Journal of Glaciology, Vol. 55, No. 190, 2009 229

On fundamental limits to glacier flow models:
computational theory and implications

David BAHR

Department of Physics and Computational Science, Regis University, Denver, Colorado 80221, USA
E-mail: dbahr@regis.edu

ABSTRACT. No single flow model can simulate all possible glaciers and ice sheets without violating
fundamental tenets of computational science. The root cause is not one of numerical sophistication,
precision or accurate initial conditions. Instead, using flow and transport as data transmission, glaciers
inadvertently function as information processors. This computational capability confers a level of
complexity that inherently limits our ability to accurately and efficiently predict glacier flow and
therefore, for example, to forecast those aspects of climate systems that depend on glaciers. In
particular, even with considerable future advancements in glacier physics, computational theory shows
that no dramatic improvements in numerical speed are likely when compared to today’s glacier models.
Therefore, to increase speed and resolution, the next generation of climate and sea-level models must
rely on simulations tailored to specific ice-sheet geometries rather than general-purpose glacier flow
models. However, because glaciers process information, entirely new computation-theoretic advances
in glaciology are possible, and concepts from information entropy may help to define new glacier

scaling relationships and identify which geometries will be most problematic for modeling.

1. INTRODUCTION

Glaciologists already understand that some fundamental
questions are intractable. Consider the well-studied problem
of inversions: we can create a very accurate picture of
velocities on the surface of a glacier, but even with a precise
description of the physics, this surface information cannot be
leveraged into a fine-scale description of velocities at the
base of the glacier. Errors at the surface, no matter how
infinitesimally small, will grow exponentially and swamp
the basal description. This is not a matter of numerical
precision or technique; the limitation is mathematically
provable, and the only way to know fine-scale basal
velocities with certainty is to measure them directly (Balise
and Raymond, 1985; Bahr and others, 1994).

As with other fluidic systems, glaciologists extract mean-
ing from glaciers by defining appropriate physics in the form
of continuum mechanics. For simple systems like Poiseuille
flow, analytical solutions give complete descriptions. For
ever-so-slightly more complicated systems, like a glacier
with two branches that flow together at a confluence,
analytics fail, and numerics are used as approximations. In
the continuum limit, these numerics can accurately repro-
duce the available physics. So the problem of modeling very
complex real systems like the multi-branched Columbia
Glacier, Alaska, USA, (Fig. 1) would appear to boil down to
a process of refining our understanding of the physics (like a
sorely needed improvement to the basal sliding relationship,
and an increasingly accurate ice rheology) and refining the
accuracy and resolution of our numerical techniques.

Unfortunately, as demonstrated below, the question of
intractability goes much deeper. As the glacier system
becomes increasingly complex, even the numerics are
destined to fail. No amount of improvements in the physics
can rescue our modeling, and it is not an ‘analytics-to-
numerics-to-something better’ hierarchy where we need yet
another approach. Instead, like the speed of light, there is a
provable and inviolate wall beyond which the best model of
a glacier is simply the glacier itself.

https://doi.org/10.3189/002214309788608831 Published online by Cambridge University Press

Why glaciers and not other geophysical systems? In fact,
the same arguments may apply to any number of other
branching networks like rivers, but the role of glaciers and
ice sheets in climate change makes a deeper understanding
of glacier flow pressingly relevant. Roughly 10% of the
Earth’s surface is covered in high-albedo glacier ice that
directly affects climate. While all glaciers and ice sheets wax
and wane with changes in regional precipitation and
temperature, recent satellite data indicate that the Green-
land ice sheet’s response to warming may be far more
sensitive than previously believed (Luckman and others,
2006; Howat and others, 2007). In this case, glacier flow
rather than surface balance may play a dominant role in
short-term climate and sea-level changes (Howat and others,
2007). To elucidate and predict this behavior, the next
generation of climate models will need significantly higher-
resolution descriptions of glacier response to atmospheric
forcing (Luckman and others, 2006; Howat and others,
2007). While improved physics will certainly enhance these
models, at some point the inevitable limitations in our
models of glaciers will translate to limitations in climate
models. Because atmospheric and ocean circulation com-
ponents already have their own complexities (that strain the
limits of computational hardware) any limitations in glacier
modeling become very concrete questions of allocating
computing resources between the ocean, atmosphere and
solid-Earth components. Therefore, this analysis investigates
those situations in which glacier models will fail.

The subsequent development differs from standard con-
tinuum mechanical arguments, and in the following sections,
fundamental limits in glacier flow models are derived using
techniques from basic computability theory. In particular,
sections 2 and 3 lay a theoretical foundation by demonstrat-
ing a correspondence between glaciers and computer
algorithms. Glacier confluences behave as logic gates and
can be used as information processors. To relate this other-
wise abstract derivation to real glaciers, section 4 briefly
explores building and using glacier logic gates. However,
for somewhat obvious reasons, these developments are

https://doi.org/10.3189/002214309788608831

230

Bahr: On fundamental limits to glacier flow models

West branch

Main branch

East branch

Medial moraines
(stripes of rockfall/debris)

Fig. 1. Aerial view of Columbia Glacier, 2005. Several branches of the glacier network are visible, flowing from the top right to the bottom
left and terminating in the waters of Prince William Sound. The black stripes are formed from rock, which falls from cliffs and is then
advected along the glacier. (Image courtesy of W.T. Pfeffer, Institute of Arctic and Alpine Research, University of Colorado.)

not intended as a practical prescription for building
functioning processors or ‘computers’ out of glaciers.
Instead, section 5 shows that the real value lies in the
correspondence between glaciers and algorithms, which
allows important inferences from computational theory. In
particular, applying a well-known theorem in computer
science proves that not all glaciers can be modeled with a
single numerical scheme (no matter what scheme is
selected, some glaciers cannot be accurately modeled). In
section 6, several new directions are proposed, and
Shannon’s entropy is hypothesized as a relevant parameter
for identifying those glaciers that are most likely to cause
difficulties for modelers.

