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A numerical model that allows one to study numerically the evolution of waves along
the test section of a wind-wave tank is offered. The simulations are directly related to
wind-wave tank experiments carried out for a range of steady wind velocities. At each
wind forcing condition, the evolving wind-wave field is strongly non-homogeneous, with
wave energy growth along the test section accompanied by frequency downshifting. The
wave parameters measured at a short fetch serve as a basis for generating numerous
realizations of the initial conditions in the Monte Carlo numerical simulations. The
computations are based on a modified unidirectional spatial version of the Zakharov
equation that accounts for wind input and dissipation and is applicable for the whole
range of wind velocities employed. The model contains two empirical parameters that
are selected by comparison of the experimental and numerical results; the same values
of those parameters are applied for all wind forcing conditions. The availability of
an experimentally verified numerical model allows one to study the contributions of
nonlinear wave–wave interactions, dissipation and wind input separately. Special attention
is given to accounting for the three-dimensional and random nature of wind waves as
observed in experiments. The suggested model combines approaches adopted in the
wind-wave growth theories by Miles and Phillips.
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1. Introduction

The process of generation of sea waves by the wind has fascinated the human mind since
ancient times. In spite of significant achievements in modelling wind-wave propagation
in the ocean in recent decades (Janssen 2004), many important questions related to
the extremely complex process of energy and momentum exchange between wind and
waves still do not have fully satisfactory answers (Cavaleri et al. 2018). The quantitative
description of the spatial and temporal variability of water waves in the presence of wind
requires experimental verification by comparison of model predictions with results of
detailed and accurate measurements. This is a formidable task, since measurements of
wind waves carried out in natural reservoirs such as oceans or lakes are subjected to
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unpredictable, uncontrollable and varying environmental conditions that complicate the
extraction of reliable information. Moreover, field measurements are often performed at
a single location, preventing studies of wave evolution with fetch and thus limiting the
characterization of the spatial wind-wave evolution. Laboratory experiments carried out
under controlled conditions can provide much more accurate and detailed information.
However, the characteristic time and space scales even in the largest available experimental
facilities differ by orders of magnitude from those in the ocean.

While to a certain extent those differences can be accounted for by appropriate scaling,
it is clear that all physical processes governing wave evolution at the scales prevailing in
nature cannot be fully reproduced in the laboratory. Waves in the laboratory are necessarily
young, with wave age cp/u∗ much smaller than that for typical ocean waves (here cp
is the celerity of the dominant wave and u∗ is the friction velocity that characterizes
momentum transfer at the air–water interface). Wind waves in the laboratory are often
steeper than in the ocean under regular conditions; nonlinear effects are thus more
essential. Nevertheless, as discussed in Shemer (2019), small-scale experiments provide
valuable insight into the main processes associated with wind-wave evolution. In spite
of their intrinsic limitations, a better understanding of the details of wave evolution
under different wind forcing conditions gained in such experiments may significantly
advance understanding of the interaction of wind waves, and in this way to contribute
to wave modelling. The accumulated results may also be applicable for the description
of the high-frequency part of the spectrum in field conditions. While those waves do not
contribute significantly to the total wave energy, they affect the water surface roughness
and thus also the exchange processes in the marine atmospheric boundary layer.

Wind in nature is always turbulent: both the magnitude and the direction of its mean
velocity vary in time as well as in space. The resulting wind-generated wave field is
necessarily extremely complicated. In the laboratory, the turbulent wind forcing can be
controlled. Most often, experiments are carried out at a steady air flow rate in the test
section. These operating conditions correspond to what in theoretical investigations is
often called ‘the fetch-limited case’ and result in a statistically stationary wave field
that evolves with the distance x from the inlet (the fetch). The formal conditions for the
application of temporal Fourier analysis are thus satisfied in this case, so that frequency
spectra of the various parameters characterizing the waves at each location can be
calculated from the measurements.

Recently, Zavadsky & Shemer (2017b) carried out extensive measurements of a
time-evolving wave field under an effectively impulsive wind in a small experimental
facility. Data from multiple realizations of a random, unsteady and three-dimensional
wind-wave field under identical wind forcing conditions were collected. These forcing
conditions seem to match a different simplification of a general wind-wave field that
is usually called ‘the duration-limited case’. Spatial homogeneity is often assumed in
the theoretical analysis of the temporal wind-wave evolution; thus the spatial Fourier
transform is extensively applied (Hasselmann 1962; Zakharov 1968; Janssen 2004).
However, waves generated by wind that has a preferred propagation direction also evolve
predominantly in a certain direction (not necessarily identical to that of the wind), with
some angular spreading. Temporally varying waves excited by such a wind thus necessarily
evolve in space as well, rendering the study of those waves by application of both spatial
and temporal Fourier analysis inapplicable. The statistical parameters of waves under
impulsive wind forcing were therefore studied in Zavadsky & Shemer (2017b) using
wavelet analysis and ensemble averaging over numerous realizations of the time-resolved
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data, yielding variation of the statistically representative wave parameters that depend on
both the fetch and the time elapsed since the initiation of wind.

Since the theoretical analysis of nonlinear wind waves relies heavily on Fourier
decomposition, the present study focuses on the simplest quasi-steady and statistically
stationary fetch-limited case that is considered in the majority of laboratory investigations
of wind waves and admits application of the temporal Fourier analysis. To get a reliable
basis for theoretical analysis that adequately describes wave field evolution in this case,
detailed measurements of the spatially evolving wave field are carried out for a wide range
of wind velocities. The numerical simulations are closely related to those experiments and
based on the developed model that accounts for the irregular nature of wind waves as
well as for the effects of nonlinearity, wind input and dissipation. The model utilizes the
parametrization of wind input and wave energy dissipation generally adopted in numerical
simulations and takes advantage of the physical insight gained in previous studies of young
wind waves in our laboratory and the experience acquired in numerical simulations of the
spatial evolution of nonlinear deterministic and random water waves. The performance of
the adopted model and of the computational procedure is assessed by detailed comparison
of the numerical and experimental results.

2. Experimental procedure

The experiments were conducted in a facility that consists of a closed-loop wind tunnel
installed on top of a test section that is 5 m long, 0.4 m wide and 0.5 m high (water depth is
maintained at d = 19 cm). Transparent removable Perspex plates with partially sealed slots
along the centreline of the test section enable the insertion of various sensors and serve as
the tank’s roof. A detailed description of the experimental installation is given in Liberzon
& Shemer (2011). The tank is filled with distilled water to eliminate the formation of an
elastic film on the surface that causes damping of short waves. A computer-controlled
blower provides wind in the test section; the wind velocity was measured by a Pitot
tube. Results of detailed measurements of the turbulent air flow in the test section above
the water surface were reported in Liberzon & Shemer (2011) and Zavadsky & Shemer
(2012). These studies demonstrated that, for each blower setting, the friction velocities
u∗ vary within the limits of approximately 10 % around the mean along the test section.
Since no definite trend in those variations could be identified, it is reasonable to use the
corresponding mean values of u∗. The representative wind velocities U measured in the
present study in the central part of the test section, the corresponding friction velocities u∗
at the air–water interface and the extrapolated wind velocities at a height of 10 m above the
mean water surface U10 for different blower settings are presented in table 1. The values
of u∗ and U10 are estimated on the basis of detailed measurements of logarithmic velocity
profiles and vertical distributions of Reynolds shear stresses in the air flow above the wind
waves reported in Zavadsky & Shemer (2012).

