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A GENERAL AND SHARPENED FORM 
OF OPIAL'S INEQUALITY 

BY 

D. T. SHUM 

1. Introduction. Z. Opial [11] proved in 1960 the following theorem: 

THEOREM 1. If u is a continuously differentiable function on [0, b], andifu(Q)= 
u(b)=Q and u(x)>0for x e (0, b), then 

(1) fb\<x)u'(x)\ dx<\ \\u'(x)f dx, 
Jo 4 Jo 

where the constant b/4 is the best possible. 
Equality holds in (I) if and only if 

u(x) = ex, for 0 <, x < b/2 and 

u(x) = c(b—x), for 6/2 < x <* b, 
where c is a constant. 

In a note published at the same time, C. Olech [10] showed that (1) is valid 
for any function u(x) which is absolutely continuous on [0, b]9 and satisfies the 
boundary conditions w(0)=«(e)=0. 

We also note that in order to prove (1) it suffices to prove the following (see 
also [10]) 

THEOREM 2.1fu is an absolutely continuous function on [0, b] and ifu(Q)=0, 
then 

(2) f b\u(x)u'(x)\ dx<\ [\u'{x)f dx, 
Jo 2 Jo 

where b/2 is the best possible constant. 
Equality holds in (2) if and only ifu(x)=cx, where c is a constant. 

In 1962 P. R. Beesack published a paper [2] which gives a different proof of 
Opial's inequality, and which shows that (2) is contained in the following 

THEOREM 3.1fu is an absolutely continuous function on [0, b] and ifu(0)=0, 
then 

(3) \\u(x)u'(x)\ dx + - I Ul \\u(t)u'(t)\ dt-[u(x)f\ dx<- \ \u'(x)f dx. 
Jo 2 Jo x { Jo J 2 Jo 

Equality in (3) holds if and only ifu(x)=cx, where c is a constant. 
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Since 

gl(x) = 2 \X\u{t)u'{t)\ dt-[u(x)f > 0, 
Jo 

(3) is an improvement of (2), though not explicitly pointed out by the author. 
The result of Z. Opial has led to numerous articles; we shall discuss some of 

these in section 3 (see also [3] or [9] for more complete background). The purpose 
of this note is to prove Theorem 4, which is a generalization of Theorem 3. The 
method of the proof of Theorem 4 was first used by Benson [4], and was modi­
fied in a recent paper [12], 

2. Preliminary lemmas. 

LEMMA 1. If u is absolutely continuous on [a,b] and if u(a)=0, then, for all 
p>-h 

(4) ga(x) = (p+1) [*\u\*\u'l A-l i iOOr 1 > 0, (a < x < b). 
Ja 

Equality is attained in (4), if and only ifu' does not change sign on [a, b]. 

The proof of this lemma is left to the reader. 
Before giving our second lemma we first state two elementary algebraic in­

equalities [1, or 7, TH 41] to which we shall apply Benson's method: 

(5) s^+pt^-ip+fyf > 0 (p > 0, or p < - 1 ) ; 
(6) s^+pt^^p+^sf < 0 ( - 1 < p < 0). 

Here, s and t are nonnegative (positive if p< —• 1), and in both cases strict inequal­
ity holds unless s=t. (We also note that when/?=0 or/?= — 1, the left sides of 
both (5) and (6) become identically zero for all s and t.) 

The associated integral inequalities are stated in the following lemma. The 
special case/?+1 =2n of (7) below gives the basic integral inequality used by Benson 
in [4]. 

LEMMA 2. Let v(x) be absolutely continuous on [oc, /S] with v'(x)>0 a.e. Also> 
suppose that Q(x) is nonnegative a.e. and measurable on [a, /?], and G(v9 x) is con­
tinuously differentiable for x e [a, |8] and v in the range of the function v(x), with 
Gv(v, x)^>0* (or Gv(v, x)>0 in case p<0). Then, if the integrals exist, 

(7) Ja^'*+1+XGJ(»+1,/*Ô-1/3,+0>+l)GJ dx 

> (p+l){G(p(j8), P)-GW*), a)} (p > 0 or p < - 1 ) , 

( 8 ) jjQv'^+piGj^vQ-^+ip+VGJ dx 

< (p+ l){G(v(p), ft-G(Ka), a)} ( - 1 < p < 0), 

* We note that in case p+\ —In with n a positive integer, the restrictions t?'(jt)>0 a.e., and 
Gv(v, x)^0 may be removed. 

https://doi.org/10.4153/CMB-1974-071-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1974-071-5


1974] GENERAL OPIAL'S INEQUALITY 387 

where Gv=(d/dv)G(v, x), Gx=(dldx)G(v, x). Equality in both (7) and (8) holds if 
and only if the differential equation 

(9) V = (GJQ)1" 
is satisfied almost everywhere. 