2. GLACIERS AS INFORMATION PROCESSING

Consider a relatively simple glacier with no branches that
follows a straight line. A cube of ice at the head of the
glacier is advected downstream to the terminus, but arrives
sheared and deformed. Nevertheless, the original cube of
ice has been transported and in effect has transmitted
information from the top of the glacier to the terminus. If we
are clever, we can measure physical properties (like chem-
ical composition) within the deformed cube to infer
information about the ice at the time it started its journey.
The glacier has acted like a slow wire that takes a signal in
and translates (some distance away) to a signal out. Instead
of electrons, the glacier ‘wire’ transmits packets of ice, rock
and any other debris entrained in the ice.

We can continue the analogy and ask about information
that is transmitted through a glacier with two branches
meeting in a single confluence. In this case, ‘information’
(e.g. a cube of ice, or rocks that fall on the glacier from the
valley walls) is input at the head of each branch and then
combined at the confluence and transmitted to the terminus

https://doi.org/10.3189/002214309788608831 Published online by Cambridge University Press

(Fig. 1). Depending on the values x and y that are passed in,
the combined flow of the glacier determines what value
fix, y) comes out.

Obviously, f will be non-trivial and non-linear. By
restricting x and y to information about geometric position
in space, the following section demonstrates that f processes
the ice, rocks and other information as a Boolean logic gate
(Fig. 2). In fact, by adding delays to the transmission of
information (e.g. by adding a sinuous curve in the glacier’s
path), fbecomes ‘universal’, meaning that multiple copies of
f can be combined to construct all other possible Boolean
functions (analogous to ‘universal’ basis vectors that can be
combined to reach any point in a vector space).

In computability theory, the implication is immediate:
universal logic gates can be combined to solve any algorithm.
Therefore, every glacier is a representation of a particular
algorithm, and for any given algorithm we could map the
topology of a corresponding glacier. A consequence is that
we can now use principles of computer science (which deals
with algorithms) to understand many aspects of glaciology.

One algorithm is particularly important: the universal or
programmable algorithm. This specially constructed algo-
rithm accepts ‘programs’ as inputs, and then outputs the
result of the program (e.g. Hopcroft and others, 2001,
p-377-379). In computability theory, this is the definition
of a ‘computer’. In other words, a program could be written in
Basic, Java or any other language, and then compiled into a
series of 1’s and 0’s. Then rocks could be positioned as
information (1’s and 0’s) at the head of a universal glacier that
represents the universal algorithm. This hypothetical uni-
versal glacier would process the information and effectively
‘run’ the program. Mapping the geometry of such a universal
glacier would be interesting, but difficult, impractical, and
unnecessary. In the subsequent analyses it is enough to know
that such a mapping is theoretically possible.

https://doi.org/10.3189/002214309788608831

Bahr: On fundamental limits to glacier flow models

While unusual, the notion that a glacier can behave as a
universal or ‘all-purpose’ computer is not entirely unex-
pected. Computers come in two flavors: specialized and
limited, like a digital wristwatch, or universal and general-
purpose like a desktop PC. Virtually every physical process
in nature manipulates some form of information and thus
performs specialized computations (Wolfram, 1985; Land-
auer, 1991; Adamatzky, 2002, in preface; Lloyd, 2002).
However, examples of universal computers have been far
less common, though diverse, based for example on silicon
chips, DNA, neural nets, collective behavior, molecular
arrays, quantum mechanics, collision systems and special-
ized fluid-flow geometries (e.g. Siegelmann and Sontag,
1995; Solé and Delgado, 1996; Nielsen and Chuang, 1997;
Adamatzky, 2002; Benenson and others, 2004; De Silva and
others, 2006; Prakash and Gershenfeld, 2007). Because of
the search for practical devices, most known universal
systems are microscopic, and in most cases the construction
of general-purpose computation is by design and is rarely an
accidental by-product. Nevertheless, the complex inter-
actions of many natural systems suggest that the universe
must be replete with macroscopic examples of universal
computers formed as fortuitous side effects of their under-
lying physics (Zuse, 1969; Wolfram, 1985; Forrest, 1990;
Fredkin, 1990; Langton, 1990; Crutchfield and Mitchell,
1995; Lloyd, 2000). Branching glaciers are an example of
such fortuitous physics, and they are as algorithmically
capable as any desktop computer, albeit ironically slow and
outrageously impractical in comparison.

3. GLACIERS AS COMPUTERS

Using a glacier confluence as a logic gate necessitates a
shift in philosophy. In particular, experience tells us that
logic gates and computers require electricity. The differ-
ences in electric potential along a wire generate high and
low voltages that are interpreted as 1’s and 0’s, the
traditional building blocks of information. While this
has been historically and physically convenient, there is
no fundamental requirement that computers use electricity
or even wires (e.g. Lloyd, 2000; Adamatzky, 2002).
Instead we can build computers from arbitrary particles
(rather than electrons) that travel along arbitrary
networks (rather than wires) under arbitrary forces (rather
than electrical fields).

