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In continuation of the two previous papers (10; 11), this paper was origi-
nally written at the Indian Institute of Technology, Kharagpur and revised
at the University of Sydney under the advice of Prof. T. G. Room. Although
the altitudes of a general simplex S(^4) in »-space (n > 2) do not concur as
they do for a triangle (n = 2), yet we observe that its Monge point, M (1; 5),
is an appropriate analogue of the orthocentre of a triangle such that M
coincides with its orthocentre when it is orthogonal (or orthocentric). In
consistency with the previous papers (10; 11; 13; 15) we shall call M as the
S-point of S (.4) and denote it as S as explained in § 1.2. The altitudes of S (A)
are all met by the (n — 2)-spaces normal to its plane faces at their ortho-
centres, each parallel to (•$) of them, thus indicating the associated
character of the altitudes as discussed separately in 2 other papers (12; 16).
Before we introduce an orthogonal simplex and develop its properties in
regard to its y-altitudes and associated hyperspheres, we come across a
number of intermediate ones of special interest. Two special types are treated
here and the other two are developed in 2 other papers (13; 15).

1. General simplex

1.1. General behaviour of altitudes. Let S(A) = Ao- • • An be a general
simplex; in this paper the same letter will be used to represent a point and its
position vector relative to its circumcentre, 0, and x will be used as the
position vector of a current point. The primes normal to the sides of a triangle
AiAiAk from its respective opposite vertices are then given by the equations

{A, - Ak) • (x - At) = 0, (4* - A,) • (x - A,) = 0,

(A{ - A,) • (x - Ak) = 0.

These primes are obviously coaxal and their common (n — 2)-space, sijk, is
normal to the plane face A{AjAk at its orthocentre. Also si}k meets the 3
altitudes of S(A) from Ao Ajt Ak and is parallel to the remaining « — 2
altitudes. Thus follows
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404 Sahib Ram Mandan [2]

THEOREM 1. The altitudes of a general n-simplex are met by the (n — 2)-
spaces normal to its plane faces at their orthocentres, each parallel to (3)
of them.
For each altitude is normal to the (") plane faces of S {A) formed by its n
vertices lying in its corresponding prime face.

1.2. S-point. a. Coxeter [5] has proved that the Monge planes of an n-
simplex S (A), defined as the primes normal to its edges from the centroid of
its opposite (n — 2)-faces, concur at its Monge point, M (orthocentre for
n = 2) which lies on its Euler line joining its circumcentre, 0, to its centroid,
G, such that MG : GO = 2 : (n — 1). For n = 4, we arrived at the same
point in a different way (10), called it as the S-point of the simplex and denot-
ed it as S. In consistency with the same, we shall call M as the S-point of

and denote it as 5. We then have by definition the relation

(i) (n + 1)G = (w - 1)S

and deduce the analogous

THEOREM 2. The normals to the prime faces of an n-simplex (n > 2) at the
points, which divide the joins of their S-points to the feet of its respective
altitudes in the ratio 1 : (n — 2), CONCUR at its S-point.

PROOF. Let Git St be the centroid and the S-point of the prime face, S,,
of S(A) opposite its vertex A(; Gih, Aih, Tt, Ot be the projections* of
G, A{, S, 0 in S<. Ot is then the circumcentre of S4 and Aih is the foot of the
altitude of S(^4) from At to Srf such that

(ii) {n

and

(iii) ( n+ l )G a = (n - l ) r , + 20l.

Again by definition we have

(iv) nGi = 20,. + (» — 2)St = (n + l)G — At

Now from these 3 relations we derive

(v) («

That is, T{ is the point on the join StAih dividing it in the ratio 1 : (n — 2)
such that the normal to the prime S< at Ti passes through S. Hence follows
the proposition which could be proved independently by induction.

b. Let Aih be the foot of the altitude of the simplex S(A) from its vertex
Aj to its opposite prime face S,-; Aihj, Aihi be the projections of Aih, Aih in

• Here as well as henceforward projections are Orthogonal unless otherwise stated.
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[3] Altitudes of a simplex in n-space 405

its (n — 2)-face Si;. common to Sjt S,- such that Aihj is the foot of the altitude
of Ss from A t and A m of Sf from A {; St be the S-point of S,- and Ts the proj ec-
tion of S in S,; S{j be the S-point of S(j and Tis, Tjs be the points dividing the
joins of SiS to Ajhi, Aihj in the ratio 1 : (» — 3) as the projections of S^, Ss

in St7. The common point TUs of the joins TisAihj, TjsAm divides them in
the ratio 1 : (n — 2) as the common projection, in SH, of the points Tt, T',-
dividing the joins S,^4tft, S ^ M in the same ratio (Fig. 1, i = n, j — n — 1).

A n - ,

- (n - 2)Tis - Am = (n - 2)Tis - A
M

Fig. 1.

For

(vi) (n - 3

and therefore

(vii) (n - l)TiH = (» - 2)TU + Aihj = (n -

The plane TiTjTiH is then normal to Sti at r</s and therefore contains the
normals to S,, Ŝ  at Tt, T} meeting in S. Again from the relations (vi), (vii)
we have

(viii) (n - Z)Stt = (» - l)TOf - 2[7<i (where 2t7M = ^ < w + Am)

ThusSoTWsmeets the )o inA i h j A m in its midpoint Utj. The plane, through
Uij, parallel to the 2 parallel planes A{AihAihi, A}AihAm then meets the
edge AfAj of S(A) in its midpoint C7̂ , and the plane T^fT^, meets the
join SuU'ij in the point T{i dividing the same in the ratio 2 : (n — 3) in
which it divides SuUit at Tif> (Fig. 1, i = n, j = n — 1). That is, the plane
normal to the (n — 2)-face Stj of S(^4) from Tu contains its S-point S.
Thus we have
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THEOREM 3. The planes normal to the (n — 2)-faces of an n-simplex from
points, dividing the joins of their S-points to the midpoints of its opposite edges
in the ratio 2 : (n — 3), CONCUR at its S-point.

1.3. Associated hyperspheres. a. If the circum-radius of the simplex S{A)
be taken as a unit, the vectorial equation of its circumhypersphere (0) is

(ix) (O)=x*-1 = 0.

The centroid G( of the face Srf is related to At by (iv) as

n(G - Gt) = (At - G)

so that the equation of the hypersphere (0') containing the centroids Gt

of the faces S,- is obtained from that of (0) by the homothetic transformation

(x) x = (n + 1)G — nx'

i.e., the equation is

(xi) (0') = {nx - (n + 1)G}2 - 1 = 0.