The instantaneous surface elevation is measured simultaneously by four capacitance-
type wave gauges placed on a bar along the test section with a spacing of Δx = 10 cm
between adjacent sensors. The bar is suspended from an instrument carriage that also
supports the Pitot tube for air velocity measurements in the central region of the air
flow part of the test section, as well as the measuring equipment. The carriage can be
easily moved along the test section and placed at any fixed location. Measurements are
performed at seven or eight carriage locations; thus, for each blower setting, results are
obtained at approximately 30 different fetches. The wave gauges bar is mounted on a
vertical precision stage controlled by a PC and driven by a step motor with positioning
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Blower setting (%) U (m s−1) u∗ (m s−1) U10 (m s−1)

25 5.1 0.32 8.5
30 6.3 0.41 10.8
40 8.5 0.54 15.5
50 10.6 0.68 19.2
55 11.5 0.87 20.7

TABLE 1. Representative wind and friction velocities for various blower settings.

accuracy of 0.05 mm. Static wave gauge calibration was performed for each operation
condition prior to data recording. The Pitot tube was placed above the wave gauges in the
middle of the air flow part of the cross-section and provided the reference air flow velocity
U. The outputs of all sensors were sampled at the rate of 300 Hz channel−1; for each
operational condition, at least 1 h long continuous sampling sessions were recorded at each
carriage position to provide statistically reliable parameters. At a given fetch, the whole
experiment, including the calibration of wave gauges, is fully controlled by computer
using LabView and is performed automatically; more details are given in Liberzon &
Shemer (2011).

3. Guidelines for the formulation of the theoretical model

3.1. General features of waves generated by steady wind forcing
The goal of this study is to offer a consistent model that is capable of adequate prediction
of the measured spatial variation of a young wind-wave field under steady wind forcing
along the test section of a laboratory facility. The major features of such an evolving
wind-wave field can be identified in figure 1, where the amplitude spectra of waves excited
by a relatively weak wind with U = 5.1 m s−1 are plotted for the selected fetches. The
spectrum at the shortest fetch (x = 0.17 m) is nearly flat; nevertheless, the peak at a
frequency of approximately fp = 6 Hz can clearly be identified. The peak frequency varies
with fetch, initially increasing somewhat to approximately fp = 8 Hz at x = 1.17 m but
then decreasing monotonically to approximately fp = 4.5 Hz at x = 3.17 m.

The plotted spectra clearly demonstrate that the total wave energy increases with fetch.
The increase of the amplitudes of individual harmonics is, however, not necessarily
uniform across the spectrum. For example, the wave amplitudes in figure 1 at frequencies
around approximately f = 6 Hz at x = 2.07 m are larger than at more remote fetches,
as the whole spectrum shifts to lower frequencies with increasing fetch. For fetches
x > 2.5 m, a secondary spectral peak can be identified around twice the local peak
frequency values. This wider peak is attributed to the contribution of the second-order
bound waves; their visibility in the spectra serves as a clear indication of an essentially
nonlinear nature of wind waves even at this quite moderate wind velocity. The overall
behaviour of wave amplitude spectra at stronger winds exhibits similar features (see also
Liberzon & Shemer 2011; Zavadsky & Shemer 2017b).

To model these patterns of the spatial evolution of wind waves under steady wind forcing
at different air flow rates, the effects of nonlinearity, wind input and wave dissipation, as
well as of the three-dimensional and random nature of the wave field, have to be taken into
account. Modelling of those contributions is now considered.
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FIGURE 1. Variation of amplitude of discrete wave spectra for selected fetches. The spectral
resolution is 0.2 Hz.

3.2. Modelling of nonlinear wave–wave interactions
Evolution of random wind waves in the ocean is often described using the kinetic wave
equation (Hasselmann 1962). This equation, amended by empirical or semi-empirical
terms to account for wind input and wave dissipation, has been successfully applied in
recent decades for sea wave modelling; see Janssen (2004) and Cavaleri et al. (2018) and
numerous additional references therein. Studies based on the kinetic equation provided
an indication that nonlinearity plays an essential role in the temporal evolution of wind
waves (Zakharov et al. 2015). However, already long ago Imai et al. (1981) questioned
the applicability of the kinetic equation to the description of strong interactions among
waves at much smaller scales in laboratory experiments. Badulin et al. (2007) emphasized
that, although generalization of the kinetic equation to the non-homogeneous ocean is
possible and often used, it implies that inhomogeneity is weak. The lack of homogeneity
of the wind-wave field as demonstrated in figure 1 precludes computation of the spatial
wavevector spectrum and application of the kinetic equation. Fully nonlinear methods
are often applied to study the temporal evolution of unidirectional waves in general,
and of wind waves in particular (see e.g. Chalikov 2018); that paper also contains a
review of additional studies. These methods are clearly inapplicable for modelling of the
variation of statistically stationary random waves propagating in the wind direction that
are inhomogeneous and non-periodic in space.

The broad frequency spectra characterizing the stationary wind-wave field under steady
forcing in the present experiments suggest selection of the deterministic spatial version
of the Zakharov (1968) equation (Shemer et al. 2001; Kit & Shemer 2002) as a basis
for developing an evolution model for the growth of wind waves along the tank. This
equation has no limitations on the spectral width; it has been successfully applied to
study wave evolution along test sections of laboratory facilities with a wide range of scales
(Shemer, Goulitski & Kit 2007; Shemer & Chernyshova 2017; Shugan et al. 2019). The
measured evolution patterns of deterministic wavemaker-generated nonlinear wavetrains
with various envelopes and spectral shapes investigated in those studies were found to be
in a very good agreement with simulations based on the spatial Zakharov equation.

The unidirectional version of the two-dimensional discretized spatial version of the
Zakharov equation (Kit & Shemer 2002) with additional terms accounting for dissipation
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and wind input is used here as a basis for the theoretical model. The model equation, the
initial conditions, the reasons for selection of the unidirectional governing equation as well
as the approach adopted for accounting for the three-dimensional and random character of
wind waves are discussed in the following sections.