In the context derived here, three conditions specify a
subset of naturally occurring networks that can compute.
The networks must have: (a) a sense of direction, as in a
directed graph; (b) a metric for distance along the graph; and
(c) mobile particles, solitons, or other non-diffusive entities
that flow along the graph. Each of these particles must move
at identical speeds under identical physical conditions, and
intersecting and adjacent particles must maintain their
unique identity (Fig. 3). Examples include rock falling from
nearby cliffs and being advected down the many branches of
a large glacier such as Columbia Glacier (Fig. 1) or flotsam
transported down the many branches of a large river system
such as the Mississippi. The rockfall and flotsam ‘particles’
need not be uniform in size or other properties as long as
these differences do not affect their movement. Other
examples include blood cells in circulatory systems, cars
in traffic, sewage systems, and even ski moguls which
migrate counter-intuitively uphill along branching ski trails
(http://academic.regis.edu/dbahr/moguls.htm).

https://doi.org/10.3189/002214309788608831 Published online by Cambridge University Press

231
input 1 input2 | AND gate output
(branch 1)|(branch 2)|(below confluence)
0 0 0
0 1 0
1 0 0
1 1 1
input 1 input 2 OR gate output
(branch 1)|(branch 2)|(below confluence)
0 0 0
0 1 1
1 0 1
1 1 1
single input (above | NOT gate output
glacier’s curve) (below curve)
0 1
1 0
input 1 input 2 |NAND gate output
0 0 1
0 1 1
1 0 1
1 1 0

Fig. 2. Truth tables for logic gates. Each gate has one or two inputs
whose values can be 0 or 1 as shown on the left (sometimes referred
to as false = 0 and true = 1). The output of each gate is shown on the
right. The output of a NAND gate is the same as an AND gate
whose output is fed to a NOT gate. A variety of other gates can be
specified by switching values at the outputs. However, all possible
gates can be constructed by stringing together sequences of NAND
gates (Mano and Ciletti, 2007). The text shows how to build AND
gates from glacier confluences (with incoming branches 1 and 2)
and NOT gates from sinuous curves in a glacier path. Together a
glacier confluence and curve form a universal NAND gate.

To perform Boolean logic, all rockfall or other particles
are compared with the movement of a reference particle,
either real or hypothetical. Given a unit length scale L, each
particle will fall either an even or odd number of units from
the reference at a given time t. Over a time interval 7, some
number of even and odd particles will pass through any
particular cross-section of a branch on the glacier network. If
the majority of particles are even (or odd) then the Boolean
value at that cross-section is O (or 1). If the distributions are
equal, then the Boolean value is arbitrarily assigned to
match the leading particle(s).

More explicitly, let the reference particle move a distance
d(t) along a hypothetical straight line deemed the x axis. If
px() is the x position of another particle on the glacier, then
ceiling(|[dx(t) — px(t)]/L]) mod 2 gives its value as even (0)
or odd (1) where the ceiling function rounds up all fractional
values. Although particles can move laterally and vertically
through (and on) the ice, only the difference along the
specified x axis is measured.

Note that for a total of N particles at some position on a
glacier, there are N/2 possible ways to have a majority of
even (or odd) particles and therefore N/2 possible ways to
represent a O (or 1). Except near N/2, the Boolean is
relatively insensitive to noise (variations in the number of
particles), but to prevent unexpected changes in value, the
particles should not diffuse significantly. In other words, over

https://doi.org/10.3189/002214309788608831

232

Bahr: On fundamental limits to glacier flow models

Particle on main
branch at time t

Same particle at
time t+At

Particle on
east branch
attime t

Same particle at time t+At

Fig. 3. Logic gates are formed by particles moving along branches of a glacier and merging at a confluence (shown as the dashed line).
Analogous to electrons moving along two wires that join into a single wire, the merging particles do not occupy the same physical space at
the confluence. The particles may move laterally and even vertically by following plunging and emerging flow vectors, but the Boolean
value assigned to each particle is given only by its x position relative to a hypothetical particle traveling at a uniform speed along an x axis
(see text and Fig. 4). All particles that reach the confluence (dashed line) within a specified time interval are assigned Boolean values; if the
majority of particles over that time interval are 0’s (or 1’s) then the logic gate’s output value is a O (or 1).

the timescale of the computation 7, the length scale of
diffusion must be small relative to L, a reasonable restriction
for many advective systems like rocks transported by glaciers
where the rock’s flow velocities are large compared to
diffusion.

Universal computation requires a logically complete gate
such as NAND or NOR from which all other circuits can be
assembled (Fig. 2) (cf. Mano and Ciletti, 2007). A NAND
gate is an AND gate followed by a NOT gate, and a NOR
gate is an OR followed by a NOT. Towards this end, a NOT
gate (which inverts its single input by switching a 0 to a 1
and a 1 to a 0) can be constructed by lengthening a path of
the glacier by ix L for any odd integer i (equivalently, the
velocity of the particle may be slowed so that the particle
appears to have taken a longer path). The arrival of each
particle is delayed by i units (Fig. 4), thereby swapping even
and odd particles and flipping the Boolean value.

AND and OR gates are any confluence on the glacier. An
AND gate outputs a 1 if both inputs are 1, and outputs O
otherwise (Fig. 2). OR gates output a 1 if either or both
inputs are a 1 (Fig. 2). So if the total number of incoming
particles is N and M (over the time interval 7) and n and m of
these are odd particles (1’s), then the intersection behaves as
an AND gate when either (@) n+m<(N+M)/2 or (b) both
n> N/2 and m> M/2 (see shaded regions and explanation in
Fig. 5). Otherwise the intersection behaves as an OR gate.
Combined with a NOT gate, each confluence behaves as a
NAND or NOR.

To build arbitrary functions with multiple gates, we can
assume combinatorial logic (Mano and Ciletti, 2007) with
fan-out and crossover achieved by repeating the inputs and
circuit logic as necessary. For the moment, assume that each
glacier confluence will always function as a NAND. For all

https://doi.org/10.3189/002214309788608831 Published online by Cambridge University Press

possible particle arrangements, each NAND gate will give
the correct answer only three-quarters of the time. The
occasional wrong answer comes from the incorrect assump-
tion that the gate will always behave as a NAND. When the
inputs are 00 and 11, the NAND and NOR gates behave
identically, but when the inputs are 01 and 10, the gate fails
half the time and behaves as a NOR gate (marked as the
white shaded regions in Fig. 5). Therefore, with a total of G
gates, the correct output of the multiple gate circuit
decreases exponentially as (3/4)°. However, there always
exists an arrangement of input particles that will correctly
pass through the gates satisfying conditions (a) and (b) in the
previous paragraph (see Appendix). This is analogous to the
behavior of universal programmable quantum circuits
(Nielsen and Chuang, 1997; Buzek and others, 2004),
which require non-deterministic gates that succeed only
with probability 1/4.