The centre 0' is given by

(xii) nO' = (n + 1)G = (n - 1)S

from (i). I.e. the external and internal centres of similitude (9) of (0) and (0')
are 5 and G respectively, Hence we have

THEOREM 4. The n + 1 points Pt, dividing the joins of the S-point of an
n-simplex to its vertices in the ratio 1 : (n — 1), and their n + 1 projections in
its corresponding prime faces lie on its hypersphere (0'), called therefore as its
'3(» + l)point-sphere' (cf. 1; 4; 10).

For every join Pfii is a diameter of (0') as evident from the following
relations:

(xiii) n(P< + Gt) = (n — 1)S + At + nGf = nO' + (n + l)G = 2nO'

b. The equations of the 2 hyperspheres (S), (G) of antisimilitude and one
of similitude, (0"), of (0), (0') with centres at S, G, 0" = (S + G)/2 are
by given

(xiv) (S) =3 nx2 — 2nS-x+(n — 1)S2 + 1 = 0,

(xv) . (G) s nx2 — 2nG -x+ {n + 1)G2 —1 = 0,

(xvi) (0") = x2 - (G + S) • x + G • S = 0.

(S) is referred to as the quasi-polar hypersphere (2; 10), (G) as the G-sphere,
and (0") as the GS-sphere (with GS as diameter) of S(A). Thus we have
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THEOREM 5. With every n-simplex are associated 5 coaxal hyperspheres
(0), (0'), (0"), (G), (S) like 5 such spheres associated with a tetrahedron or 5
such circles associated with a triangle, viz., its circumcircle and q-point circle,
their 2 circles of antisimilitude (one being its polar circle, the other with
centre at is centroid is called its g-circle) and their circle of similitude, called
its /-circle, with centres on its Euler line (8).

c. As an immediate consequence we now have the following:

THEOREM 6. The power of the S-point of an n-simplex w.r.t. its circum-
hypersphere is equal to n times the square of the radius of its quasi-polar
hypersphere (cf. 2; 10).

THEOREM 7. Every hypersphere with a median of a simplex (join of a vertex
to the centroid of its opposite prime face) as diameter is orthogonal to its
quasi-polar hypersphere.

That is, the radius (S2 — \)jn of (S) is equal to the power of S w.r.t. the
former hypersphere

(xvii) {Afit) = x2 — (At + GJ • x + A{ • G( = 0.

It now follows from the relations (i), (iv), (ix). For A( lies on (0) and there-
fore A\ = 1.

THEOREM 8. The GS-sphere of a simplex is the 'radical hypersphere' of its
quasi-polar hypersphere and G-sphere (7).

It follows from the relations (xiv) to (xvi) by reducing the equations of
(S) and (G) into their standard form by making the coefficient of x% unity.
For then (5) + (G) = (0").

THEOREM 9. The polar of a vertex A t of an n-simplex w.r.t. its quasi-polar
hypersphere cuts the hypersphere {AtGt) with its corresponding median as
diameter in an (n — 2)-sphere on its 3(« + l)point-sphere and that of its
the centroid Gt of its corresponding prime face on its circumhypersphere (cf. 10).

It follows from the relations (i), (iv) and the equations (ix), (x), (xiv),
(xvii).

THEOREM 10. Every hypersphere, with centre at a vertex A f or the centroid
Gt of the opposite prime face of an n-simplex, orthogonal to its quasi-polar
hypersphere is coaxal with its G-sphere and the hypersphere (-djGj) of the
Theorem 9 (cf. 10).

It can be proved by the use of equations (xiv), (xv), (xvii). But geometri-
cally it is almost obvious when we observe that the 3 hyperspheres under
consideration are all orthogonal to (S) and have their centres collinear in
the median AiGi. Hence their common radical prime is one normal to
AtGt through S and is thus uniquely determined.
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THEOREM 11. The simplex S(B) formed of the diametrically opposite points
B{ of the vertices At of a simplex S(A) is homothetic to that formed of the
centroids Gt of its prime faces w.r.t. its S-point with homothetic ratio equal to n.

For from the relations (i), (iv) we have

(n — 1)5 = (« + 1)G = nGt + Ai = nG{ — (— A{) = nGt — B{.

REMARK. Af.Gf form a pair of conjugate points for the quasipolar hyper-
sphere (S) by the Theorem 7. Now the Theorem 9 follows geometrically
almost obviously from the Theorems 4 and 11. For a diameter subtends a
right angle at every point of its sphere and the polar of a point P w.r.t. a
hypersphere is at right angles to the join of P to its centre passing thorough
all its conjugate points (see 10).

2. Biorthocentric simplex

2.1. Existance. When the altitudes of a simplex S(A) (§ 1.1) from its 2
vertices At, At meet in a point H', it is said to be Biorthocentric (BoS) with
H' as its Biorthocentre. If Oit Os be'the vectors representing the normals from
the circumcentre 0 of the BoS to its prime faces S,-, S ,̂ for some Pt, Pt we
then have

(xviii) H' = A t + Pfii = A, + Pps,

and also

(xix) OrAk = ct{k * i), OrAt = Cj{k # /)

where ct, c} are some constants. It follows that

(xx) ( P A - Pfi,) -Ak = P{c{ - PjCi

and therefore that

(xxi) (At - A,) >{Ak-Al) = 0(k,l* i, j),

i.e., the edge AtAf is normal to the opposite (n — 2)-face Sw of the BoS.
Conversely if (xxi) holds, we can deduce the existance of H'.
Further we may observe geometrically almost obviously (see 10) that if the

common normal secant of AtA} and S<} meet AtAs in U' and So in U, UU' is
an altitude of the triangle AiAjU, the other two being along AfH', A}H'
meeting AjU.AtU respectively in Aih, Ajh such that Ai Aih, A,Aih are the
altitudes of the BoS to S,, S, and AfU, ASU are the altitudes of S ,̂ S, to
SH (Fig. 2, * = » , / = » — 1).

UU' is called the special bialtitude of the BoS to its special edge A{At and
its special (n — 2)-face. We then have
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Fig. 2.

THEOREM 12. An n-simplex S(yl) becomes BoS, if and only if, an edge
AiAjofS(A) be normal to its opposite (n — 2)-face Stj, and then its 2 altitudes
from its vertices Ait At CONCUR with its special bialtitude UU' at its Biotho-
centre, such that their feet lie respectively on the altitudes of its prime faces
opposite Ait At to S{i and the feet of the later altitudes coincide at the foot
U of UU' in Su.