3.3. Modelling of wind input
Inspired by the ground-breaking studies of Miles (1957, 1959), the temporal growth
of wave energy E(t) = η(t)2 due to wind is customarily parametrized by adding a
corresponding linear term to the evolution equation, thus effectively assuming exponential
wave energy growth. Numerous parametrizations for the atmospheric wind-related growth
rate summarized by Plant (1982) defined the growth rate coefficient as

β ′ = 1
E(t)

∂E(t)
∂t

, (3.1)

that is based on the squared ratio of the representative wind velocity U to wave velocity
c. The friction velocity u∗ at the air–water interface, or the measured wind velocity at a
prescribed height, usually U10, are used for wind characterization, while the phase velocity
of the dominant wave cp characterizes waves that mostly contribute to the wave energy.

The exponential growth as prescribed by (3.1) thus refers to a monochromatic or a
narrow-banded wavetrain, with a fixed carrier frequency and phase velocity. Note that an
attempt by Liberzon & Shemer (2011) to determine experimentally the spatial growth rate
coefficient of narrow band-pass filtered surface elevation records, defined as γ = β/cg,
revealed notable deviations from the exponential growth calculated using (3.1). Those
deviations may be attributed to the effects of nonlinearity and dissipation (Shemer 2019).

As in numerous models dealing with the wind input to wave evolution, the following
form of the temporal growth rate coefficient due to wind input is adopted (Plant 1982):

β = fdoma(u∗/cp)
2, (3.2)

where fdom = fdom(x) is the local dominant frequency and cp = cp( fdom). Examination of
alternative expressions for the wind input term by Badulin et al. (2005) and Troitskaya
et al. (2018) indicated that wave evolution is only weakly sensitive to the details of this
term. Note that, contrary to (3.1), which pertains to wave energy, (3.2) describes the
temporal growth rates of wave amplitudes. Since the values of the friction velocity u∗
directly characterize wind–wave interactions and are known for the conditions of the
present experiments (see table 1), they were taken in the expression for β instead of
the loosely defined wind velocity U. The advantages of using u∗ over U10 for scaling
young wind waves were emphasized by Janssen (2004, p. 228). The value of a may be
estimated using the compilation of extensive experimental data accumulated in both field
and laboratory experiments by Plant (1982). For the growth rates of wave amplitudes, his
suggestion leads to a = 0.02 ± 0.01.

It is reasonable to base the determination of the dominant frequency fdom on the spectral
moments mj, which for the discrete power spectrum F( fn) are defined as

mj =
fmax∑
fmin

f jF( fj). (3.3)

Note that in (3.3) the summation is carried out over the free waves domain; in the present
study, this domain for each spectrum is taken within ±60 % of the peak frequency, so that
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m0 = E represents the total energy of free waves. The dominant frequency, defined as

fdom = m1

m0
, (3.4)

is an integral quantity and thus less subject to fluctuations in the experimentally estimated
wave power spectra than the peak frequency fp; it thus represents a more robust
characteristic frequency at each fetch and air flow rate. Similarly, the dimensionless
spectral width ε is expressed as

ε =
√

m0m2

m2
1

− 1. (3.5)

For a Gaussian spectral shape, the relative width at the energy level of half the maximum
is related to ε by Δf /fdom = ε

√
2 ln 2.

3.4. Wave energy dissipation
In nature, it is generally accepted that wave breaking constitutes the most important
mechanism of wave energy loss. However, no plunging breakers were observed under
all operational conditions in the present experiments with dominant wavelengths usually
not exceeding approximately 30 cm. This observation is consistent with Caulliez (2013)
and Laxague et al. (2018), who analysed mechanisms leading to energy loss of short
wind waves in laboratory facilities. Gravity–capillary waves with lengths shorter than
10 cm lose energy mostly due to viscous dissipation. Extraction of energy from longer
decimetre-sized waves is associated mainly with short parasitic capillary waves that appear
on the front face of steep waves (Fedorov & Melville 1998). For stronger winds, additional
wave energy loss is associated with detachment of water drops from wave crests. For test
sections narrow relatively to the prevailing wavelengths, viscous dissipation in the Stokes
layer at sidewalls of the tank may also be significant (Kit & Shemer 1989).

The most significant contribution to wind-wave energy loss is thus primarily associated
with the shape of steep waves and occurs in the vicinity of their crests. However, the shape
of those waves is defined by contributions of multiple large-amplitude spectral harmonics
(Khait & Shemer 2018). This difficulty in describing breaking in Fourier space is in fact
akin to that encountered in the introduction of the wind input term into the model equation.
Therefore, as in Hwang & Sletten (2008), both wind input and energy loss due to breaking
were lumped in the present model into a single net input term that is associated primarily
with the energy-containing harmonics in the spectrum.

While the effect of wave breaking is incorporated in the model within the empirical
wind–wave energy exchange term, analytic expressions exist for the viscous dissipation
under the water surface and on the sidewalls, resulting in exponential decay along the
tank of the amplitude of each harmonic, as long as the flow in the water boundary layer
under wind waves remains laminar. According to Lamb (1932, items 348 and 349), the
logarithmic wave amplitude decrement due to viscous dissipation under an air–water
interface of the frequency component with wavenumber k is given by −2νk2; see also the
more extensive analysis by Fedorov & Melville (1998). Under all operational conditions
in the present experiments, the waves remain notably shorter than the tank width; the
contribution of dissipation at the tank walls can thus be neglected. The dissipation under
the free surface, however, is essential for short young wind waves. The flow in water under
waves in laboratory facilities is usually turbulent (Caulliez 2013). To account for this,
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the simplest possible model is adopted here in which the kinetic molecular viscosity ν

in Lamb’s expression for viscous wave amplitude decay rate is replaced by an effective
turbulent viscosity νeff . The adopted values of νeff = nν, with values of the coefficient
n = O(10), are in agreement with the measurements by Longo et al. (2012).

3.5. Accounting for the random and three-dimensional nature of wind waves
Young wind waves are three-dimensional and random (Caulliez & Guérin 2012; Zavadsky,
Benetazzo & Shemer 2017). The spatial Zakharov equation is formulated for deterministic
phase-resolved waves. Multiple realizations of the initial amplitude spectrum based
on the measured averaged power spectrum at a prescribed fetch x0 are obtained by
assigning random phases to each harmonic. To account for the irregularity of wind waves,
randomization of initial amplitudes with mean energy corresponding to the experimentally
determined mean power of each harmonic can also be performed. Although the wave
field is three-dimensional, statistical parameters evolve mainly along the tank. It is
therefore reasonable to examine the results of unidirectional Monte Carlo simulations of
waves evolving with fetch that have a prescribed wind velocity-dependent initial averaged
amplitude spectrum.

The three-dimensional and random behaviour of the wind wave field manifests itself
by integral correlation time and length scales that in our facility are comparable with
the dominant wave periods and wavelengths, respectively (Zavadsky et al. 2017). It
should be stressed that limited coherence scales characterize short wind waves in
nature as well. Measurements of the coherent properties of wind waves responsible for
radar backscattering in remote sensing of the ocean surface by radars operating with
different wavelengths yield characteristic scene coherence times notably shorter than
the corresponding wave periods (Shemer & Marom 1993; Suchandt & Romeiser 2017;
Annenkov & Shrira 2018); those results are compatible with laboratory measurements. To
examine the effect of loss of coherence on the global wind-wave parameters in the present
quasi-deterministic simulations, multiple randomization of the results is applied during
the computations.