Although we are unlikely to try an actual computation
with a glacier (see next section), using a confluence as a
NAND gate requires a mechanism for identifying failed
calculations and separating them from successful calcula-
tions. Practically, we would set rocks (or other particles) at
appropriate positions to represent 0’s and 1's on each branch
of the glacier above the confluence. At some later time, we
would read the output value below the confluence by
interpreting the new position of the rocks as 0’s and 1’s. At
that later time, we would know if the gate has failed by
reading the original inputs (/; and) and the output (Oy). If
any triplet (1, l,, On) for a single gate is 010 or 100, then the
gate did not behave as a NAND. Note that although
erroneous, 000 and 111 are not possible because gate
inputs of 00 and 11 always give the correct answer (triplets
001 and 110) (Fig. 5).

https://doi.org/10.3189/002214309788608831

Bahr: On fundamental limits to glacier flow models 233

Time 8

Q1 1l Q1] 1.0
) A% =1
o1 (10
L g L L L

<4 OF=f+-Fd=-i-Fd-

¥ s Nt #-
B 7 ¢ A\B C

Unit length L Reference particle

-~ [Ay N R Ay S P Ay

Fig. 4. Assigning Boolean values to particles on a glacier network. The two grids represent different times separated by an interval 7=7. On
each grid, part A shows a hypothetical reference particle moving along the x axis. Part B shows a stylized version of a confluence like that on
Columbia Glacier in Figure 3. Part C shows a stylized section of a glacier that has a sinuous curve but no confluence. For convenience,
assume each particle moves one unit L per time-step in the directions indicated by the network (in general, the velocities may vary). Each
particle falls an even or an odd distance from the reference A (as measured along the x axis only) and represents a 0 or 1 respectively. In
total, the left input of B is assigned value 1 because the majority of particles are 1’s. The right input of B has an equal distribution and is
assigned a 1 because the leading particle is a 1 (see text). Over the time interval 7 = 7, the particles in B have merged onto a single path, but
each particle retains its unique identity (see Fig. 3). After merging, the majority of particles are odd and the output of the gate is a 1
(consistent with an AND gate). In C, the particle starts as a 1 but ends as a 0 due to the delay of one unit L caused by the sinuous curve.
Therefore C represents a NOT gate.

Therefore, to check an entire glacier circuit, take each of
the circuit’s original outputs and add 3G additional outputs,
one triplet for each of the circuit’s G gates. Each new triplet
gives the input and output values for one of the gates (Fig. 6)
and acts as error checking. Read all of these new values to
see if the original output is acceptable or uncertain.
Conveniently, many glaciers have fractal or self-similar
topologies (Bahr and Peckham, 1996), which roughly means

that any selected subsection of a glacier will be topologi-
cally identical to another subsection. In other words, any
subset or sequence of confluences (gates) is repeated
elsewhere, so copies of the gates are readily available for
error checking. Even if copies of the gates are not available,
we can set up the simulation and return to the glacier each
year to relocate every particle and check each individual
gate for errors.

M |
g I
8 AND ' AND and OR
Fo 0 | 1
B é My2 SRR ST
3 | ANDand OR OR
5 0 1
= 2
0 >
0 N/2 N

Number of odd particles n
for input 1

Fig. 5. Regions of AND versus OR behavior. Consider a glacier confluence (as in Fig. 3 and Fig. 4 part B) where each input has n and m odd
particles out of a total of N and M patrticles. The inputs represent O or 1 depending on whether or not the odd particles are in the minority or
the majority. For the given inputs, the output of the intersection will behave as either an AND or an OR gate (or both). In particular, for any
point in the parameter space, the output is 0 or 1 as indicated. In general, if an AND gate is desired (gray regions) then one-quarter of the
parameter space inappropriately behaves as an OR gate (white regions). The line separating 0’s from 1’s is derived from n+m=(N +M)/2, the
condition that separates a minority from a majority of odd particles at the output (an output of O versus 1). The Appendix proves that if we
desire only AND gates, then some input arrangement of particles (n, m, N and M) exists so that only the gray shaded region of the parameter
space is reached at every glacier confluence.

https://doi.org/10.3189/002214309788608831 Published online by Cambridge University Press

https://doi.org/10.3189/002214309788608831

234

Bahr: On fundamental limits to glacier flow models

i I 1, g \(bk I \(L LEE kK)
AND{

NOT {

anp{

NOT{

- O J\ ik b\ Lk o)

Original NAND First gate’s Second gate’s
gates triplet triplet

Fig. 6. Example of error-checking triplets. The original circuit in the first box contains two stylized NAND gates constructed from ANDs and
NOTs. For all possible inputs Iy, L, I (i.e. particle arrangements), this circuit will give the correct answer only (3/4)?, or 9/16, of the time and
must be error-checked. As shown, six additional outputs are required to check the original output O;. The second box shows the circuits
used to error-check the upper NAND gate. If the triplet (I, I, 14) is (0, 1, 0) or (1, O, 0), then the gate has failed. The third box shows the
circuits and triplet (14, I3, O4) used to error-check the lower NAND gate.