2.2. Orthocentres of faces through special edge of BoS. AtA} being the special
edge of the BoS, its n — 1 prime faces Sfc through AfAt are then all obvious-
ly Biorthocentric such that their altitudes from Ait At meet at their respec-
tive Biorthocentres H't. If H' be the Biorthocentre of the BoS, we have the
following relations:

(A, - H') • {At - At) = 0

From these relations follow two more as follows:
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", /; I # k).

That is, the prime normal to AtAj from H' passes through its special
(n — 2)-face Su such that the projection of its every vertex At in Sj}- on
AtAj coincides with that of H', which projects into H'k in Sfc (Fig. 2, k = 0).
Thus follows

THEOREM 13. Every r-face (r > 3) of a BoS in an n-space through its
special edge AtAf is Biorthocentric such that the Biorthocentre H' of the BoS
projects into that of its every such face; its every tetrahedron AiAjAlcAl is
semi-orthocentric (3) such that H' projects into its semi-orthocentre relative to
AfAj and into the orthocentre of its every triangle AfAjA^, the altitudes of all
its triangles AiAjAk and the special bialtitudes of all its other r-faces through
A{Aj to AtAj CONCUR with its special biallitude at their common foot on
AtAt (cf. 10).

2.3. S-, M- and F-point of BoS. From Fig. 2, Theorem 2 and relations
(iv) and (v) it follows that the point M', called the M-point of the BoS,
given by the relation

(xxiv) (n - 2)M' = (» - \)S - H',

(S being the S-point and H' the Biorthocentre of the BoS), projects into the
S-points S,-, Sj of its prime faces Sj, S,, and its F-point F', defined by the
relation

(xxv) nF' = (n- 2)M',

projects into their centroids. From (i), (xxiv) and (xxv) also follows that

(xxvi) nF' = (n + l)G — H',

(G being the centroid of the BoS).
Now the existance of M' implies that kt and k, exist such that

M' = St + kt0( = S, + kfit (§ 2.1).

Or, (n + l)G — Ai — 20i+ (n — 2)ki0i= (n + l)G — Ai—20i+ {n-2)ki0i

by (iv). I.e., by (xviii) we have Pt = 2 — (n —2)ki,Pi = 2 — (« — 2)kf.
These values of kt, k} give us (xxiv) by (iv) and (xviii).

Similarly F' exists if we can find a{, af from the relations

F' = G,- + afli = Gt + OPJ (G<G, being the centroids of S,, S}).

Or, (n + l)G — Af + nofit = (n + 1)G — A, + nafij by (iv). I.e., by
(xviii) we have na( = —pit nat = — pt.
These values of ait at and relations (iv), (xviii) give us (xxvi).
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[9] Altitudes of a simplex in n-space 411

Conversely the existance of M- or F-point of a simplex can be similarly
proved to imply that of its Biorthocentre. Thus we have

THEOREM 14. The following conditions to make an n-simplex BoS are
equivalent: (a) An edge A{Aj is normal to its opposite (n — 2)-face Siy,
(Th. 13). (b) Any of the following pairs of normals to a pair of its-prime faces
S4, Sj concur

(i) through A(, At in its Biorthocentre H',
(ii) at their centroids Git Gt in its F-point F', or,

(iii) at their S-points St, S, in its M-point M'.

2.4. Special (n — 2)-sphere. The special edge AtAt of the BoS being
normal to its opposite (n — 2)-face Sfi, the mediater m of its special bialtitude
UU' (i.e., the prime normal to UU' at its mid-point) cuts its non-special
edges A(Ak, A}Ak at their midpoints lying on an (n — 2)-sphere, called its
special (n — 2)-sphere. For obviously they form a right (n — l)-prism
whose two (n — 2)-faces are parallel to Sa and their n — 1 connecting edges
to AtAj all equal to ^AtAt. In fact, Prof. Room has shown that this (n — 2)-
sphere lies on the hypersphere (x — \H')Z = constant. For it passes through
the2(» — 1) points |(^,- + Ak),\(Af + Ate) as follows: The point %{At+Ak)
= \(H' — PiOt + Ak) lies on it if

(pA - Ak)* = p*O\ - 2Pic( + 1 = P\O\ - 2PiOi • A, + 1 (by relation (xix))

= {pfii - A,)* = (pP, - Atf = (H' - A, - A,)* = constant

which is true. Hence we have

THEOREM 15. The mid-points of the 2(« — 1) non-special edges AtAk,
AjA* through 2 vertices of an n-simplex lie on its special (n — 2)-sphere, if
and only if it becomes BoS with AfAt as its special edge (3; 10).

2.5. N-, J-, L- and H-spheres. a. From the properties and relationship
of the 5 coaxal circles associated with a triangle and their centres on its
Euler line (§ 1.3b) we may deduce from the Theorem 13 the following

THEOREM 16. The q-point, g-, 1-, and polar circles of the n — 1 plane
faces through an edge A(Af of an n-simplex lie respectively on an hypersphere,
called its N-, ]-, L- and H-sphere (AT'), (/ ') , (L') and (# ' ) , belonging to a
coaxal family f (say) to which belongs its circumhypersphere (0) too, if and only
if it becomes a BoS with AtAjas its special edge such that the radical axes of the
n — 1 coaxal families of circles associated with them CONCUR on A{A} deter-
mining the radical prime of f; (N') passes through its special (n — 2)-sphere.

b. From the property of the polar circle of a triangle we have the following
apparent

THEOREM 17. The polars of the vertices Ait At of the BoS of Theorem 16
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w.r.t. its H-sphere (H1) are its respective opposite primes, and therefore the
feet U, U' of its special bialtitude form a pair of inverse points for (H').

For the centre of (H1) obviously lies at its Biorthocentre H', and U, U'
are therefore (Th. 12) collinear in a diameter of (H1) normal to A{Aj and
its opposite (n — 2)-face polar to AtAt for (Hr).

c. The centres 0, H', N', J', V of the 5 hyperspheres (0), (#'), (Nr), (/ '),
(L1) are vectorially related as follows (0 being the origin):

(xxvii) 2N' = H'; 3L' = 2H'; 3 / ' = H'.

From the the third relation of (xxvii) and (xxv), (xxvi) we have

(xxviii) (n — 2)M' = (n + 1)G — 3 / '

leading to the following

THEOREM 18. The centre of the J-sphere of a BoS is collinear with its
centroid and its M-point, as well as with its circumcentre, Biorthocentre and
the centres of its N- and L-spheres.