3.6. The adopted computational model
The computational model is based on the scalar version of the discretized spatial Zakharov
equation that describes the variation with fetch x of complex wave amplitudes Bj(x) =
B(fj, x), j = 1, . . . , N, of every free wave frequency harmonic in the discretized spectrum.
The amplitudes Bj are related to the Fourier amplitudes of the surface elevation η̂j and of
the velocity potential φ̂s

j at the free surface:

Bj(x) = B(ωj, x) =
(

g
ωj

)1/2

η̂j(ωj, x) + i
(

ωj

2g

)1/2

φ̂s
j (ωj, x). (3.6)

The governing equation applicable for studying the evolution with fetch of
unidirectional waves in the presence of wind and dissipation has the following form:

icg,j
dBj(x)

dx
=

∑
ωj+ωl+ωm+ωn

Vj,l,m,nB∗
l (x)Bm(x)Bn(x) exp[−i(kj + kl − km − kn)x]

+ i(β − 2νeff k2
j )Bj(x), (3.7)
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where ∗ denotes complex conjugate. The interaction coefficients

Vj,l,m,n = V(k(ωj), k(ωl), k(ωm), k(ωn)) (3.8)

given in Krasitskii (1994) account for the surface tension. In (3.8), k = |k| is the
wavenumber and cg is the group velocity. To cover the whole range of wavelengths
encountered in this study, the dispersion relation that accounts for both capillary effects
and the finite depth is applied:

ω2 = gk(1 + σk2/g)tanh(kh), (3.9)

where σ = 73 × 10−6 m3 s−2 is the surface tension coefficient divided by water density.
The right-hand side of (3.7) represents the temporal variation of complex amplitudes Bj:

the first term accounts for nonlinear four-wave interactions of the jth frequency harmonic
with other spectral harmonics that come from the near-resonating quartet, while the net
wind input and the effective viscous dissipation at the free surface are represented by the
second and third linear terms, respectively. The net wind input is defined by a coefficient
β given by (3.2). The group velocity cg,j of the jth frequency harmonic serves to translate
the temporal rate of change of the amplitude Bj into the spatial one. The resulting set of
N equations (3.7) describes evolution with fetch x of complex wave amplitudes Bj(x) =
B(fj, x), j = 1, . . . , N, of every free wave frequency harmonic in the discretized spectrum.

4. Determination of model parameters

4.1. Initial conditions
The initial conditions for the numerical simulation were determined from the amplitude
spectra aj,0 = a( fj)(x0) measured at a fetch x0 = 67 cm, beyond the domain of the initial
very short ripples. The 1 h long surface elevation records at this fetch were divided into
72 segments each 50 s long. The power spectra, averaged over all realizations, with the
spectral resolution of 0.02 Hz were then obtained. This spectral resolution was reduced
by taking each 11th frequency and prescribing to it the total energy of all 11 harmonics
in the range fj − 0.1 Hz ≤ f ≤ fj + 0.1 Hz. The resulting set of 73 harmonics covered the
frequency range 0.1 Hz < fj < 16 Hz. Representative amplitudes aj of all harmonics were
obtained as square roots of their corresponding averaged energies. The corresponding
initial values of the complex amplitudes in (3.7) are

Bj(x0) =
(

g
2ωj

)1/2

aj(x0) exp(iθj,l). (4.1)

Phases θj,l, uniformly distributed in the interval (0, 2π), were prescribed to each harmonic
j in every independent realization l of the initial conditions. The effect of randomization of
the initial amplitudes was also examined. In this case random sets of Gaussian-distributed
amplitudes were computed for each spectral harmonic; the mean amplitudes and their
standard deviations in the Gaussian distribution corresponded to those in the experimental
data. To eliminate the effect of noise and of very low-frequency harmonics that inevitably
exist in an experimental facility of a limited length, frequencies below 1.0 Hz and above
12 Hz were assigned zero amplitudes in the initial conditions.

The model equations were solved numerically using a fourth-order Runge–Kutta
procedure with the integration step of 0.0025 m for fetches up to x = 5.0 m. Simulations
with a smaller integration step yielded identical results. Parallelization on a multicore PC
was applied to reduce the computation time.
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4.2. Selection of net wind input coefficient and of effective viscosity
The effect of amplification or decay of each frequency harmonic Bj due to wind input
and dissipation is presented by the last two terms in the model equation (3.7). These
terms are assumed to be linear, while the nonlinear term accounts for the essentially
globally conservative and slower energy exchange among different harmonics. It is thus
reasonable to select the values of the empirical coefficients that affect the spatial variation
of each harmonic, i.e. a and νeff , by comparing the growth of the total free wave energy
m0 = ∑

(aj)
2(x) obtained by solving the linearized version of (3.7) with the experimental

results:

dBj(x)

dx
= β − 2νeff k2

j

cg,j
Bj(x) = δj(x)Bj(x). (4.2)

As is apparent, for a constant net temporal growth rate β, the solution of (4.2) yields an
exponential variation of the amplitude of each harmonic with fetch x with different spatial
growth rates δj for different harmonics. Since the temporal growth rates β due to net wind
input as defined by (3.2) depend on the local dominant frequency fdom, which is defined in
(3.4) by integral moments, the values of β also vary with fetch.

To account for variation of the dominant frequency with fetch, adjustment of the wind
input term was performed in the simulations. Once the evolution distance from the point
of the previous update of the dominant frequency attains the dominant wavelength, λdom,
which is calculated from fdom using the dispersion relation (3.9), the new local dominant
frequency is determined, the spatial growth rate δj is updated, and the integration of the
governing system of equations is continued for an evolution distance corresponding to the
new λdom(x).

This integration procedure was employed to select the appropriate empirical values of
the coefficient a in (3.2) and of the effective molecular kinematic viscosity νeff . To this
end, the wave energy growth m0(x) measured in the wind-wave tank is compared with
that obtained from the linear model (4.2).

The energy growth obtained in linear simulations with the effective kinematic viscosity
νeff = 0.08 cm2 s−1 and several values of the coefficient a in the net wind input term is
compared in figure 2 with the experimental results for two wind velocities U. Similar
plots were obtained for other wind forcings applied in the present experiments. Based
on those results, the representative value of a = 0.0235 was adopted for all wind forcing
conditions. Note that this value is within the range of coefficients defining the wind-wave
growth rate suggested by Plant (1982).