While successful computations decrease exponentially
with the number of gates, an exponential number of
simulations can be run in parallel by differentiating gla-
cier-rockfall particles based on ‘color’, size, weight, chem-
ical tag or other attribute. Different-colored particles can be
placed simultaneously at each input (upstream locations)
and evaluated separately at the output (downstream lo-
cations). Similar to other parallel systems (e.g. Forrest, 1990;
Nielsen and Chuang, 1997), with I inputs we can run 2
simultaneous calculations, one for each possible set of input
values. Also, for each input 0 or 1, we can run all possible
N/2 arrangements of particles that give that input, thereby
guaranteeing a successful computation.

4. USING A GLACIER COMPUTER

Is a glacier computer useful? A reasonable reaction is that
such a computer must be absurdly slow and therefore of
little interest either practical or theoretical. However,
surprisingly, if speed is considered the only issue, then there
are many scenarios where glaciers can outperform trad-
itional desktop computers.

Suppose we wish to factor a number or to find the shortest
path between five points. First we need to find a glacier that
can solve this problem. Using the scheme outlined above,
each glacier solves a particular algorithm that corresponds to
that glacier’s particular branching topology. By considering
only some of its branches and ignoring others, every subset of
a glacier also solves some (probably different) algorithm. If
we specify a particular problem, then larger multi-branched
glaciers are most likely to have an appropriate subset.

Certainly, a practical consideration is that if a glacier or
glacier subset cannot be found, then building a glacier from
scratch is hardly a viable option. Furthermore big algorithms
(like a spreadsheet or a numerical glacier flow model) would
require tremendously large glaciers with hundreds of
thousands of branches that exceed the size of anything found
in nature. However, if the reasons were compelling, scaled
glaciers could be constructed in a laboratory with a centri-
fuge. While seemingly far-fetched, similar fluid-based logic
gates have been miniaturized for microscale chemical detec-
tors and for use in nuclear environments that are unfriendly to
traditional electronics (Prakash and Gershenfeld, 2007).

https://doi.org/10.3189/002214309788608831 Published online by Cambridge University Press

These fluidic gates are constructed on a different principle
that takes advantage of turbulence rather than advection of
particles, but the motivation for miniaturization is similar.

Assuming an appropriate glacier can be found, running
the algorithm requires input and output. First we create a
reference particle. (It does not need to be real. Just assume
that a particle moves at a fixed speed along an x axis of our
choice.) Then we assemble a pile of colored rocks,
chemically treated rocks, radioactive rocks, or other
particles that can in some way be traced and identified
over long periods of time. To specify an input, we place
these rocks at the head of each branch of a glacier (or glacier
subset) so that the majority of the rocks represent 1’s or 0’s as
desired. A rock is a 1 if it is an odd distance from the
reference particle, and it is a O if it is an even distance from
the reference particle (as measured along the x axis). We
then read the results by counting the number and position of
the rocks at a later time. While unintuitive, this unconven-
tional interface might not seem foreign to someone who is,
for example, blind and unable to use standard keyboards
and monitors. The rocks are functioning like a version of
Braille: run your hand over the terminus and ‘feel’ the
location of the rocks to interpret the result. Veterans of
1970s-era punch-card computers would also feel more at
home with the unusual interface.

Ignoring other practical considerations, time would seem
to be the biggest constraint. Who will wait hundreds of years
for the results of a simple calculation? Oddly enough,
because glaciers can simultaneously solve all possible inputs
(using ‘color’-differentiated rocks), they have more in
common with the fast parallel processing than with regular
desktop sequential computing. Ironically, this means that
glacier computers can solve certain tasks (like factorizations)
much faster than desktop computers or even (sequential)
supercomputers. Suppose a glacier takes on the order of
100vyears to solve a single problem, but with all possible
input values simultaneously. The desktop computer might
solve the same problem in 100 seconds but only for a single
set of input values. If we wish to see the result for every
possible set of input values, then for any problem with
greater than 31536 000 possible arrangements of the inputs
(the number of seconds per year), the desktop computer will
take more than 100 years to complete its task and the glacier

https://doi.org/10.3189/002214309788608831

Bahr: On fundamental limits to glacier flow models

will finish more quickly. Such problems are very common:
this example corresponds to a binary input with only 24 bits.

However, practically speaking, problems with 24 inputs
will require the placement of a minimum of 31536000
rocks or other particles on the glacier. Parallel simulations
with bigger algorithms (like spreadsheets and flow models)
will require many more inputs and, consequently, an
exponentially increasing number of rocks. With only 263
inputs, the number of rocks will exceed the number of atoms
in the known universe (~22°?) and there is no practical way
to fit even a fraction of this many particles on a finite-sized
glacier. Therefore, we have effectively traded a problem in
time for a problem in space. To nobody’s surprise, glaciers
are ineffective as parallel computers, but not because they
are slow. Glaciers are too small.

5. IMPLICATIONS FOR MODELERS

While nobody is likely to use a glacier as a computer, the
richly developed theory of computation does provide a
valuable new leverage arm for understanding glacier
behavior. While practically useless, glaciers as algorithms
are theoretically invaluable. Because they can compute, we
know that any theories about algorithms are also theories
that apply to glaciers, and decades of theoretical develop-
ments in computer science can apply to glaciology. In
essence, take any theorem that says ‘algorithm’ or ‘com-
puter’, and substitute the word ‘glacier’.

For example, computability theory tells us that our ability
to simulate glaciers must be limited and approximate. Why?
A well-known theorem in computer science says that we
cannot write a single all-purpose computer program that
determines whether or not any other arbitrary program will
have some particular outcome (e.g. Hopcroft and others,
2001, p.403-404). Simply reworded, we cannot write a
single all-purpose numerical model that determines whether
or not any arbitrary glacier will have some particular
algorithmic outcome (i.e. move ice to the terminus in a
particular manner).