2.6. M-, F-, I- and T-spheres. The S-points S,, S, of the prime faces
S<( Sj of the BoS (§ 2.3) project into the same point Mif, in their common
(n — 2)-faceS,7, where it meets the plane S.M'S, (Fig. 2, i — n,j = n — 1),
on the join of its S-point S{j to the foot of the special bialtitude of the BoS
therein, and the diameters of their (3»)point spheres (Of), (0]) (Th. 5)
through its centroid Gu into the same diameter of the (n — 3)-sphere section
of either by it. That is, (0<), (0^) lie on an hypersphere (T') with centre T'
on OM' such that

(xxix) (n-l)T' = (n- 2)M'

For if O\ be the centre of (0^) as the projection of T' in St, the relation (xiii)
becomes

(n — \)0\ = (n — 2)S,- -f 0t (0, being the circumcentre of S4).

Consequently the 5 coaxal (n — 2)-spheres associated with Sj or S, have the
same 5 coaxal (n — 3)-sphere sections by S(j with the join of Mit to its
circumcentre 0it as their line of centres. Again from (xxvii), (xxviii), (xxix)
we have

(xxx) (n - 1)T' = (n + 1)G - 2N'.

Thus follow the following

THEOREM 19. The quasi-polar (n — 2)-spheres, G-, GS- and (3n)point-
spheres (§ 1.3b) of 2 prime faces of an n-simplex lie respectively on an hyper-
sphere, called its M-, F-, I- and T-sphere (AT), (F'), (/') and (T), belonging
to a coaxal family f (say) to which belongs its circumhypersphere (0) too, if and
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only if it becomes a BoS. The centres of (M'), (F') lie at its M- and F-points
M', F' and that of (/') at the midpoint of M'F'.

THEOREM 20. The centroids of the 2n — 1 (n — 2)-faces of an n-simplex in
its 2 prime faces lie on its T-sphere (T')t if and only if it becomes BoS such
that (Tr) is homothetic to its N-sphere (N') w.r.t. its centroid G with homothetic
ratio — 2 : (» — 1) and therefore G lies on the join of their centres T', N'.

3. Semi-orthocentric simplex

3.1. r-Orthocentric simplex, a. If a pair of consecutive edges AtAj, AiAk

of an M-simplex S(A) be both special (§ 2.1), they are rectangular to all
their respective opposite edges, in particular to AkAlt AtAt respectively.
Thus AiAjAkAl form an orthocentric or orthogonal tetrahedron and AlcAi

is normal to the opposite (n — 2)-face St i of S(A) such that AiAiAkAlAm

form a semi-orthocentric 4-simplex (11). Consequently follows from Theo-
rem 12 the following

THEOREM 21. / / a pair of consecutive edges AiAi, AtAk of an n-simplex
S(A) be both special, so is also AkAi, their plane s2 is then normal to its
opposite (n — 3) -space sn_3, its n — 2 tetrahedra AiAiAkAlare all orthocentric
and (""2~2) 4:-simplexes AiAjAkAlAm are all semi-orthocentric. Or, if 2
altitudes ofS(A) meet a third, the three CONCUR, say at H3. S(A) is then said
to be 3-orthocentric with H3 as its ^-orthocentre, s2 and sn_3 as its special
elements, and denoted as S3(>4).

b. As an immediate consequence now follow the following

THEOREM 22. (i) If r — 1 (r < n — 1) consecutive edges of an (n -(- l)gen
s formed of the vertices of a simplex S (A) in an n-space be special, all its edges
and planes in their (r — 1) -space sr_1 are special, sr_x is then normal to its opposite
(n — r)-space sn_r and its r altitudes from its vertices in sr_1 CONCUR, say
at Hr. ?>{A) is then said to be r-orthocentric with Hr as its r-orthocentre, sr_x

and sn_r as its special elements, and denoted as Sr(.4).
(ii) // , further, the opposite n — r edges of s be also special, the other

n — r -f- 1 altitudes of Sr(A) also CONCUR, say at Hn_T+1. It is then said
to be Semi-orthocentric (SoS) with Hr, Hn_r+1 as the pair of its Semi-ortho-
centres, sr_! and sn_r as its principal elements, and denoted as sr.(n_r+1).
That is, if all but a pair of opposite edges of s be special, S (A) becomes an SoS.

THEOREM 23. Every Sre_1(^4) in an n-space or (n — 1)-orthocentric n-
simplex is Biorthocentric too and therefore forms an SoS S(n_1).2. For its other
2 altitudes also MEET.

THEOREM 24. Every Sn(^4) in an n-space or n-orthocentric n-simplex is
Orthogonal (OS) such that all its altitudes CONCUR at its Orthocentre.
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THEOREM 25. The (n — r-\-\) r-simplexes and {n~l+1) (r + \)-simplexes
of an Sr(/1) having its special (r — I)-face common are all respectively
Orthogonal and Semi-orthocentric.

THEOREM 26. A subsimplez of an SoS is either Orthogonal or Semi-
orthocentric, but every prime face of an OS is ever Orthogonal with Orthocentre
at the foot of the altitude of OS to it.

3.2. p-Altitudes, a. The unique normal secant of a (p — l)-space of an
w-simplex and its opposite (n — p)-spa.ce is called its p- or (n — p + 1)-
altitude (Bialtitude for p = 2) to them.

The r-space joining the special (r — l)-space sr_1 of an w-simplex Sr(A)
to its r-orthocentre Hr is obviously normal to its opposite special (n — r)-
space sM_r meeting the same in C7(say) such that the r-simplex (sr) formed of
U and the (r — l)-simplex of Sr(A) in sr_x is orthogonal with r altitudes
same as the concurrent ones of Sr(yl). Thus Hr is the orthocentre of (sr)
and UHr is its (r + l)th altitude meeting sr_1 in U' (say). UU' is then no
other than the r-altitude of Sr(A) to sr_x and is called special. Again the
altitudes of the (n — r + l)-simplexes of Sr(^4), having its (n — r) -simplex
in sn_r common, to sn_r concur at U. Thus from what precedes follow the
following

THEOREM 27. The (r
p) p-altitudes of an n-simplex Sr(A) to its (p — 1)-

spaces in its special (r — \)-space are all special and pass through its r-
orthocentre, and each meets its opposite (n — p)-space sn_p in a point where
CONCUR the altitudes of its p (n — p + \)-simplexes, having its (n — p)-
simplex in sn_p common, to sn__p.

