexing
field columns and rows respectively, mrep is a factor
with 2 levels (indexing milling replicate blocks), day
and order are factors with 10 and 80 levels indexing
milling days and order within days, respectively. All
effects in the model, apart from the overall mean and
gfac, are fitted as random effects. The fixed term gfac
is included in order to ensure that the variance com-
ponent associated with the genotype effects relates to
the DH genotypes alone and not all the genotypes
in the trial. Note that the terms column.row and
day.order represent the field and laboratory residuals
respectively (i.e. uyand e in Eqn (2)). Initially, these
were assumed to represent independent random
variables each with constant variance, denoted by
or=0%y,and o respectively. The term genotype cor-
responds to u, in Eqn (2) and its variance is denoted
by 0%=0%,; the terms frep and mrep represent sub-
vectors in u, with variance components o} =0y,
and o2, =0%y,, . Note that the model in Eqn (5) 1s
almost 1dentical to that in Eqn (1) for the hypothetical
milling experiment, since the same types of random-
izations were employed. One difference here is that
the field plot residual term has been indexed using
column and row numbers rather than replicate and
plot within replicate numbers since this is required for
spatial modelling purposes.

The estimated variance components from the fit of
the base-line model are given in Table 6 under the
column headed ‘M0’. Note that the genetic variance
represented a large proportion (0-84) of the total
variation in the data. This was expected due to the
nature of the DH population. A QQ-plot (Wilk &
Gnanadeskin 1968) of the estimated laboratory
residuals from this model revealed some potential
outliers (Fig. 1). The outliers related to discrepancies
in the two laboratory replicate values for three field
plots. The very low flour yield values for plots (col-
umn 1, row 22 and column 1, row 26) and the high
value for plot (column 3, row 26) were found to be
erroneous so were omitted from subsequent analyses.

The base-line mixed model was re-fitted and the
resultant QQ-plot for the laboratory residuals was
satisfactory. The estimated variance components
from this model are given under the heading ‘M1’ in
Table 6. Note that the identification and exclusion of
the three outliers resulted in a substantial reduction
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Table 6. Estimates of variance parameters and key fixed effects in analysis of DH-5 milling trial

Model term Parameter MO

M1 M2 M3 M4 M5

2:293
0-006
0-141

genotype o
2

frep 9y,
column.row o7
p('

pr

mrep o 0014
units o? 0-280

Po
lin(order) x 10* 7,
lin(row) x 102 7,
Residual log-likelihood
Effective error variance

—215-26
0-622

—77-25

2:330
0-003
0-122

2:316
0-003
0-128

2:285
0-004
0-124

2:289
0-004
0-101

2:276
0-002
0-104
0-408
0-263
0-018
0-149
0-563
—0-1

0-019
0-153

0-019
0-142

0-018

0-148

0-569
—0-1

0-018
0-147
0-560
—01 —0-1
—7375
0-443

—29-30
0-382

—19-29
0-382

—14-32

0-442 0-380

3 3.26

Laboratory residual

1.26
-4+ =122
-3 -2 -1 0 1 2 3
Quantiles of standard normal
Fig. 1. Analysis of DH-5 trial: QQ-plot for estimated lab-

oratory residuals from model M0. Potential outliers are
labelled with their field column and row numbers.

in residual variance and also effective error variance
(0-622 for model ‘MO0’ compared with 0-442 for model
‘M1°). In terms of non-genetic variance, both the field
and laboratory made substantial contributions (0-42
and 0-58 of the total non-genetic variance, respect-
ively). The plot of laboratory residuals from model
‘M1’ against milling order for each day (Fig. 2) sug-
gested the existence of global trend, namely a linear
decline in flour yield over the course of each day.
Thus, a linear regression on milling order was added
to the model and found to be significant (P <0-001).
Having accommodated this global trend across mill-
ing order within a day, an AR1 correlation structure
was added to accommodate local trend. The estimated
autocorrelation parameter was 0-569 (see model ‘M3’
in Table 6) and is significant (x3=288-90, P<0-001).