Selection of the effective viscosity cannot be based solely on examining the wave energy
growth with fetch. Linear simulations were performed for different values of νeff ranging
from 0 to 0.1 cm2 s−1; the results are plotted in figure 3(a). To compensate for the enhanced
dissipation with the increase of the effective viscosity, appropriate increase in the net wind
input coefficient a is required. The results of figure 4(a) demonstrate that adjustment
of a makes it possible to obtain reasonably good agreement between simulations and
experiments for any value of νeff .

The change of the effective viscosity affects not only the total wave energy but also the
variation of the dominant frequency with fetch. This effect is studied in figure 3(b) where
the values of a are adjusted to ensure wave energy growth as observed in experiments.
The linear simulations show that, for very young waves, dissipation in the boundary layer
below the air–water interface due to effective viscosity may play a significant role in the
frequency downshifting with fetch. As expected, no change in fdom with fetch is obtained
in the linear model solution when viscous dissipation is neglected. However, even for
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FIGURE 2. Linear model prediction of wave energy growth with fetch for various values of a
and effective kinematic viscosity νeff = 0.08 cm2 s−1: comparison with experimental results for
two wind velocities: (a) U = 8.5 m s−1 and (b) U = 10.6 m s−1.
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FIGURE 3. The effect of the value of the effective viscosity on the linear solutions (solid lines)
and comparison with experiments (markers) for U = 8.5 m s−1: (a) wave energy growth and
(b) the dominant frequency.

the lowest possible dissipation caused by the molecular viscosity of water, the adopted
model predicts some modest (approximately 0.4 Hz) decrease in the dominant frequency.
The frequency downshifting increases with increase in νeff up to approximately νeff =
0.08 cm2 s−1. Increase of effective viscosity beyond νeff = 0.08 cm2 s−1 practically does
not affect the dominant frequency downshift of approximately 1 Hz along the simulation
domain, well below the frequency downshifting by more than 2.5 Hz as observed in the
experiments for U = 8.5 m s−1.

5. Experimental results versus numerical simulations

The solutions of the set of equations (3.7) with amplitude spectra measured at
x0 = 67 cm used to determine the initial conditions for all wind velocities are now
compared with the experimental results. For all wind velocities, the values of the two
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FIGURE 4. Comparison of simulations and experimental results for different randomization
procedures, for wind velocity U = 8.5 m s−1: (a) variation of the wave energy with fetch, and
(b) variation of the dominant frequency.

empirical coefficients, a = 0.0235 that determines the net wind input in (3.2) and νeff =
0.08 cm2 s−1, were retained.

5.1. Various approaches to account for the random and three-dimensional nature of
wind waves

As discussed in §§ 3.5 and 4, irregularity and directional spreading characterize wind
waves in the laboratory as well as at larger scales in nature. They play a fundamental
role in Phillips’s (1957) theory of wave generation by wind. The model equations (3.7),
however, are quasi-deterministic and unidirectional. The results of different approaches
to mimic in simulations the loss of spatial coherence of wind waves are now assessed
by comparing the model predictions with experiments. The most straightforward way to
represent the irregularity of wind waves at the initiation of simulations is by prescribing a
random uniformly distributed phase to each mean amplitude in the spectrum in the initial
conditions (see § 4). Monte Carlo simulations of multiple realizations of the spectrum with
initial phase randomization (IPR) were therefore performed. Alternatively, the amplitudes
of each frequency harmonic can also be randomized assuming a Gaussian distribution
with standard deviation as obtained in experiments. The runs where both the initial phases
and amplitudes were randomized are denoted as IPAR.

The IPR and IPAR simulations yield results that are in a reasonable agreement with
experiments (see figure 4). Close similarity between the curves corresponding to IPR and
IPAR simulations in figure 4(a,b) indicates that randomization of the initial amplitudes,
in addition to randomization of the initial phase, does not affect the outcome notably.
Within the domain of available experimental data, the wave energy in those simulations
increases in agreement with the measurements. However, at larger fetches the increase
of the energy with x becomes faster and deviates significantly from linear growth. The
dominant frequency in those simulations exhibits significant downshifting that is quite
close to that observed in the experiments (see figure 5b). At larger fetches, the rate of
frequency downshifting with fetch decreases notably, unlike the trend in the dependence
fdom(x) observed in the experiments.
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FIGURE 5. Comparison of experimental results at U = 6.3 m s−1 with linear and nonlinear
model solutions for spatial evolution of: (a) wave energy and (b) dominant frequency.

IPR and IPAR runs simulate the irregularity of the initial conditions. However,
each individual realization in the model computations remains fully deterministic and
unidirectional so that the three-dimensional nature of wind waves is unaccounted for in
those simulations. It is plausible to assume that the rapid loss of both spatial and temporal
coherence of wind waves as discussed in § 3.5 is associated with the directional spreading.

In an attempt to account for limited spatial coherence using a unidirectional and
essentially deterministic computational model, additional computations were performed
where randomization was carried out in the course of integration at multiple locations.
In the present simulations, randomization was performed at each station where the
dominant frequency was adjusted, as specified in § 4.2. Again, two possible approaches
were examined. First, multiple randomization of phases only (MPR) was applied,
while the amplitudes of the spectral harmonics at each station were assigned fixed
values corresponding to those computed in the integration procedure up to that point
power-spectrum-averaged over all individual runs. The computations were then resumed
with those new initial conditions along the segment with the length corresponding to the
local dominant wavelength λdom(x). This selected spatial separation between successive
randomization locations is in agreement with the available results on the spatial coherence
of random wave fields as presented in § 3.5. In the last series of simulations, denoted
by MPAR, both phases and amplitudes were repeatedly randomized at those stations
in the course of integration. The effect of the length of the segment after which
randomization was carried out was examined in additional runs with more frequent
multiple randomizations at Δx = 0.5λdom. Those tests demonstrated that the simulation
results are practically insensitive to the selection of Δx .

There is a substantial similarity in the outcomes of different randomization procedures,
and all adopted procedures yield results that do not differ significantly from the
experiments. However, randomizations performed at multiple locations in the course of
integration lead to a linear wave energy growth along the whole computational domain, in
agreement with the results of Mitsuyasu & Honda (1982). Randomization of amplitudes in
addition to that of phases in the MPAR runs leads to somewhat slower energy growth with
x as compared to phase randomizations only in MPR (see figure 4a). There is practically
no effect of multiple amplitude randomizations on frequency downshifting, and the curves
corresponding to MPR and MPAR in figure 4(b) are quite close.
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It should be noted that the computational procedure (MPAR) that involves combined
multiple amplitude and phase randomization requires larger ensembles of runs as
compared to simulations (MPR) in which only the phases were randomized. In most
cases, in order to obtain smooth curves representing the dependences m0(x) and fdom(x),
100 independent realizations of the initial spectrum were sufficient in MPR simulations,
whereas accounting for irregular amplitudes in the MPAR procedure required at least 400
realizations. Since, within the spatial domain that corresponds to the range of fetches
where the measurements were carried out, both MPR and MPAR procedures yield results
that agree well with measurements, the MPR approach is applied in what follows for
comparison of the experimental and numerical results.