THEOREM 28. Both the Semi-orthocentres of an SoS Sr.(n_r+1) lie on its
special r- or (n — r -\- l)-altitude, referred to as its 'principal' r-altitude.

b. We may also prove the following

THEOREM 29. / / U, U' be the feet of a p-altitude of an n-simplex in its
relative (p — \)-space sJ)_1 and [n — p)-space sn_p, and UU' meet its altitude
from a vertex At in sn_v, the p-altitude of its prime face opposite At to s,,^
meets s , ^ in U and the opposite (n — p — 1)-space in U" such that Ait

U', U" are collinear in an altitude of its (n — p)-face in sn_v.
c. Let an (r — l)-face (s^j) of an w-simplex S(^4) be Orthogonal with

Orthocentre at U', UU' its r-altitude to its (r — 1)-space s,.^ of (s,.^)
meeting its opposite (n — r)-space sn_r in U, U'U" the bialtitude of (s,.^)
to its edge AtAt meeting its opposite (r — 3)-space sT_3 in U", Ak a vetex
of S (.4) in sn_r and A, in sr_3 such that sr_1 is normal to sB_r. We then have
the following vectorial relations

(A( - At) -(U-U') = 0= (A, - A,) • (V - U") = (At - At) • (U-Ak)
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from which we deduce

(At - At) • (U - U") = 0={Ai- A,) • (Ak - A , ) .

Thus AiAi is normal to its opposite (n — 2)-space determined by sn_r,
sr_3. Hence follows

THEOREM 30. An n-simplex S(A) becomes ST{A), if and only if an (r — 1)-
face (sr-1) of it is Orthogonal with Orthocentre at the foot U' of its r-altitude to its
[r — \)-space sr_l of (sr_j) therein meeting its opposite (n — r)-space sn_r in U,
and sr_x is normal to sn_r. If further its (n — r)-face in sn_r be also Orthogonal
with Orthocentre at U, it becomes an SoS with UU', sr_lt sn_r as its principal
elements.

3.3. Orthocentres. From the preceding section follow now the following

THEOREM 31. A special p-altitude of an n-simplex Sr(^4) meets its relative
(n — p)-face, which is (r — p)-orthocentric, in its (r — p)-ortho centre.

THEOREM 32. The prime faces of an n-simplex Sr(^4) opposite its vertices
in its special (r — \)-space sr_± are all [r — 1) orthocentric such that the feet
of its altitudes therein lie at their respective (r — I)-orthocentres; its q-faces
having p vertices in sr_1 are all p-orthocentric [Orthogonal for p = q — 1)
such that its r-orthocentre projects in them into their respective p-orthocentres
{Orthocentres for p = q — 1).

THEOREM 33. The (n — 2)-spaces normal to the plane faces, through r — 1
concurrent edges of an n-simplex or r — 1 consecutive edges of an (n -f- l)gon
formed of its vertices, at their orthocentres CONCUR at HT{say), if and only if
it becomes Sr(A) with HT as its r-orthocentre, (cf. Ths. 13, 21, 22).

THEOREM 34. Every Orthocentre of every order of every face of an SoS is
an orthogonal projection of its one or the other Semi-otthocentre.

3.4. S-point. Now we prove by induction the following

THEOREM 35. The S-point of an SoS Sr.(n_r+1) lies on its principal r-
altitude dividing the segment between its r- and (n — r + \)-orthocentres in the
ratio (n — r) : (r — 1).

PROOF. Let At be a vertex of the SoS in its principal (r — 1)-space and A}

in its principal (n — r)-space; Sit Ŝ  its prime faces opposite At, At and
5,-, S, their S-points; H, H' its r - and (n — r + 1)-orthocentres, Hu K\
their projections in S* and Hj, H't in S .̂ S4 is then Semi-orthocentric, Ht,
H't are its (r — 1)- and (n — r -f 1)-orthocentres and H{ is the foot of the
altitude of the SoS to it (Th. 32). S; too is Semi-orthocentric, Hit R] are its
r- and (n — r)-orthocentres and H', is the foot of the altitude of the SoS to it.
If r = 2, St- is Orthogonal with Orthocentre at H'f coincident with 5,-.
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If r = n — 1, Sj is Orthogonal with Orthocentre at Ht coincident with St.
Assuming the proposition to be true for an (n — 1)-simplex, Su 5, lie

on HtH't, H^ such that

(xxxi)
(n - 2)S, = (r - 2)Ht + (n - r)H't,
(n - 2)S, = (r- \)H§ + (n - r -

UTt, T, be on HiH't.H^ such that

(xxxii) (n - l)Tx = (r - 1)HX + (n - r )^(a ; = *, /),

the normals to 5,. at Tx concur on the principal r-altitude (Fig. 3) of the SoS
at its S-point S by definition (Th. 2) such that

(xxxiii) (n—l)S=(r — l)H+(n- r)H'

For Tx satisfy the relations

(n - 1)7\ = (» - 2)St + Ht, (n - 2)T, = (n - 2)S, + H\

by virtue of (xxxi), (xxxii).
Thus if the proposition is true for an (n — 1)-simplex, it is true for an

A,

Fig. 3.

https://doi.org/10.1017/S1446788700027439 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700027439


[15] Altitudes of a simplex in n-space 417

M-simplex. But we know it to be true for a 4-simplex (11) and hence it holds
for an w-simplex for successive values of n = 5, 6, 7 • • •.

3.5. M-points. From the preceding proposition follows

THEOREM 36. (i) The normals to the r prime faces of an SoS Sr.(n_r+1),
opposite its vertices in its principal (r — \)-space sT_1, at their S-points all
CONCUR with its principal r-altitude a at its M-point M which then divides
the segment between its r - and (n — r + \)-orthocentres H, H' in the ratio
(n — ?)'•(? — 2) such that M coincides with H' if r = 2, and those to its
other primes CONCUR at its other M-point M' dividing HH' in the ratio
(n — r — 1) : (r — 1) such that M' coincides with H if r = n — 1.

(ii) The (p) ("~£+1) {p + q)-spaces normal to its Semi-orthocentric
(n — p — q) faces, with r — p vertices in sr_1( at their S-points all CONCUR
with a at its M-point Mv

q (Ml = M, Mj = M'), dividing HH' in the ratio
{n — q — r) : (r — p — 1), where then CONCUR the Q{n~l+1) (u + t)-
spaces normal to its (n — u — t)-faces, with r — u (u ^ p, t 52 q) vertices
in sr_1( at their M-points Mv

qZ".
(iii) In particular, the (£) (M~2+1) (n ~ ty-spaces normal to its Semi-

orthocentric tetrahedral faces at their Monge points all CONCUR at the mid-
point M" = Mr-}r_x of HH'.

(iv) The distances of its M-points M? from H or H' for fixed q or p form an
harmonic progression to which belongs the distance of its S-point too for q or
p = o.

3.6. ¥-points, a. Again as an immediate consequence of what precedes
(§§ 3.5, 1.2) follows.