Having established a plausible model for laboratory
trend, the modelling of field trend was then con-
sidered. This is possible due to the large contribution
of field trend to total non-genetic variance. The graph
of field plot residuals from model ‘M3’ against field
row number for each column (Fig. 3) suggested the
existence of global trend in the form of a linear decline
in milling yield over row number. Thus, a linear
regression on row number was added to the model and
found to be significant (P <0-001). Finally, an AR1 x
ARI correlation structure for the field residuals was
added. The estimated autocorrelation parameters
were 0-41 and 0-26 for the column and row dimen-
sions, respectively (see model ‘M5’ in Table 6) and
are significant (y3=9-96, P<0-001). Note that the
modelling process facilitated a reduction in effective
error variance from 0-442 for model ‘M1’ to 0-380 for
model ‘M5°.

Flour yield data for the remaining nine examples
described earlier were analysed using the same
approach as for trial DH-5. The resultant estimates of
variance parameters and key fixed effects from the
final models for each data-set are summarized in
Table 7. A key feature of the table is the consistency
of trend observed in the laboratory phase. The trend
is usually manifested both as global trend (with a
linear decline in flour yield from the beginning to
the end of each day) and as local stationary trend
with strong correlation (autocorrelation parameters
ranging from 0-56 to 0-82). The consistency is par-
ticularly noteworthy given that three different labor-
atories and two different milling methods were used in
the present set of 10 trials.

Another interesting feature is that in terms of error
variation, the contribution from the first (field) phase
was generally lower than from the second (labora-
tory) phase. This is consistent with the present
authors’ experience in analysing flour yield data. The
spatial modelling of field trend was only possible in
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Laboratory residual
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Fig. 2. Analysis of DH-5 trial: estimated laboratory residuals from model M1 graphed against
milling order for each milling day.
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Fig. 3. Analysis of DH-5 trial: estimated field plot residuals from model M3 graphed
against row number for each column.
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Table 7. Analysis of ten flour yield data-sets: estimated variance parameters (components unless otherwise

indicated) and fixed effects for final models. Model terms partitioned into block terms and model based terms.

Estimated variance components are given for all block terms unless the term was not applicable for a particular

design (so left blank). Estimated parameters for model-based terms are only given if parameter was significant at
the 5 % level (otherwise left blank)

Block terms

Model-based terms

Trial geno frep colrow mrep  day units  lin(row) x 10> p, p, lin(ord)x10*  p,

NSW-1  1-39 0 0193 0 0-726 —33 0-78
NSW-2 136 0259 0039 0 0-271 —38 0-82
NSW-3  0-98 0-008  0-124 0-104  0-437 —27

NSwW-4  1-88 0-120 0 0309 0318 —20 0-61
NSW-5 091 0-302  0-671 0960  0-600 —09 0-66
DH-1 087 0 0 0-329*  0-213 —57

DH-2 2-81  0-133  0-340 0-784 0-70  0-84 —63 0-71
DH-3 144 0 0-617 0-225% 0201 091 099 —37

DH-4 192 0077  0-406 0-482% 0271 —21 —44 0-71
DH-5 228 0-002 0-104 0018 0-149 —17 0-41 026 —01 0-56

* Term was not part of block structure but was a significant model-based term.

three of the trials and all of these were DH trials.
In terms of genetic variance, it should be noted that
the estimates for the NSW trials are representative
of early generation selection trials and the estimates
for the DH trials are substantially larger since they
reflect populations constructed to be variable for this
trait.

A NEW CLASS OF EXPERIMENTAL
DESIGNS

As is evidenced from the analysis of the motivating
examples, multi-phase quality trait data may exhibit
‘nuisance’ trend arising from the field and/or labor-
atory phases. The potential exists to increase response
to selection by appropriate statistical modelling of
this trend. This can only be achieved with the use of
an experimental design that employs replication and
randomization in all phases. In the specific appli-
cation of quality trait testing, it is important to con-
sider the high cost associated with the acquisition of
the data and the consequent need to limit the total
number of samples tested for any given field trial.
Fully replicated designs are prohibitively expensive
and are unnecessary from a statistical perspective. In
the present paper, a scheme based on the staggered
nested designs of Bainbridge (1965) and p—rep designs
of Cullis et al. (in press) is proposed. This is illustrated
by means of a simple example in which 40 genotypes
are grown in a field trial with 2 replicates, then all
genotypes are to be milled in the laboratory. A fully
replicated design (assuming two laboratory replicates)
would require 160 samples to be milled (that is, 40
genotypes x two field replicates x two laboratory
replicates). This scheme is shown diagramatically in