Proof. (The following proof illustrates how Benson's method works.) By 
taking s=v'Qmv+1), t={Gvf

lvQ-VWt,+m in (5), we have, almost everywhere, 

Qv"+1+p(Gj*¥1}'*Qr1'p ^ (p+l)v'Gv. 
That is, 

Qv'^+piGj^'Q-V'+ip+VGs ^ (p+l) -j- G(v, x), 
dx 

proving (7) by integrating both sides of the above inequality from a to /?. 
The proof of (8) follows from the above argument, but using (6) instead of 

(5). The proof of (9) follows at once from the remarks after (5) and (6). 

3. The main theorem. 

THEOREM 4. Let u be an absolutely continuous function on [a, b], and u(a)=0. 
Ifp>0, andSl \u'\p+1 dx<oo, then 

oo, fVr M * + «ffirjr ?f&± < a=£ fVr *. 
Ja p + l Ja{X — ay^ p + l Ja 

where g2(x) is defined in (4). If either p< — \ and both $1 \u\p |w'|dx<oo, and 
SlW\p+1dx< co, or — l < p < 0 and$1 \u\p\u'\dx<oo, the reverse inequality holds. 

For p>0, equality holds in (10) if and only ifu{x)=c(x—a)for some constant c; 
for /?< —1 equality never holds; for —l</?<0, equality holds if and only ifu(x)= 
c(x—a)for some constant c^O. 

Proof. First we note that with u defined above we have (see Remark 2 below), 
for/?>0, 

(11) (b\u\* \u'\ dx < ( b ~ a ) * f |MT + 1 dx < oo. 
Ja p + l Ja 

Now, from (11), with b replaced by x, it follows that 

(12) lim / ± \ - ( \ r |n'l dt = 0, (p > 0). 
x-*a+ (x—ay Ja 

Now, let v(x)=$x
a\u\p\u'\dt9 which is well defined by (11), Q-^M^^ and 

G=v(x~a)~p. Then from (7) with [a, /?] replaced by [a, b] we obtain, for p>0 
and a<0L<b, 

^fw''"•'*-(-SU"1"1'1"'1* 
s fVr fc+f J^-^^r-w-ofw Li *)) *, 
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or 

(13) (b - aY J a J a (x - a)v+L 

< j 2 ^ ('\u\* \u'\ dx+ f V r + 1 dx-
(vL — a)V Ja Joe 

Now, on taking limits as a->a+ on both sides of the above inequality one obtains 
(10) by using (12), on noting that g2(x) is nonnegative by Lemma 1, so that both 
integrals on the left side of (10) exist (finite). 

For/?< — 1, the inequality (13) is still valid, and hence we have 

d^rlumdx+prj&ùiï. 
(14) (&—ay J a Joc(x—ay+ 

^ T T ^ P M * \u'\ dx+ fb\uV+1dx9 (p < - 1 ) . 
(b — ay J a J<x 

Now, since p< — \ it follows from the definition (4) of g2 that pg2(x)>0, hence 
both limits on the left side of (14) exist (finite) as cx.-^a+, and the first limit is 
zero sincep<0, proving the casejp< — 1 without the equality condition. 

The proof of the case —1</?<0 is essentially the same as above except that 
instead of (7) we now use (8). 

The proof of the equality condition begins by employing (9) in (13). The 
details are left to the reader, and are similar to those used in [12]. 

REMARK 1. From (10) we may deduce (3) on setting a=0, p=l in (10). Thus, 
Theorem 3 is a corollary of Theorem 4. 

REMARK 2. We note that (11) with a = 0 is a special case of an inequality first 
proved by G. S. Yang [14] who proved that i fp^O, q^l, then 

Mw|3, \u'\* dx < - 2 ^ - I \u'\»+Q dx 
Jo p-\-q, J° 

for any u which is absolutely continuous on [0, b] with w(0)=0. Yang stated his 
result only for /?>l , q>l, but the proof also holds for/?>0, q>l, as noticed by 
P. R. Beesack. The result is sharp only for q—\. An earlier paper by Hua [8] 
proved (11) with/? a positive integer. The inequality (11) is included in a (later) 
generalization of Calvert [6], and about the same time a short direct proof of the 
latter was given by Wong [13]. In addition, the inequality (11) is also contained 
in the paper [5] of Boyd and Wong. 

Finally, we note that the inequality (10), with/?>0, can further be generalized 
to 

J 5 |u'|p+1 dx > (p+l)(b-a)-p J s \u\p \u'\ dx 
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valid for any u such that u(x)=jb
a u' dt and J* s \u'\v+1 dx< oo. Here s is positive 

and nonincreasing on {a, b) with —co<a<b<oo. 
The proof of (15) may be completed by setting v=$*s\u\p\u'\dt, Q~1 = 

\u\p{9+1)s^9 and G=t?(*-a)-» in (7). 

REMARK 3. By setting s=l in (15) we get (10). The case of equality in (15) 
may also be discussed by using (9). 
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