THEOREM 37. The (r
P){n~r

q
+l) (p + q)-spaces normal to the (n — p — q)-

faces of an SoS Sr. ( n_r + 1 ) , with r — p vertices in its principal (r — I)-face
sr_1( at their centroids all CONCUR on the join of its circumcentre 0 and its
M-point M\(Mr

q = Mr~l = H', M^_r+l = Mp
n_r = H) dividing the same in

the ratio (n — p — q — 1) : 2 at its F-point F?(Fl = F, F^ = F') where
CONCUR the (r

u) (
n~£+1) (u -+- t)-spaces normal to its (n — u—t)-faces, with r — u

vertices in sr_1(w 52 p,t ^ q), at their F-points -F^I" (cf. § 2.3).
In particular, the (£)(n~2+1) in ~~ 3)-spaces normal to its Semi-orthocentric

tetrahedral faces at their centroids all CONCUR at the midpoint F" = Fr^I?r_l

of OM" (Fig. 3).
b. Further it can be readily seen that all the F-points F% (p =£ r) of the

SoS are collinear with its centroid G and its r-orthocentre H, and F^ (q ^
n — r + 1) with G and its (n — r -{- l)-orthocentre H'. Thus follows the
following

THEOREM 38. The S-point and M-points M% of the SoS project from its
circumcentre 0 on the join of its centroid G to its r-orthocentre H into G and its
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F-points F% such that their distances from H form an harmonic progression,
and M°q project from 0 on the join of G to its (n — r -\- \)-orthocentre H' into
F® such that their distances from H' similarly form an harmonic progression
to which belongs the distance of G too from H' (cf. Th. 36 (iv)).

3.7. Principal (n — 2)-sphere. We may now prove the following (cf. § 2.4)

THEOREM 39. The midpoints of the r(n — r -\- 1) non-special edges of an
SoS Sr.,„_,+!) form a SIMPLOTOPE (6) of the type (r — \,n — r) in the
mediator of its principal r-altitude having (Di"'^1) plane faces as rectangles,
one in each of its semi-orthocentric (3) tetrahedral face, and therefore lie on an
(n — 2)-sphere, referred to as PRINCIPAL, with centre at its F-point
F" (Th. 37).

3.8. N- and J-spheres. From Theorems 16, 33 follow the following

THEOREM 40. The q-point and g-circles of the (3) -f (r
2) (n — r -f 1)

triangular faces (r > 2) of an n-simplex Sr(A) through its special edges lie
respectively on its N- and J-sphere (N), (J) with centres N, J at the midpoint
and the point of trisection of the join of its circumcentre 0 to its r-orthocentre H.
(N) passes through the first 12-point sphere (8) of its Orthogonal tetrahedra
and the first 20-point 3-sphere (11) of its Orthogonal A-simplexes (r > 3).

THEOREM 41. With every SoS Sr.(n_r+1) are associated a pair of N-spheres
(IV), {N') and a pair of J-spheres (J), (J1) such that their centres N, N', J, J'
lie at its F-points N = F'~_l = F^r+l, N' = F ^ _ 2 = F ^ _ 8 > J = F£*+l

= Fr~J^, J' — irjt_
1

r_l = -F^_,_2 for sensible values of n and r. (N), (N')
have its principal (n — 2)-sphere common with their radical hypersphere.
NN' is parallel to its principal r-altitude and J J' such that the joins of J, J'
to its corresponding M-points M, M' meet in its centroid dividing them in
the ratio 3 : (n — 2) (Ths. 37, 18).

3.9. Semi-polar hyperspheres. From Theorems 16, 17 follows

THEOREM 42. The Q + (r
2)(n — r + 1) polar circles {r > 2) of the

plane faces of an SoS Sr.(n_r+1) through its edges in its principal (r — l)-face
(sr_x) and then — r + 1 polar (r — l)-spheres of its Orthogonal r-faces through
(sr_x) all lie on an H-sphere (H) with centre at its r-orthocentre H; the polar
circles of its other triangles and the r polar (n — r)-spheres of its Orthogonal
(n — r + I)-faces through its principal (n — r)-face all lie on another (H')
with centre at its (n — r + l)-orthocentre H'; the radical prime of (H), (H')
coincides with the mediator of its principal r-altitude whose feet form the pair
of their limiting points, and they are referred to as its semi-polar hyper-
spheres.

3.10. M-spheres. From Theorems 19, 36 follows

THEOREM 43. The (>,)("7+1) quasipolar (n — p — q — \)-spheres of the
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Semi-orthocentric (n — p — q)-faces of an SoS Sr.(n_r+1), with r — p vertices
in its principal -(r — l)-face, all lie on an M-sphere (Mv

q) with centre at its
M-point Mv

q.
3.11. I- and F-spheres. a. From Theorems 19, 37 follows

THEOREM 44. The (£)("~^+I) G-spheres of the (n — p — q)-faces of an
SoS Sr.(n_r+1)) with r — p vertices in its principal (r — \)-space sT_x, all lie
on an F'-sphere (Fp

q) with centre at its F'-point F?, and their GS-spheres on an
I-sphere (/£) with centre /£ at the midpoint of the join of its corresponding F-
and M-points Fp

q, Mp
q.

b. We have seen above the 4 particular examples of the .F-spheres in
Theorem 41. Those of the /-spheres we have in the following (Th. 16)

THEOREM 45. (i) The Q + ($)(« — r + 1) l-circles (r > 2) of the
plane faces of the SoS through its edges in sr__t all lie on an L-sphere (L) =
{I't^-r+i) = (/«-?). with centre L at the midpoint of the join of its r-orthocentre H
to the centre J of its corresponding J-sphere (J), which therefore passes through
the second 12-point spheres (1; 8) of its Orthogonal tetrahedra having three or all
the four vertices in sr_x; the l-circles of its other triangles and the second 12-point
spheres of its other Orthogonal tetrahedra all lie on another L-sphere (L1) =
( /^_j) = (7^_f_2) with centre L' at the midpoint of the join of its (n — r-\-1)-
orthocentre H' to the centre J' of its second J-sphere (/ ') .

(ii) The Q -f (J)(« - r + 1) 15-point ^-spheres (r > 4) of the Ortho-
gonal A-simplexes of the SoS having four or all the five vertices in sT_1 all
lie on an hypersphere, referred to as its k-SPHERE, (k) = (/£lj) = (7£4+i)
with centre k at the midpoint of the join of H to the centre N of its corresponding
N-sphere (N), and those of its other Orthogonal ^-simplexes lie on another
k-sphere (k') = (/£L*_2) ~ (^n-r-s) with centre k' at the midpoint of the join
of H' to the centre N' of its second N-sphere (N1) (11).