5.2. Effect of nonlinearity
The theoretical model presented above is now applied to assess the contribution of
nonlinearity to the evolution of the wind waves with fetch. The spatial variations of
the wave energy, m0(x), and of the dominant frequency, fdom(x), obtained by solving the
nonlinear model (3.7) with MPR are compared with the predictions of the linear model
(4.2) in figure 5. Since randomization of phases does not affect the results of the linear
model, initial amplitude randomization was applied to obtain an ensemble of realizations
for a given initial spectrum. While the wave energy growth with fetch x obtained in linear
approximation is identical in all realizations, the individual spectra and thus the dominant
frequency vary.

As expected, the linear model, while describing reasonably well the initial stages of the
spatial evolution, yields explosive exponential growth of the wave energy with fetch, with
wave amplitudes significantly exceeding the measured values (see figure 5a). The results of
the nonlinear model are in good agreement with experiments; both are characterized by a
close-to-linear growth of wave energy with fetch for x > 100 cm. As already demonstrated
in figure 4(a), linear energy growth is obtained in the simulations when not only the
nonlinearity, but also the wave field irregularity, is accounted for by applying the MPR
procedure. The dominant frequency downshift is predicted by both linear and nonlinear
models. The adopted version of the linear model, in which the spatial (but not the
temporal) rates of change of wave amplitudes due to dissipation and net wind input vary
with frequency, allows for frequency downshifting (see § 4). The frequency downshifting
due to the contribution of linear mechanisms, while non-negligible, is significantly smaller
than that observed in experiments. Incorporation of nonlinearity in the model increases
the dominant frequency downshifting significantly, yielding results that are quite close to
the experimentally measured values. As seen in figure 4(b), the wave field irregularity
simulated by application of the multiple randomization procedure does not have a notable
effect on fdom(x).

In order to assess the role of nonlinearity and wind input separately, the nonlinear model
(3.7) was solved in the absence of dissipation in the surface boundary layer due to effective
kinematic viscosity. Computations with νeff = 0 were performed by applying the MPR
procedure. The resulting variations of the wave energy, dominant frequency and amplitude
spectra with fetch are plotted in figure 6(a–c). To account for neglecting the dissipation
term in (3.7), an appropriate adjustment of the net wind input coefficient a was performed.
This adjustment enables one to obtain reasonably good agreement between simulations
and experiments in wave energy growth with fetch (see figure 6a). The results plotted
in figure 6(b) demonstrate that, in the absence of effective viscosity, a certain downshift
of the dominant wave frequency due to nonlinear interactions is still obtained. However,
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FIGURE 6. Nonlinear model solutions without effective kinematic viscosity, νeff = 0, for U =
8.5 m s−1. Variation with fetch of (a) wave energy m0, (b) dominant frequency fdom and (c) the
computed amplitude spectra.

this downshift in figure 6(b) is significantly smaller than that measured experimentally.
The computed amplitude spectra plotted in figure 6(c) suggest that, following the initial
early development stage, the wave energy supplied by wind in the vicinity of the spectral
peak is transferred by nonlinearity to both higher and lower frequencies. In analogy with
hydrodynamic turbulence, these nonlinear energy transfers are often termed ‘direct’ and
‘inverse’ cascades, respectively (Zakharov & Filonenko 1966; Zakharov & Zaslavsky
1983; Annenkov & Shrira 2006). The energy transfer to lower frequencies results in
spectral peak downshifting, whereas, in the absence of dissipation, the direct cascade
causes accumulation of wave energy at high frequencies.

5.3. Spectral shapes
The evolution of the wave amplitude spectra with fetch in experiments and in simulations
is presented in figure 7(a,b) and (c,d) for two wind velocities: a relatively weak wind with
U = 8.5 m s−1, and the strongest wind forcing applied in the present experiments, U =
11.5 m s−1, respectively. For each wind forcing condition, the initial spectra in simulations
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FIGURE 7. Evolution of wave amplitude spectra along the tank: comparison of (a,c)
experimental results and (b,d) simulations at (a,b) U = 6.3 m s−1 and (c,d) U = 11.5 m s−1.

at fetch x = 67 cm are obviously identical to those measured in the experiments that
defined the initial conditions in the simulations. The spectra obtained in simulations and
in experiments are plotted at close locations. At both wind velocities, the evolution of the
shape of the amplitude spectra in simulations is in good agreement with the experimental
results. The frequency downshifting as well as the peak amplitude growth in simulations
are qualitatively and to a large extent quantitatively similar to those obtained in the
measurements. Note that the evolution of free waves only was studied in simulations;
no attempt was made to compute the contribution of the bound waves around the second
harmonic of the peak frequency, although those computations can be readily performed
within the framework of the Zakharov equation (see Krasitskii 1994). The second-order
bound waves clearly visible as secondary peaks in the measured spectra at larger fetches
at higher wind velocity (figure 7c) contribute to the quantitative disagreement between the
simulated and measured spectra away from the spectral peaks.

The variation with fetch of the dimensionless spectral width ε defined by (3.5) is
studied in figure 8 for the whole range of wind velocities U employed. The experimental
results are plotted in figure 8(a), while the model predictions are presented in figure 8(b).
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FIGURE 8. Evolution of the dimensionless spectral width ε along the tank for various constant
wind velocities U: (a) experimental results and (b) simulations.

The dimensionless spectral width decreases from the initial value of approximately ε =
0.2 to ε ≈ 0.14 for all wind velocities in experiments and in simulations. The decrease in ε

in experiments is gradual and close to monotonic, while the model yields a dimensionless
steepness that initially decreases faster, attains a minimum and then increases back. These
differences between the curves representing the variation with fetch of the dimensionless
spectral width ε in experiments and in simulations are much more pronounced at lower
wind velocities, whereas for U ≥ 6.3 m s−1 good quantitative and qualitative agreement is
observed between figures 8(a) and 8(b) along the whole test section.

5.4. Variation with fetch of wave field parameters
Variation with fetch of the measured total wave energy is compared in figure 9(a) with the
simulation results for different wind velocities. For all wind forcing conditions, this figure
demonstrates good agreement between the model and the experimental results, with the
energy growth with fetch close to linear. At higher wind velocity, the model predictions at
larger fetches overestimate the wave energy. This may be attributed to greater sensitivity
to end effects of larger and longer waves approaching the far end of the test section. A
similar effect at the far end of the test section was observed in Liberzon & Shemer (2011).

The agreement between the variations with fetch of the dominant frequency, fdom(x),
in experiments and in model computations plotted for different wind velocities U in
figure 9(b) is satisfactory but less impressive than that obtained for wave energy growth
in figure 9(a). The model gives a qualitatively correct downshifting of the dominant
frequency with x ; the decrease of fdom along the test section in simulations increases with
the wind velocity U as in the experiments. However, the rate of decrease in fdom(x) in
simulations is somewhat smaller than that in the experiments. This discrepancy between
experimental and numerical results is more prominent for lower wind velocities.