Table 8 (a). The design is balanced for genotypes,
in the sense that there is an equal number (four) of
observations for each genotype. This scheme uses a
large amount of resources and is ‘bottom’ heavy in
terms of degrees of freedom (p.F.) for estimating
error, with 40 p.F. for plot error and 80 p.F. for lab-
oratory error. Bainbridge (1965) devised staggered
nested designs in order to overcome this problem. In
the context of the example, one field replicate of each
genotype is replicated in the laboratory whilst the
other is only tested once, making a total of 120 sam-
ples. This design is also balanced for genotypes, with
three observations for each genotype. This scheme is
shown diagrammatically in Table 8 (b). The b.F. for
estimating plot and laboratory error are both 40 and
the scheme requires considerably less resources than
the fully replicated design. The present authors
believe that further economies are possible using the
partial replication idea of Cullis ez al. (in press). This
involves the use of field replicates for a proportion
p of the genotypes and laboratory replicates for a
proportion ¢ of the field plots. In order to equalize, as
far as possible, the number of observations for each
genotype it is ensured that the field plots that are
replicated in the laboratory correspond to genotypes
for which only a single field replicate is tested. One
such scheme for the example under consideration is
illustrated in Table 8 (¢). In this scheme p=0-25 and
q=0-20. The total number of samples is only 60 and
the number of observations for each genotype is
either 1 or 2. The n.F. for estimating plot and labora-
tory error are both 10. These designs, that shall be
called p/q—rep designs, clearly have much to offer in
the costly area of quality testing, in which the total
number of samples must be kept to a minimum. The
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Table 8. Diagrammatic representation of example

laboratory designs for testing 40 genotypes from a

2 replicate field trial and with 2 laboratory replicates.

(a) Fully replicated design. (b) Staggered nested design.
(¢) p/q design with p=0-25 and q=0-20

(@)
Geno- Field Milling
types plots samples
40
40 < 40
40 < 10
jo—_,
Total 40 80 160
(b)
Geno- Field Milling
types plots samples
jo—-—20
0—=—__ 40
40— 40
Total 40 80 120
()
Geno- Field Milling
types plots samples
10— 10
0= 10— 1o
1
10———10———_10
20 20 20
Total 40 50 60

extension to experiments with more than two phases
is obvious.

Assessing performance of new designs

It was hypothesized that the ability to model trend
facilitated with the use of a p/g—rep design would, for
a given total number of samples, lead to higher gen-
etic gains than with the use of a ‘design’ without
any replication. This could be investigated using an
algebraic approach similar to that of Kempton
(1984). Thus, Eqn (4) could be used to establish the
reduction in effective error variance that would be
required to equalize the genetic gain associated with
the two designs. A key issue, however, is that Eqn (4)
is based on the premise that variance parameters are
known, whereas in practice they must be estimated
from the mixed model analysis. With the proposed
designs the level of replication may be quite low;
therefore knowledge of how this may adversely affect
variance parameter estimates is important. Thus, a
simulation study was conducted in order to calculate
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Table 9. Designs compared in simulation study for
testing genotypes from a field trial with 576 genotypes
and 720 plots in a laboratory trial with 448 samples.
Total number of genotypes tested for each design is:
448 for D00 and Dc0,; 407 for Dcq and 370 for Dpq

Geno- Field Milling
Design types plots samples
D00 448 448 448
Dc0 112
¢ H2—=—_ |5 =112
336 336 336
Dcq 102
102=——_ 5 —=102
41
41 4=,
264 264 264
Dpq 37 37
3= 37 37

41 4= 31

292 292 292

realized genetic gain (based on E-BLUPs from a mixed
model analysis) and use this, rather than expected
genetic gain, as a basis for comparing designs.