3.12. T-spheres. From Theorems 19, 20, 41, 45 follow

THEOREM 46. (i) The (J,)(M~^+1) 3(« — p — q + I) point-spheres of the
(n — p — q)-faces of an SoS Sr.(n_r+1), with r — p vertices in its principal
(r — \)-space sr_1, all lie on a T-sphere (T^) with centre Tp on the join of its
circumcentre 0 to its M-point Mp dividing the same in the ratio (n—p—q—l):l
such that (Tr

n-_
2

r), (T£i-i) coincide with its N-spheres (N), (AT); (2^*),
(rB!^l2) with its L-spheres (L), ( I ' ) ; (T£*), {Tn

rSrl3) with its k-spheres

(A). (*')•
(ii) The g r ^ t 1 ) + ( ^ i ) r f x ) centroids of the (n - p - q - l)-faces

of the SoS, with r — porr — p— I vertices in sr_1( all lie on (T?) which
is then homothetic to its T-sphere (T^l^lJ) w.r.t. its centroid G with homo-
thetic ratio —(/> + ? + 1) • (« — p — q) such that G lies on the join of their
centres dividing the same in the same ratio
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3.13. Coaxal families. The semi-polar hyperspheres of an SoS may be con-
sidered as its limiting M-spheres (H) = (Mntr) = (MnJr+1), (Mr

q) =
(M'-1) = (H') (§§ 3.4, 3.5). From Theorems 16, 19, 41-46 now follows the
following

THEOREM 47. The corresponding M-, F-, I- and F'-spheres (Mp
q), {Fp

q),
(/£), (Tp) of an SoS and its circumhypersphere (0) form a coaxal family,
and there are 2 such special families such that to one determined by (0) and a
semi-polar hypersphere belong an N-, ]-, L- and k-sphere.

4. Orthogonal simplex O(S)

4.1. Properties. We have already noticed how an OS appears (Ths.
24—26) along with a number of its specialties as its distinguishing features
(§§ 3.2 — 3.4). But we may consider an OS as a limiting SoS when the pair
of its Semi-orthocentres and consequently its S-point as well as its M-points
coincide at the orthocentre of the OS. Thus we enumerate its properties in
following

THEOREM 48. Every face of an OS is Orthogonal and every edge special;
all its p-altitudes CONCUR at its Orthocentre and meet its relative (p — 1)- and
(n — p)-faces in their respective Orthocentres; the altitudes of its n — 1 plane
faces through its every edge e and the bialtitudes of all its other faces through e
to e all CONCUR at their common foot on e.

THEOREM 49. (i) The centroid G of an OS in an n-space is collinear with
its Orthocentre H and its circumcentre 0 dividing OH in the ratio (n — 1) : 2
(§ L2a).

(ii) The ("t1) p-spaces normal to its (n — p)-spaces at their centroids all
CONCUR at its F-point Fp on its Euler line OGH dividing OH in the
ratio (n — p — 1) : 2, and therefore the distances of Fv(p = I, • • •, n — 1;
Fn_x = 0) from H form an harmonic progression (§ 3.6, Fp = Fqp = Fv+a)
such that the ("'J1) (n — 2)-spaces normal to its plane faces at their q-point
centres CONCUR at the midpoint N = Fn_3 of OH where CONCUR the
("11)(W — 3)-spaces normal to its solid faces at their centroids.

Or the relationships are expressed vectorially as follows:

(xxxiv) {n + \)G = (n — \)H

(xxxv) . (n — p+ 1)FP = (n — p —

4.2. Polar hypersphere. We may now have

THEOREM 50. (i) An SoS in an n-space becomes an OS, if and only if all its
M-spheres and the pair of its semi-polar hyperspheres coincide with its quasi-
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polar hypersphere into the CONJUGATE (I) or POLAR hypersphere (H) of
the OS with centre at its orthocentre H such that OS is self-polar for (H) and
the power of H w.r.t. its circumhypersphere (0) is n times the square of the
radius of (H) (Ths. 6, 42, 43). From (xiv) we have the equation of (H) as

(xxxvi) nx2 — 2nH • x + (n — l)H2 + 1 = 0.

(ii) The polar prime of a point P on (0) w.r.t. (H) divides the join of H
to the diametric opposite P' of P in the ratio 1 : (n — 1). In fact, it is true for
the quasi-polar hypersphere (S) of a general n-simplex S(^4) too w.r.t. its
S-point 5 (cf. Th. 11). Hence we have (1; 11)

(iii) The segment of an altitude of the OS between H and the second point
of intersection with (0) is divided by its corresponding prime in the ratio
1 : (» - 1).

(iv) The (n -\- 1) paralles through H to the joins of its vertices to P meet its
corresponding primes inn + 1 points lying in the polar prime of P' w.r.t. (H).

4.3. First n(n -+- 1) point-sphere. Now we have

THEOREM 51. An SoS in an n-space becomes an OS, if and only if the pair
of its N-spheres coincide into the first n(n + \)point-sphere (N) of the OS
passing through the C1^1) midpoints of its edges and the ("tl) feet of its
bialtitudes there at with centre at its F-point N = Fn_3 (Ths. 41, 49 (ii)).

4.4. 3(w + 1) Point-sphere. From Theorem A follows

THEOREM 52. The n + 1 Orthocentres and n -\- 1 centroids of the prime
faces of an OS in an n-space lie on an hypersphere (O') which cuts its altitudes
again in the points dividing the segments between its Orthocentre and respective
vertices in the ratio 1 : (n — 1).

4.5. Medial simplex. The medial simplex (14) formed of the centroids of
the prime faces of an OS in an n-space is homothetic w.r.t. their common
centroid G, the homothetic ratio being — 1 : n, and is too therefore Orthogo-
nal. If H, H' be the Orthocentres of the OS and its medial simplex, we have

(xxxvii) (n+ 1)G = nH' + H.

From (xii), (xxxiv), (xxxv), (xxxvii) follow the following

(xxxviii) nH' = (n — 2)H = nFx, or H' = F1

(xxxix) 2nO' = nH' + H + (n - \)H, or 20' = H + H'.

That is, H' coincides with the F-point Fx of the OS and is symmetric of H
w.r.t. the circumcentre 0 ' of its medial simplex.

Further extending the idea of a pair of isogonol conjugate points (11; 16) for
a tetrahedron to those for an ^-simplex, we can prove that (1):

"The n + 1 pairs of projections, in the prime faces of a simplex, of a pair
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of its isogonal conjugate points lie on an hypersphere with centre at the midpoint
of their join."

Hence follows from the preceding Theorem the following

THEOREM 53. The medial simplex of an OS is Orthogonal such that its
Orthocentre lies at the isogonal conjugate of that of the OS.