The spatial variations of the characteristic wave amplitude, m1/2
0 , and of the dominant

frequency, fdom, are presented in figure 10 in a dimensionless form following Kitaigorodskii
(1962) for all wind velocities U employed in this study. Using u∗ as the characteristic
velocity, the dimensionless parameters are defined as follows: the dimensionless fetch
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FIGURE 9. Variation of (a) the total energy and (b) dominant frequency fdom of free waves in
the spectrum with fetch for different wind forcing conditions. Symbols are experimental results;
and solid lines are model predictions.

x̂ = gx/u2
∗, the characteristic wave amplitude m̂1/2

0 = m1/2
0 g/u2

∗, and the dominant
frequency f̂dom = u∗fdom/g. It is customary to present the dependences of m̂1/2

0 and f̂dom

on the dimensionless fetch x̂ as m̂1/2
0 = c1 x̂b1 and f̂dom = c2 x̂−b2 , respectively, where b1, c1

and b2, c2 are non-dimensional constants (Mitsuyasu 1968).
Figure 10 summarizes the main experimental and numerical results accumulated in

this study. Comparison of figures 10(a,c) and 10(b,d) demonstrates that the suggested
model adequately describes the variation of wave amplitudes and dominant frequencies
with fetch for all wind velocities. The qualitative difference in behaviour of m̂1/2

0 (x̂)

and f̂dom(x̂) at higher wind velocities as compared to lower velocities is clearly seen
in figure 10 in the experimental as well as in the numerical results. For higher wind
velocities, U = 10.6 m s−1 and U = 11.5 m s−1, both m̂1/2

0 (x̂) and f̂dom(x̂) exhibit a linear
dependence in log–log coordinates corresponding to power-law behaviour and collapse
onto a single line, with very similar coefficients b and c in experiments and simulations.
The values of the coefficients of the power law obtained in the present study are also close
to those reported in laboratory experiments by Mitsuyasu (1968) and Zavadsky, Liberzon
& Shemer (2013). Moreover, they are comparable to those obtained by Kahma (1981) and
in additional field experiments summarized by Badulin et al. (2007). Note also that, in
most studies, the value of the exponent b1 is close to 0.5, indicating growth of the energy
of gravity wind waves with fetch that is close to linear.

For lower wind velocities that correspond to larger dimensionless fetches x̂ , the
behaviour of m̂1/2

0 (x̂) and f̂dom(x̂) deviates notably from a power law. A similar deviation
from a power dependence at weaker wind forcing was also reported by Zavadsky et al.
(2013). Note that, unlike for stronger wind forcing, for the lower values of U waves in
our experimental facility are quite short and affected by capillarity along a significant
part of the test section; so that the relative contribution of gravity and surface tension
varies in the course of wave propagation. Nevertheless, the shapes of the curves in
both columns of figure 10 are indeed quite similar, with a reasonable quantitative
agreement.
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FIGURE 10. The variations of (a,b) the dimensionless amplitude m̂1/2
0 and (c,d) the dominant

frequency f̂dom with the dimensionless fetch x̂ for different wind forcing conditions: (a,c) results
of experiments and (b,d) results of simulations. The solid line in each panel denotes the linear fit
to the data obtained for higher wind velocities only.

6. Discussion

The computational model suggested and verified experimentally in this study attempts
to describe in a quantitatively accurate manner an extremely complex phenomenon of
wind interaction with water surface. Even for the simplest case of constant wind velocity
U studied here, many details of this interaction are still far from being fully understood. In
spite of extensive theoretical and experimental efforts during recent decades, the relative
importance of different mechanisms for energy and momentum transfer from wind to
waves is not yet known even for the two-dimensional monochromatic waves that have been
considered in most studies. While it is commonly agreed that wave breaking constitutes the
major factor causing loss of wind-wave energy, the details of this process, which may differ
significantly for wind waves of different wave age cp/u∗, remain uncertain. Parameters
such as the rate of energy loss and the spectral changes associated with a single breaking
event are not yet documented well enough even for unidirectional regular waves in the
absence of wind. The random and three-dimensional nature of wind waves and of their
breaking, the role of droplet detachment due to wind, and additional possible mechanisms
complicate the situation further and effectively prevent detailed quantitative description of
wind-wave energy loss due to breaking.
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It is often suggested that, while wind input and dissipation are of fundamental
significance for the very existence of wind waves, their particular details are less important,
and the dynamics of wind waves is mainly governed by nonlinear processes (Zakharov
et al. 2015). In the present study, both wind input and wave energy dissipation were
introduced by simple phenomenological modelling. Based on the available experience as
described in §§ 3.3 and 3.4, it is assumed that wind input as well as wave breaking are
associated with high waves that may have short duration and emerge locally as a result
of constructive interference of multiple energy-containing harmonics. The wind input and
wave energy loss by breaking are therefore not localized in the Fourier frequency space,
but rather distributed in the vicinity of the local dominant frequency. The adopted model
for net wind input leans on Plant (1982) and Hwang & Sletten (2008) and lumps the effects
of wind input and wave breaking into a single linear term in (3.7). A single empirical
coefficient in this linear term was applied for all wind velocities.

An additional linear term is included in (3.7) to account for dissipation under the water
surface as given by Lamb (1932) for the molecular kinematic water viscosity ν, but taking
a larger effective kinematic viscosity value νeff . The role of this term is to eliminate
accumulation of energy at high frequencies due to the nonlinear direct cascade to shorter
waves as demonstrated in figure 6(c). A single empirical value of νeff = 0.08 cm2 s−1 > ν

was selected to account for turbulence under wind waves at all wind velocities U. The
simulation results presented in figure 7 demonstrate that even this simplest possible and
very crude model is capable of a reasonably accurate prediction of the behaviour of the
spatial spectral evolution of young gravity–capillary wind waves in our facility.

The numerical model employed in the present study (see § 3.6) is based on the spatial
version of the Zakharov equation. Evolution of the complex amplitude of each frequency
harmonic along the test section is computed starting from the initial value based on wave
spectra measured in our facility in the matching experiments at a short fetch x0 = 67 cm,
as described in § 4.1. To account for wind-wave irregularity, Monte Carlo simulations
were performed. However, the results of simulations demonstrate that the close-to-linear
growth of the wave energy with fetch x as observed in experiments can approximately
be reproduced in simulations for a limited range of fetches only. At larger distances,
the spatial rate of growth of the wave energy increases notably (see figure 4a). This
close-to-exponential growth of wave energy in simulations based on randomization of
the initial conditions only may be expected since, for each frequency harmonic, the wind
input is modelled by a linear term, see (4.2), while the nonlinearity only redistributes the
energy within the spectrum.