The basis for this claim comes from computability theory
which has firmly established that some problems cannot be
solved by any computer or algorithm. A corollary of Rice’s
theorem (Rice, 1953) says that predicting any non-trivial
outcome of a computer program is one of these unsolvable
or ‘undecidable’ problems (e.g. Hopcroft and others, 2001,
p.403-404). In particular, every glacier is a computer
program (implemented as a network of confluences) with
inputs given by rockfall and other debris. Therefore, without
violating Rice’s theorem, we cannot write code in C,
Java or any other language that will model all of our
‘glacier computers’ and always accurately predict their
‘outcomes’. In other words, we cannot construct a reliable
model of glacier flow that will work equally well for all
arbitrary glaciers. At best, we can perform accurate
simulations for a single glacier with a particular geometry;
or because it is not excluded by Rice’s theorem, we can
make reasonable but less accurate approximations that will
apply to many glaciers.

It is worth noting that if glaciologists could program
numerical models that worked for all glaciers, then we could
disprove Rice’s theorem and ultimately solve undecidable
propositions such as Turing’s halting problem which is
famously and provably intractable (Turing, 1936, Hopcroft
and others, 2001, p.380). In other words, if there are no

https://doi.org/10.3189/002214309788608831 Published online by Cambridge University Press

235

limits to glacier modeling then we can upend decades of
computer science.

None of this is meant to suggest that we cannot vastly
improve our understanding of glacier physics and, con-
comitantly, glacier flow models. In practice, to increase
numerical speed, most glacier simulations have used highly
idealized geometries or simplifications of the continuum
equations and physics. The good news is that this has been
sufficient for most applications, including current global
climate models. The bad news is that future climate models
need higher-resolution flow models, and with or without
advances in the physics, predicting glacier behavior is as
hard as predicting an arbitrary circuit (the circuit specified
by the glacier’s geometry). No known algorithms can speed
up circuit predictions, nor do computer scientists believe
that one is likely to be found (e.g. Wolfram, 1985; Moore
and Nilsson, 1999; Hopcroft and others, 2001, p. 413-434),
so general-purpose closed-form solutions and fundamentally
faster numerical models are exceedingly unlikely for
complex glacier geometries.

In particular, parallelizing circuit-prediction algorithms is
not thought possible, so parallelizing glacier circuits is also
unlikely. Such inherently sequential problems are labeled
‘P-complete’ (e.g. Moore and Nilsson, 1999) and are among
the slowest algorithms that are still considered tractable.
Note that incremental speed improvements are possible and
even assured with advances in hardware, but exponential
improvements in speed are not possible.

Modelers, therefore, can and should continue as before,
but they should be aware of the inherent limitations. General-
purpose flow models can simulate and predict circuit
behavior, so glacier modelers will never be able to take
advantage of the gains anticipated with massively parallel-
processing machines or quantum computing. Instead, to
improve resolution and speed, flow models should take
advantage of an ice sheet’s (and/or glacier’s) particular
geometry rather than using generic boundary conditions
applicable to all glaciers. This is theoretically equivalent to
building a look-up table for the particular logic function that
corresponds to the glacier, and such tables can provide a
dramatic improvement in speed. However, if the ice-sheet/
glacier geometry will change with time (to the extent that the
corresponding glacier ‘circuit’ is altered in unknown ways),
then for all but the simplest glaciers the look-up table
becomes arbitrarily large and unknown. In this case,
simulations will be forced to choose between accuracy and
speed, and the loss in accuracy would have to be sufficient to
negate any ability to predict the glacier’s circuit output.

6. NEW DIRECTIONS

By treating glaciers as information processors, a vast array of
developments are possible, all borrowing from advances in
theoretical computer science. As an example of one possible
direction, this section hypothesizes and explores the role of
Shannon’s information entropy. Rather than a complete
development with supporting data, this section suggests
some of the many possibilities for future study.

The algorithmic content or information content of a
glacier is an excellent proxy for its geometric structure and
dynamic behavior. Small valley glaciers, for example, are
simple in shape, have few branches, and can only represent
a few simple algorithms: one algorithm for each possible
subset of the branching topology. However, a large glacier

https://doi.org/10.3189/002214309788608831

236

like Columbia Glacier (Fig. 1) has thousands of branches
(Bahr and Peckham, 1996) and can process many algo-
rithms, both simple and complex. The number of algorithms
grows exponentially with the number of branches.

Consider a small glacier with a positive mass balance that
slowly accumulates ice and grows in size. The algorithmic
content starts small but increases as the glacier acquires
more branches. At some point the number of branches will
reach a maximum, and beyond this size further increases in
the glacier’s area will start to inundate the topography. Once
separate branches of the glacier will now breach passes,
cover ridge lines and blend together. As the size continues to
grow, the number of branches drops, and the algorithmic
content once again decreases. At some point, most terrain
features are buried and the glacier has grown into an ice
field or ice cap with comparatively few branches. Once
again, the algorithmic content is minimal.

This increase and then decrease in glacier algorithms is a
characteristic feature of entropy, or, in this case, Shannon
entropy which is a computer scientist’s traditional measure of
information content. An analogy is a parking lot. An empty
lot, like a small glacier, is very ordered (low entropy) and can
be described with very little information. As cars randomly
fill the lot, the disorder increases and becomes increasingly
difficult to describe without using lots of information about
the specific location of the cars. When half full, the parking
lot (like a large many-branched glacier) is maximally
disordered (high entropy) and requires huge amounts of
information to describe the location of each car. As the lot
continues to fill, the once scattered cars start to blend
together and there are fewer and fewer empty spaces. At this
point the system has once again become highly ordered (low
entropy), and relatively little information is necessary to
describe the location of the remaining empty parking spaces.
Eventually, like an ice field that has inundated all the terrain
features, the parking lot is full, completely ordered, and is
described with minimal information.