4.6. 2(K+1) point-spheres. The GS-sphere (0") (§ 1.3b) of an OS is
referred to as its GH-sphere. From §§ 3.11, 3.12 now follow the following

THEOREM 54. The C^1) GH-spheres of the (n — p)-faces of an OS in
an n-space lie on its I-sphere (/„) passing through their ("p1) Orthocentres
and ("+1) centroids (Th. 44, I\ = Fp = / B + , ) ; The (£}) 3(n - p + 2)-Spheres
of its (n — p + l)-faces lie on its T-sphere (T^) (Th. 46,T£ = T | = Tp+Q)
coinciding with (Iv) such that (IJ = (To) coincides with its 3(n -\- l)point-
sphere (0') (Th. 52), and (J2) = (7\) with its SECOND n{n + 1) point-
sphere, (N) = (Tn_2) = (/„_!) being the first (Th. 51); in fact, its I-spheres
occur in pairs of homothetic 2("£1) point-spheres (/„), (/n_p+1)(4<2/><w-f- 1)
w.r.t. its centroid, homothetic ratio being —p:(n — p-{- 1).

THEOREM 55. An SoS in an n-space becomes an OS, if and only if the pair
of its L- or k-spheres coincide, i.e., the ("£') l-circles and ("£*) second
12-point spheres of its tetrahedra lie on its L-sphere (L) = (/n_2), and the
("g1) 15-point 3-spheres of its 4-simplexes lie on its k-sphere (k) = (In_3)
(Th. 45).

THEOREM 56 (i). The ("J;1) G-spheres of the (n — p)-faces of an OS
in an n-space lie on its F-sphere {Fv) with centre at its F-point Fv (Th. 49 (ii))
such that the f1^1) first 12-point spheres of its tetrahedra lie on its first
n(n + 1) point-sphere {N) = (Fn_3) (Th. 51).

(ii) An SoS in an n-space becomes an OS, if and only if the pair of its J-
spheres coincide into the F-sphere (Fn_2) of the OS passing through the C31)
g-circles of its triangles (Th. 41).

THEOREM 57. The centre Iv of the I-sphere (/„) of an OS in an n-space
divides the join of its Orthocentre H to its circumcentre 0 in the ratio 1 : (n—p),
and therefore the distances of Iv (p = 1, • • •, n; In_1 = N, In = 0) from H
form an harmonic progression. We may also note here that /„_<, = Fn_2a^1.

For by Theorems 44, 49 (ii) we have
n — p — 1

n-p+1
or

2IP = FP + H = - ^ — - H + H,

(xl) (n - p + 1)1 v = (n - p)H,

0 being the origin.
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4.7. Coaxal families. Every ^-altitude of an OS in an w-space meets its
relative (p — 1)- and (n — p)-spaces in their Orthocentres (Th. 48) as a
pair of inverse points for its polar hypersphere (H) (Th. 50(i)). Thus from
§ 1.3b and Theorem 47 now follow

THEOREM 58(i). All the I-spheres (/„) and the F-spheres (Fv) of an OS in
an n-space belong to the same coaxal family f, determined by its polar hyper-
sphere (H) and its circumhypersphere (0), to which then belong its G-sphere
(G), 3(w + 1) point-sphere (0') and GH-sphere (0"), and therefore (In_a) =
(Fn_2<1-i) (Th. 57); in particular, its N-, J-, L- and k-spheres too belong
to f (cf. 11)

(ii) (H) and (G) form the pair of hyperspheres of antisimilitude for every
pair of the I-spheres (/„) and (In_p+1) of the OS, in particular of (0) and (0')
for p = n (Th. 54), and (0") is therefore their hypersphere of similitude and
radical hypersphere of (G) and (H).

(iii) (G) coincides with (Ij,) for n = 2p — 1.
(iv) The radical prime of f is the polar prime (16) of the Orthocentre H of

the OS w.r.t. it or (G) and therefore coincides with that of its centroid G w.r.t. (H).
It follows by induction in the manner we have done for a 4-simplex (11).

(v) The vectorial equations of the various hyperspheres associated with
the OS can be now put down as follows: (0), (0'), (G), (H) as given by
(ix), (x) (xv), (xxxvi);

(cf. (xvi))(0") =x2- (G + H)-x-G-H = 0

(T^) = (/„) =n(n-p + l)x*- 2n(n - p)H • x + (n - 1) (n - p)H* = p

which reduces to (0) for p = n, to (0') for p = 1 and to (G) for n == 2p — 1

(Fv) = »(n — p + l)z2 — 2n(n — p— l)H • x + (n — l)(n — p — 1)

H2 = n + p + 1
(N) = ( J ^ ) = (Fn_3) = 2nx* -2nH-x+(n-l)H* = n - l

( /) = (Fn_2) = 3MX2 — 2nH • x + (n — 1 )# 2 = 2n — 1

(F«-5) = (L) = ( /_ , ) = 3nx* - 4nH • x + 2(n - 1)H* = n - 2

(Fn_7) = (k) = (7n_3) = 4wa;2 - 6nH • x + 3(n - \)H2 = n - 3

4.8. Orthocentric set. If An+1 = Hbe the Orthocentre of an OS = Ao— An,
the n -+- 2 points 4̂ ,-(*' = 0, • • • , » + 1) are said to form an Orthocentric Set
such that every simplex formed of any n -\- 1 of them is obviously Ortho-
gonal with the (n -f- 2)nd point as its Orthocentre. As an immediate conse-
quence of the definitions now follows the following

THEOREM 59. The n + 2 Euler lines of the simplexes formed of an Ortho-
centric Set of n + 2 points CONCUR at their CENTROID E, referred to
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as their ORTHIC POINT (cf. 1) such that their n -\- 2 centroids or circum-
centres too form an Orthocentric set homothetic to the given one w.r.t. E, the
homothetic ratios being — 1 : (n -+- 1) and — n : 2.

For
(n + 2)E = (n + l)Gt + Ai = nA{ + 2Ot (Th.

Ot, G(, At being the circumcentre, centroid and Orthocentre of the simplex
formed of the n + 1 points of the given Group other than At.

THEOREM 60. If n -f- 2 hyperspheres are mutually orthoi'o tal, their centres
form an Orthocentric set such that each is the polar hyper sp) •:•••<>. of the simplex
formed of the centres of the rest.
For the centres of any two form a pair of conjugate point; for every other.

Thanks are due to Prof. T. G. Room for his kind directions and to M/S
R. P. Goel, R. K. Datta and N. P. Jaggi (Students at the Indian Institute
of Technology, Kharagpur) for tracing the figures.
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