The wind input modelling adopted here originates from the theory by Miles (1957,
1959), which is linear and deterministic, and thus predicts exponential growth in time.
These features were retained in later developments of the theory – for more details, see
Shemer (2019). However, experiments on wind-wave growth under impulsive forcing by
Zavadsky & Shemer (2017b) demonstrate that the exponential growth stage is extremely
short, and is followed by stages with growth that is essentially linear in time. The behaviour
observed in their study was in general agreement with the theory of wind-wave generation
by Phillips (1957), which is essentially stochastic and accounts for directional spreading.
These observations, as well as extensive experimental evidence to the irregular nature
of wind waves as discussed in § 3.5, prompted an attempt to enhance the irregularity in
simulations and mimic the directional spreading by introducing repeated randomizations
at multiple locations along the integration path. Multiple randomizations indeed result
in an effectively linear growth of wave energy with fetch in the present simulations (see
figures 4, 5 and 7).
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The evolution of wave spectra with fetch is characterized not only by wave energy
growth with fetch, but also by peak frequency downshifting (see figure 1). While the
spatial variation of the wave energy in simulations can be directly affected by proper
tuning of the coefficient a in (3.2), there is no straightforward way in the adopted model to
control the dominant frequency downshifting. Frequency downshifting is often attributed
mainly to wave nonlinearity; the present model allows one to examine this conjecture.
For the very young wind waves studied here, the frequency dependence of the spatial
growth rate coefficient δj defined by (4.2) makes possible certain frequency downshifting
by purely linear effects, depending on the values of the two tunable coefficients in the
model, a and νeff . Such downshifting was indeed obtained in the solutions of the linear
model (see figure 5b). The amount of linearly obtained downshifting, however, is well
below that observed in the experiments. As demonstrated in figure 3(b), increase of the
effective viscosity beyond the adopted value does not contribute to an additional decrease
with fetch of the dominant frequency. On the other hand, simulations performed when
the viscous dissipation in the model was switched off, so that nonlinearity remained
the main factor capable of causing frequency downshifting, also results in reduction of
the dominant frequency, albeit much less pronounced than in the experiments. Only the
combination of nonlinearity and dissipation in the model leads to frequency downshifting
that is quite close to the measured values. It is worth mentioning that the irregularity
introduced into the model by repeated randomization of the spectra, while being
essential for proper description of wave energy variation with fetch, becomes important
for adequate presentation of the frequency downshifting only at larger fetches (see
figure 4b).

The quality of the model predictions decreases somewhat with decreasing wind velocity
U, as can be seen in figure 9. The scaling exponents as discussed in relation to figure 10
pertain to pure gravity waves, while at weaker wind forcing shorter gravity–capillary
wind waves are observed in the present experiments along a significant part of the test
section. Moreover, while the effect of capillarity is taken into account in computation
of the nonlinear interaction coefficients in (3.7), short gravity–capillary waves are also
affected by induced surface currents (Liberzon & Shemer 2011; Zavadsky & Shemer
2017a). Those effects, however, cease to be relevant for larger fetches and longer waves
and were not considered in the present model.

Presentation of the characteristic integral properties of the wind wave field in
dimensionless scaled form in figure 10 demonstrates that the spatial evolution patterns
under steady wind forcing observed in the present experiments and successfully
reproduced by the suggested model are in a reasonable quantitative agreement with
results obtained in a large wind-wave tank by Mitsuyasu & Honda (1982), as well with
numerous additional experiments at much larger scales surveyed in Badulin et al. (2007);
an updated list of experiments on wind-wave growth is available in Zakharov et al.
(2019).

7. Conclusions

In spite of impressive progress attained over the years in the prediction of ocean waves
using theoretical and numerical models, many questions regarding wind–wave interaction
remain unresolved. Ocean-scale models are not directly applicable for description of
wind waves in a small laboratory facility that evolve fast with fetch. Careful experiments
in wind-wave tanks under controlled conditions provide characterization of waves with
accuracy and resolution that is unattainable in field measurements. Such experiments are
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combined in the present study with nonlinear modelling that is adjusted to waves evolving
under steady wind forcing along the test section of a moderately sized wind-wave facility.
The model allows one to perform a detailed comparison of the numerical simulations
with measurements of wind-wave field evolution with fetch, which were performed for a
range of wind velocities U. To the best of our knowledge, no such detailed comparison of
simulations with experimental results has been attempted so far. The suggested model thus
serves as a tool for studying the relative importance of different mechanisms contributing
to the evolution of young wind waves.

The model is based on a unidirectional spatial version of the Zakharov equation; wind
input and dissipation are accounted for by additional linear terms. The quasi-deterministic
model describes the spatial evolution of each frequency harmonic. It is assumed that
both wind input and dissipation due to breaking are not localized in the frequency space,
but rather spread over the whole spectrum; they affect primarily the vicinity of the local
dominant frequency. In addition, simple modelling of dissipation of very short waves in
the boundary layer under the air–water interface due to effective turbulent viscosity is
included.

The present model contains only two adjustable empirical parameters: the fixed values
of those parameters were used for simulations of the wave field evolution along the test
section at all wind forcing conditions. Consistently good agreement was obtained between
the experimental and the numerical results.

The simulations demonstrate that a moderate dominant frequency downshifting can be
obtained in the framework of the linear approach. An attempt to neglect viscous dissipation
of short waves while retaining nonlinearity yielded a frequency downshift well below the
experimentally observed values. The combination of all terms on the right-hand side of
the governing equation (3.7) is required to obtain in the simulations a dominant frequency
downshifting that is close to the experimentally obtained values.

Irregularity has a pronounced role in the spatial evolution of wind waves. In the present
study, the quasi-deterministic model approach was amended by Monte Carlo simulations
with multiple realizations of the initial spectrum with random phases and/or amplitudes.
Moreover, it is demonstrated that rapid loss of coherence and the directional spreading of
waves as observed in experiments can effectively be modelled within the unidirectional
model by carrying out multiple randomization procedures of the computed spectra at
numerous locations in the course of integration.

The model thus combines Miles’ linear approach (Miles 1957, 1959) to describe the
temporal exponential growth of individual frequency harmonics with Phillips’ theory
(Phillips 1957) that emphasizes the randomness and directional spreading of wind waves.
The resulting model indeed yields a reasonably good quantitative agreement with the
results of extensive experiments on the evolution of a young wind-wave field with
fetch.

An effort was made to offer a model as simple as possible. Nevertheless, the
performance of the model demonstrates that it is not oversimplified and describes
adequately the major processes in the spatial evolution of wind waves in a laboratory tank.

Some mechanisms governing the evolution of the wave field along the test section
discussed in the present study are apparently limited to the very young and short waves
studied here. Nevertheless, it is important to stress that the quantitative similarity between
relations describing the spatial variation of the integral wave parameters with fetch in the
dimensionless scaled form obtained in the present study with those generally accepted for
wind-wave evolution at much larger scales suggests that the significance of the present
results may extend beyond the size of the facility.
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