In physical systems, the change in entropy with a
parameter like temperature will lead to a phase change
and fundamental transformations in structure and behavior.
So-called second-order or continuous phase transitions (like
the superfluid and ferromagnetic transitions) reach a critical
value where entropy diverges. Behaviors change above and
below the critical value (e.g. paramagnetic versus ferromag-
netic), and right at the critical value the system fluctuates
between both. In computer science, second-order phase
transitions are associated with the divergence of Shannon
entropy or information content at a critical value. Simple
binary models of computation called cellular automata, for
example, will change from predictable to random behaviors
at the critical value and are capable of universal computa-
tion only when near the critical value (Langton, 1990).

In the case of a glacier, we can hypothesize that the
controlling parameter is size (or equivalently volume,
length, etc.). As size changes, we should expect the
entropy or algorithmic content to diverge at a critical
value. The phase below the critical value should be
characterized by valley glaciers, and the phase above the
critical value should be characterized by ice fields and ice
caps. Directly at the critical value should be maximally
complex dendritic glaciers capable of universal computa-
tion. Confirming this hypothesis would involve a straight-
forward though time-consuming measure of glacier sizes
and branching (algorithmic content).

https://doi.org/10.3189/002214309788608831 Published online by Cambridge University Press

Bahr: On fundamental limits to glacier flow models

Like other computational and physical systems (Ma,
1976; Stauffer and Arahony, 1992, p.57-69), the geo-
metrical and topological properties of glaciers near a critical
point can be expected to grow as power laws and show
associated fractal distributions. Large and presumably
maximally complex glaciers like Columbia, Matanuska
and Tazlina glaciers, Alaska, are known to have fractal
topologies (Bahr and Peckham, 1996). While the critical
point is only hypothesized in this analysis, the observed
fractal topology of large glaciers supports the existence of
such a phase transition.

Also, near the phase transition, physical and compu-
tational systems exhibit a variety of complex critical
phenomena. In particular, most physical quantities will
grow as power laws with the controlling parameter (Ma,
1976). In the case of glaciers, we should expect dynamic
quantities like flux, velocity and response time to grow as a
power law with size. In what manner this might be related to
volume-area, response time and other widely observed
glacier scaling relationships is an intriguing question. These
previously observed scaling relationships (e.g. J6hannesson
and others, 1989; Bahr and others, 1997) apply to glaciers of
all sizes, so these new critical-phenomena power laws might
predict entirely different and as yet unobserved relationships
that apply strictly to large dendritic glaciers. Alternatively,
any connection between volume-area scaling and critical-
phenomena scaling would provide a direct link between
continuum mechanics (from which volume-area scaling can
be derived) and the computation-theoretic approach devel-
oped here.

From a modeling perspective, the glaciers most likely to
resist simulation are those which are capable of universal
computation and can represent any algorithm, including any
problematic algorithms. In other words, troublesome gla-
ciers will have the most dendritic geometries nearest the
phase transition where quantities are diverging. With size as
a controlling parameter, a critical-sized glacier (at the phase
transition) might be identified that cannot be modeled with
sufficient speed or accuracy. While most glaciers might be
simulated efficiently with a single numerical model, glaciers
near the critical size could be dealt with separately using
different models or with approximations. Presumably the
critical size is on the order of 1000km?, like large multi-
branched Alaskan glaciers (e.g. Columbia, Tazlina, Mata-
nuska and Barnard glaciers); but if possible, identifying this
size with data could be invaluable to modeling efforts.

7. DISCUSSION AND CONCLUSIONS

Continuum mechanics rather than computability theory is
the traditional language of glaciology. The differences are
notable, so the basic arguments can be summarized as
follows:

1. Glaciers process information by moving rocks and other
particles along their branches (Fig. 1). Confluences
function as logic gates (Figs 2—4).

2. All computational algorithms can be constructed from a
network of logic gates, or in this case, a network of
glacier confluences. Therefore, every glacier represents
an algorithm, and every algorithm has a corresponding
glacier topology. Due to this equivalence, the richly
developed theory of computation applies to glaciology.

https://doi.org/10.3189/002214309788608831

Bahr: On fundamental limits to glacier flow models

3. In particular, computational theory tells us that there
must be limits to numerical glacier models, just as there
are well-known limits in computer science. If there were
no model limitations, then a fundamental theorem of
computer science would be wrong.

4. Shannon’s entropy is hypothesized as a relevant measure
of glacier complexity. Maximally complex, very large
multi-branched glaciers (e.g. Columbia Glacier) have the
greatest entropy and are most likely to cause difficulties
for modelers. However, these maximally complex gla-
ciers may also harbor new scaling relationships that
could advance our understanding of glaciers.

5. Other theorems and insights from the theory of
computation can be applied to glaciology, and some
may yield novel results.

Although they are not designed as computers, glaciers
advect particles along directed graphs, resulting in compu-
tation as an emergent property. As a result, flow models fall
into a class of problems known as ‘P-complete’, the slowest
and most complex set of algorithms that are still considered
tractable by computer scientists. The complexity of the
glacier simulations has nothing to do with particular finite-
difference, finite-element or other numerical schemes. The
complexity is inherent in the flow of the glacier itself. In
order to correctly model the flow of ice from the headwall to
the terminus of an arbitrary multi-branched glacier, we have
to be able to predict the outcome of arbitrary Boolean logic
circuits formed by the glacier's topology. Such circuit
predictions can only be done with non-parallelizable and
inherently slow serial techniques.

In a limited sense, we can speed the simulation of glacier
flow by simplifying the model. If glaciers represent circuits,
then we can create a list of all possible Boolean circuits for a
given glacier geometry and pre-tabulate the outcomes.
Glacier modeling becomes an exercise in formulating
appropriate look-up tables: ‘given x amount of ice accumu-
lating at the head of this branch, and y amount of ice on this
other branch, then the look-up table says we will get f(x,y)
ice at time t at the terminus’. However, a particular look-up
table will work for some glaciers but cannot work for all
glaciers. In fact, a fundamental limit of glacier simulations is
that no single flow model can work for all possible glaciers.
All models must fail for some glacier.