Under consideration were four designs for a milling
experiment that is typical of an early generation trial
in the NSWDPI wheat breeding programme. A field
trial comprising 720 plots (arranged as 12 columns x
60 rows) and a total of 576 genotypes is assumed. The
field trial uses a p-rep design (Cullis et al., in press)
with p=0-25 so that 144 genotypes are replicated and
the remaining 432 are planted as single plots. It is then
assumed that a fixed number (448) of samples can be
milled in the laboratory and that it is possible to mill
28 samples per day so that the complete milling will
require 16 days.

The designs compared comprised a ‘null’ design
(that shall be denoted D00), in which there is no rep-
lication in either phase so that a total of 448 geno-
types may be tested (with a single field plot of each).
Also considered was the scenario in which the same
448 genotypes were tested, but for those genotypes
with two field replicates the data were averaged to
mimic a composite field sample. This design is deno-
ted by Dc0. The D00 and DcO designs were, until
recently, used quite commonly for milling trials and
remain the standard approach for many other quality
traits. The third design considered, labelled Dcq, was
similar to Dc0 in that composite field samples were
used but replication in the laboratory was included
with ¢=0-10 of field samples replicated. This allowed
a total of 407 genotypes to be tested. The final design
was a p/q-rep design with p=¢=0-10. This allowed
370 genotypes to be tested. Details of the replication
involved in all four designs are given in Table 9.
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In terms of the randomization of samples in the
milling process, the samples for D00 were processed
in field order (rows within columns) and the samples
for DcO were processed in the same order. The
samples for Dcq and Dpq were randomized, with
the samples involving laboratory replication being
allocated to positions in the milling process using a
resolvable incomplete block design with days as
blocks and the remaining (unreplicated) samples were
allocated at random to the ‘vacant’ positions (also
see description of milling designs for the NSW trials
as given in the section ‘Motivating examples’). The
designs employing replication were generated using
the DiGGer software (Coombes 2002).

Data for each design were generated according to
21 different models that were chosen as being typical
of flour yield data. Due to the consistent occurrence
of laboratory trend (see ‘Analysis of example data-
sets’), each data model included a (fixed) linear
regression on sample order (slope=-0-03), random
effects for milling days (variance component =0-32)
and an autoregressive process over sample order
(autocorrelation parameter =0-60). The residual vari-
ance (scale parameter) was taken to be o>=0-38. All
models could then be represented symbolically as

y~1+lin(order) + genotype + column.row +day
+day.order (6)

In terms of genetic effects, three different variance
component ratios were used, namely y,=0-5, 1-0 and
2:0. In terms of field plot effects, seven different
models were used, namely no plot effects (that is, a
variance component ratio for the term column.row of
yr=0) and the factorial combination of three non-
zero values of y(0-5, 1:0 and 2-0) by two correlation
models (independence and a separable autoregressive
process of order 1 with correlation parameters of
p.=04 and p,=0-6).

In accordance with the two-phase nature of the
experiment, the data were generated in two stages.
Non-genetic effects associated with the laboratory
(linear regression on order, random day effects and
residuals) were generated first since, for any given
simulation, these remained constant across all 21 data
models. Then genetic and field plot effects were gen-
erated. This was done in reference to the complete
field trial even though only a subset was tested in the
laboratory. Thus, 576 genetic effects and 720 plot
effects were generated. The four designs involve dif-
ferent numbers of genotypes and field plots; therefore
the next step was to extract the appropriate subsets of
effects for each design. In order to improve the accu-
racy of comparisons of designs, this was carried out
in a nested manner. Thus, in terms of the genotype
effects, the same 448 genotypes were used for D00 and
Dc0, the 407 genotypes used in Dcq were a subset of
those used in D00 and Dc0 and the 370 genotypes
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used in Dpq were a subset of those used in Dcq. An
analogous approach was used for the field plot effects.
In any of the designs, the genotypes comprised a
mixture of those that had been replicated in the field
and those that were grown as single plots. The ratio
was kept constant in all designs and was set at 1:3 to
match the original field trial in which 0-25 of geno-
types were replicated.

Note that the data model does not include terms
for resolvable blocks in either the field or laboratory.
In practice these terms would be included in order
to respect the randomization, but in terms of the
simulation they add complexity since a range of
values may need to be used. Also, resolvable blocks
are not part of the design model but are accom-
modated using a restriction of the search algorithm.
For these reasons, and without loss of generality, the
effects have been excluded from the data model.

Simulated data were analysed using models that
matched the data generation model, subject to
restrictions imposed by the design. Thus, for the
designs D00 and Dc0, there was no analysis since
there was no replication in the data. Data for Dcq was
analysed using the model in Eqn (6), except that
the term column.row was omitted (since field plot
replicates were not maintained but combined to form
composite samples). Finally, data for Dpq were
analysed using the full model as in Eqn (6).

A total of 200 simulations was conducted for each
combination of 21 data models and four designs. In
each simulation, the true and realized genetic gain
(denoted TGG and RGG) were calculated for the
selection of 70 genotypes. TGG was calculated for all
designs by ranking the genotypes on the basis of the
true genetic effects, selecting the top 70 and calculat-
ing their mean. RGG for designs D00 and Dc0 was
calculated by ranking the genotypes on the basis
of the raw data, selecting the top 70 then calculating
the mean of the associated true genetic effects. RGG
for Dcq and Dpq was calculated in a similar way, but
genotypes were ranked on the basis of the E-BLUPs
from the mixed model analysis. TGG is only influ-
enced by the design (due to differences in number of
genotypes tested and thence proportion selected) and
the genetic variance. The average TGG values for the
four designs and three levels of genetic variance are
given in Table 10. When scaled by the genetic stan-

dard deviation 0%y, ) the average (standardized)

TGG for each design is equivalent to the intensity of
selection (see final column in Table 10). The selection
intensity for designs D00 and Dc0 are identical and
the intensity is lowest for Dpq, which encompasses
the most replication (and thence least number of
genotypes tested). Equation (4) clearly shows that, for
a given trial size and genetic variance, a decrease in
intensity must cause a decrease in genetic gain unless
the effective error variance can be reduced (and
thence heritability increased). Thus, in terms of RGG,
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Table 10. Simulation study : mean over 200 simulations of True Genetic Gain (TGG) for selection of 70 genotypes

for four designs and three values of genetic variance. Final column is average standardized TGG (that is, intensity
of selection) across all values of genetic variance

TGG
Genotypes  Proportion Intensity
Design tested selected Y¢=05 Ye=10 Ye=20 of selection
D00 448 0-16 0-666 0-941 1-333 1-528
Dc0 448 0-16 0-666 0-941 1-333 1-528
Dcq 407 0-17 0-644 0-910 1-289 1-477
Dpq 370 0.19 0-621 0-879 1-244 1-426

the issue is whether the statistical modelling associ-
ated with the designs that employ replication, in
particular the p/g-rep design (Dpq), has a large
enough impact on effective error variance to offset the
reduction in intensity as quantified in Table 10.

The mean RGG across 200 simulations for the four
designs and 21 data models described in ‘ Assessing

Table 11. Simulation study: mean Realized Genetic
Gain (RGG) for selection of 70 genotypes for four
designs and 21 datamodels. RGG for design D00 is given
in units of measurement; RGG for other designs are
expressed as a proportion of D00. n= 200 simulations

the performance of new designs’ is given in Table 11. Data model Design
The most obvious feature of this table is that RGG .
for the designs that use laboratory replicates (Dcq S;:zlt?al y y D00 D& Deg Dpg
and Dpq) is always higher than for the designs that do £ 4
not (D00 and Dc0). Thus, the modelling of laboratory ~ No 0-5 0 0-304 1-014 1-450 1-436
trend has facilitated a reduction in effective error No 0-5 0-5 0273 1-031 1327 1277
variance that has outweighed the reduction in selec- No 0-5 1 0250 1-051 1284 1222
tion intensity induced by testing fewer genotypes. The No (1)'5 2 0-220 %'041 %;93 };2?
impact of testing individual field replicates is less O 0 0-553 1000 1.28 26
. No 1 0-5 0-515 0991 1217 1189
general. The scheme that employs composite field No 1 1 0478 1016 1197 1-153
samples (Dcq) resulted in higher RGG than the p/ 1 5 0418 1021 1153  1-117
g-rep design for 16 of the 21 data models. This ng 2 0 0952 0994 1157 1-134
included all data models in which there was no field No 2 05 0898 1-011 1139 1-107
spatial correlation. When there was spatial corre- No 2 1 0-853  1-021 1-123  1-079
lation in the field and the associated variance was No 2 2 0-763  1-034 1-117 1-073
relatively large (y,=2-0) the p/g-rep design out- Yes 0-5 05 0279 1-:009 1296 1297
performed the Dcq design, with larger benefit for — YeS 0-5 1 0255 1027 1243 1272
smaller genetic variance. Note that in terms of the Yes 0-5 2 0219 1-038 1206 1282
o . . Yes 1 0-5 0-508 1022 1239 1-222
ability of each of the four designs to achieve the . . . .

. . . R Yes 1 1 0469 1025 1203 1-200
potential genetic gains, RGG can be considered as a v 1 ) 0432 1031 1-135 1-181
percentage of TGG. Once again, across all 21 data v > 05 0887 1008 1-148 1-117
models Dcq and Dpq were substantially better than  Yes 2 1 0-854 1-012  1-119  1-098
D00 and Dc0. Additionally, Dpq was always the Yes 2 2 0780 1-025 1102 1114

same as or better than Dcq. The average values of
RGG as a proportion of TGG for the four designs are
0-51, 0-52, 0-64 and 0-65 for D00, Dc0, Dcq and Dpq,
respectively. It is also important to note that the
variability of RGG values was substantially lower
for the designs with laboratory replication and, on
average, was lower for the p/¢g—rep design compared
with the Dcq design (Table 12).

DISCUSSION

In the present paper, a mixed model approach for the
analysis of multi-phase quality trait data and a new

class of designs that employs partial replication in all
phases has been described. In terms of analysis, the
proposed model generalizes the work of Brien (1983)
and Wood er al. (1988). Those authors use analysis of
variance tables that include all sources of variation as
necessary to represent the block structure in each
phase. This principle is followed in the present paper,
but a modelling aspect is added in order to accom-
modate additional sources of variation and corre-
lation. The approach easily handles non-orthogonal
designs and unbalanced data, which tend to be the
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Table 12. Simulation study: standard error of mean
Realized Genetic Gain (RGG) for selection of 70
genotypes for four designs and 21 data models.

Standard error for design D00 is given in units of

measurement X 100, standard errors for other designs
are expressed as a proportion of DO00. n=200

simulations
Data model Design

Field

spatial Ve Vr D00 Dc0 Dcq Dpq
No 0-5 0 0-396 0981 0-814 0-798
No 0-5 05 0383 0980 0925 0876
No 0-5 1 0398 0944 0-864 0-932
No 0-5 2 0-380 0924 0-950 0-957
No 0 0-591 0940 0-728 0-728
No 1 0-5 0488 1072 0906 0-871
No 1 1 0-500 0954 0968 0-974
No 1 2 0-523  1-:059 0954 1011
No 2 0 0-705 1002 0-780  0-807
No 2 05 0678 0915 0903 0-830
No 2 1 0-721  0-945 0-898 0-786
No 2 2 0-670 1036 1-:025 0-993
Yes 0-5 05 0394 0895 0840 0-885
Yes 0-5 1 0362 0951 0944 0861
Yes 0-5 2 0-378 0992 0917 0916
Yes 1 05 0513 0962 0900 0872
Yes 1 1 0-509  1-021 0-892  0-928
Yes 1 2 0-510 1-013  1-036  0-880
Yes 2 05 0732 0967 0808 0-870
Yes 2 1 0-753 0932 0-857 0-878
Yes 2 2 0-676 1022 1020 0914

rule rather than the exception in the case of quality
trait data. The flexibility of the mixed model was
illustrated with the analysis of 10 wheat flour yield
data-sets. Most of these data were highly unbalanced.
The modelling of trend was an important aspect for
all data-sets, resulting in substantial reductions in
effective error variance. This phenomenon underpins
the proposed approach to experimental design.

The basic principle of the new designs for a two-
phase quality experiment is to test field replicates of a
proportion p of genotypes (and use single plots of the
remainder) and test laboratory replicates of a pro-
portion g of the field plots (and use single samples of
the remainder). This approach has the benefit of
facilitating the use of the mixed model analysis,
thence providing a reduction in effective error
variance that is likely to lead to an increase in genetic
gain. At the same time, the total number of samples is
limited, thence controlling the overall cost of testing.
The latter is a key issue for Australian plant breeding
programmes.

A simulation study was conducted to compare the
new designs (so-called p/g-rep designs) with schemes
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that are commonly used in two-phase quality testing.
Thus, the scheme with no replication in either phase
was considered, as was a scheme that had no repli-
cation in the laboratory but used composite field
samples. For completeness, a design that used com-
posite field samples and then laboratory replication
for a proportion of these was also considered. Note
that another design in common usage, namely a
design in which multiple control samples are tested in
the laboratory process, was not considered, since this
scenario is analogous to the grid-plot field design in
which multiple control genotypes are grown. Cullis
et al. (in press) show that the genetic gain associated
with their partially replicated (p-rep) field designs is
superior to that for grid-plot designs, so the same
result is inferred in the present paper in terms of the
laboratory design in a multi-phase experiment.

The simulation study was based on data models
typical of flour yield data from wheat breeding trials.
The study showed that, for a fixed total number of
samples tested, the p/g—rep design with p=¢=0-10
was superior to the no replication scheme in terms
of realized genetic gain. The average gain (across all
data models) for the p/q—rep design was 19 % higher
than that for the no replication scheme. Thus, the
modelling of trend facilitated with the use of the
p/g—rep design achieved sufficiently large reductions
in error variance to offset the lower selection intensity
compared with the no replication design. The overall
impact of modelling can be partitioned into the com-
ponents associated with the field and the laboratory.
The study showed that the designs that used labora-
tory replication always had higher realized genetic
gain than those that did not. The conclusion from this
is that, in order to maximize genetic gain, laboratory
replication is essential for quality traits that exhibit
trend in the laboratory phase. Wheat flour yield is one
such trait and the present authors’ experience has
been that a number of other traits, including barley
malting quality traits (see Cullis ez al. 2003) also
exhibit substantial trend in the laboratory process.

In terms of the testing of field replicates, the present
study showed that when there was no spatial corre-
lation in the field, the realized genetic gain for the
p/g—rep design (which processes individual field
replicates) was lower than that for the design in which
composites of replicates are tested. However, in the
presence of spatial correlation with a relatively large
variance and a genetic variance the same size or
smaller than residual variance, the genetic gain for the
p/g—rep design was substantially higher than for the
design using composite samples. In terms of the trait
studied here, namely wheat flour yield, field spatial
correlation of this magnitude was found in only
three of the 10 data-sets and all of these related to
mapping populations. Thus, the use of composite
field samples may be a reasonable strategy for early
generation milling trials, although more data need

https://doi.org/10.1017/50021859606006319 Published online by Cambridge University Press


https://doi.org/10.1017/S0021859606006319

408

to be considered in order to make this a general
recommendation.

An important factor to consider in making the
choice between testing individual field replicates or
using composite samples is whether further proces-
sing, i.e. more experimental phases, are planned. In
the case of wheat quality, traits associated with dough
properties (such as dough strength and extension) are
very important. These traits are obtained using a
three-phase experiment in which the first two phases
are as for flour yield, then in the third phase dough
is made from the flour and tested for a range of traits.
In the present authors’ experience, the non-genetic
variation in dough strength and extension traits has a
large component due to field variation and spatial
correlation (see Mann et al. 2006). Genetic gain for
these traits may therefore be best served by main-
taining individual field replicates through all phases
of the experiment. Experience with the analysis of
malting quality in barley has shown that the non-
genetic variation in many of the traits is often domi-
nated by field variation and spatial correlation (see
Cullis et al. 2003) so that the testing of individual field
replicates may be recommended. However, more
experience with these traits is required in order to
make firm recommendations.

Another interesting possibility is the use of phase
confounded designs. This may be appropriate if a
specific phase contributes very little to the total error
variation in a trait. In this case, extra replication in
the subsequent phase would be avoided so that, in
terms of the analysis the experiment would then be
regarded as having one less phase. An example of this
type is the wheat dough property traits, the majority
of which exhibit little or no variation from the milling
phase (Mann et al. 2006). Thus, the milling and
dough testing phases may be confounded with the
result that the experiment is regarded as comprising
two rather than three phases.

One key aspect that was not investigated in the
simulation study was the ability to detect outliers
(associated with any of the phases), which is only
possible with some level of replication. In the detailed
analysis of one of the data-sets, the detection and
subsequent deletion of three (laboratory) outliers
resulted in a large reduction (approximately 30 %) in
effective error variance that would translate to a large
increase in genetic gain. The approach to the detec-
tion of outliers presented in the present paper is
informal, based mainly on graphical displays.
Possible outliers are identified, then advice sought as
to their likely cause and an appropriate remedy. A
more objective approach to outlier detection is re-
quired. This is a difficult problem in the framework of
linear mixed models and in particular for multi-phase
data in which outliers may arise at several levels.

Another issue is the choice of values for p and ¢. In
the simulation study, p=¢=0-10 but other values

A.B.SMITH, P.LIM AND B.R.CULLIS

may be more appropriate. At present, it is
recommended to use ‘sensible’ values that allow a
statistical analysis to be conducted but do not lead to
an excessive total number of samples. The choice of
optimum values for individual traits is the subject of
current research. The major unresolved issue, how-
ever, is that of optimal randomizations for p/g—rep
designs. The literature on designs for multi-phase
experiments is scarce and is confined to balanced,
orthogonal cases. The issues for plant breeding data
are even more complex. For example, the designs use
partial rather than complete replication and there are
complications induced by the fact that only a subset
of the genotypes grown in the field trial is then tested
in the laboratory (and the subset is unknown prior to
designing the field trial). Currently, the present
authors follow the lead of Wood et al. (1988) who
suggest that a ‘good’ design is needed for each phase.
Here ‘good’ refers to an optimality criterion on the
genotypes. In the present paper, the decision was
made to minimize the average pairwise prediction
error variance of the genotypes (also see Cullis et al.,
in press), since this is equivalent to maximizing
expected genetic gain. At present, this can only be
done by assuming the field design is given, then
ignoring field information in construction of the
laboratory design. This is unlikely to be the optimum
strategy. Note that the superiority of the naive
p/g—rep design used in the simulation study would
be even greater in terms of a more optimum
design. The investigation of randomizations for
multi-phase quality experiments is the subject of
current research.

Finally, it is recognized that variety trials are
usually conducted as series of experiments known as
multi-environment trials (MET). Literature on the
analysis of single-phase field MET data is expansive
(see Smith et al. 2005 for a recent review) but is lim-
ited to only one or two papers in the context of multi-
phase data (Cullis ez al. 2003, for example). In the
present paper, a mixed model analysis for a single
multi-phase variety trial has been described. A future
paper will describe an approach for multi-phase MET
data that combines the multi-phase aspects presented
here with the MET approach of Smith ez al. (20015).
In their mixed model analysis (of single-phase data),
Smith et al. (20015) use a multiplicative model for
variety by environment interaction and a separate
spatial model for the (field) errors for each trial. This
can be generalized to accommodate the modelling of
both field and laboratory variation for each trial as
described in the present paper. In terms of exper-
imental design for multi-phase MET, note that the
p/g—rep designs presented herein for individual trials
are well suited to series of trials. The key principle is
to seek balance across trials for the total number of
samples for each variety. Thus varieties that are tested
without replication in one trial would be replicated in
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another (also see Cullis ef al., in press, in the context
of partially replicated field designs). The issue of
optimal randomizations for multi-phase MET is
a difficult problem and is the subject of current
research.
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