The glaciers most likely to cause difficulties for flow
models are the large multi-branched glaciers capable of
universal computation. The preceding analysis does not
identify particular geometries, but strongly suggests that
there is a critical size. Glaciers at the critical size would
resist attempts to model, while smaller and larger glaciers
should be more amenable to analysis. The critical size could
be identified from data as the point where the Shannon or
information entropy of a glacier diverges in a phase
transition. A host of new glacier scaling relationships might
also be identified near the phase transition.

Based on these results, modelers should not discard their
numerics but should understand that the current approaches
to flow modeling are simply the best that we can do. When
climate models call for faster and more accurate glacier
flow simulations, modelers should continue to refine their
understanding of the physics and its incorporation into any
particular numerical scheme. Model funding should also
continue to be allocated for faster processors and memory

https://doi.org/10.3189/002214309788608831 Published online by Cambridge University Press

237

which can always provide incremental improvements in
speed. However, glaciologists should not wait for advances
in parallel computing or any other technology to funda-
mentally improve the speed and accuracy of glacier
simulations. Instead, for those situations where continuum
models have limitations, these results suggest using a
computational-theoretic approach to a deeper understand-
ing of glacier behavior.

REFERENCES

Adamatzky, A., ed. 2002. Collision-based computing. London,
Springer-Verlag.

Bahr, D.B. and S.D. Peckham. 1996. Observations and analysis of
self-similar branching topology in glacier networks. J. Geophys.
Res., 101(B11), 22,511-22,521.

Bahr, D.B., W.T. Pfeffer and M.F. Meier. 1994. Theoretical
limitations to englacial velocity calculations. J. Glaciol.,
40(136), 509-518.

Bahr, D.B., M.F. Meier and S.D. Peckham. 1997. The physical basis
of glacier volume-area scaling. J. Geophys. Res., 102(B9),
20,355-20,362.

Balise, M.J. and C.F. Raymond. 1985. Transfer of basal sliding
variations to the surface of a linearly viscous glacier. J. Glaciol.,
31(109), 308-318.

Benenson, Y., B. Gil, U. Ben-Dor, R. Adar and E. Shapiro. 2004. An
autonomous molecular computer for logical control of gene
expression. Nature, 429(6990), 423-429.

Buzek, V., M. Ziman and M. Hillery. 2004. Probabilistic pro-
grammable quantum processors. Fortschr. Phys., 51(11-12),
1056-1063.

Crutchfield, J.P. and M. Mitchell. 1995. The evolution of emergent
computation. Proc. Natl. Acad. Sci. USA (PNAS), 92(23),
10,742-10,746.

DeSSilva, P, M.R. James, B.O.F. McKinney, D.A. Pears and S.M. Weir.
2006. Molecular computational elements encode large popula-
tions of small objects. Nature Mater., 5(10), 787-789.

Forrest, S. 1990. Emergent computation: self-organizing, collective,
and cooperative phenomena in natural and artificial computing
networks: introduction to the proceedings of the ninth annual
CNLS Conference. Physica D, 42(1-3), 1-11.

Fredkin, E. 1990. An informational process based on reversible
universal cellular automata. Physica D, 45(1-3), 254-270.

Hopcroft, J.E., R. Motwani and J.D. Ullman 2001. Introduction to
automata theory, languages and computation. Second edition.
Boston, MA, Addison Wesley.

Howat, I.M., I.R. Joughin and T.A. Scambos. 2007. Rapid changes
in ice discharge from Greenland outlet glaciers. Science,
315(5818), 1559-1561.

Johannesson, T., C. Raymond and E. Waddington. 1989. Time-scale
for adjustment of glaciers to changes in mass balance.
J. Glaciol., 35(121), 355-369.

Landauer, R. 1991. Information is physical. Phys. Today, 44(5),
23-29.

Langton, C.G. 1990. Computation at the edge of chaos: phase tran-
sitions and emergent computation. Physica D, 42(1-3), 12-37.
Lloyd, S. 2000. Ultimate physical limits to computation. Nature,

406(6799), 1047-1054.

Lloyd, S. 2002. Computational capacity of the Universe. Phys. Rev.
Lett, 88(23), 237,901-237,904.

Luckman, A., T. Murray, R. de Lange and E. Hanna. 2006. Rapid
and synchronous ice-dynamic changes in East Greenland.
Geophys. Res. Lett., 33(3), L03503. (10.1029/2005GL025428.)

Ma, S. 1976. Modern theory of critical phenomena. Redwood City,
CA, Addison Wesley.

Mano, M.M. and M.D. Ciletti 2007. Digital design. Fourth edition.
Upper Saddle River, NJ, Pearson International.

Moore, C. and M. Nilsson. 1999. The computational complexity of
sandpiles. J. Stat. Phys., 96(1-2), 205-224.

https://doi.org/10.3189/002214309788608831

238

Nielsen, M.A. and I.L. Chuang. 1997. Programmable quantum gate
arrays. Phys. Rev. Lett., 79(2), 321-324.

Prakash, M. and N. Gershenfeld. 2007. Microfluidic bubble logic.
Science, 315(5813), 832-835.

Rice, H. 1953. Classes of recursively enumerable sets and their
decision problems. Trans. Am. Math. Soc., 74(2), 358-366.
Siegelmann, H.T. and E.G. Sontag. 1995. On the computational
power of neural nets. J. Comput. Sys. Sci., 50(1), 132-150.
Solé, R.V. and J. Delgado. 1996. Universal computation in fluid

neural networks. Complexity, 2(2), 49-56.

Stauffer, D. and A. Aharony 1992. Introduction to percolation
theory. Second edition. London, Taylor and Francis Ltd.

Turing, A.M. 1936. On computable numbers with an application to
the Entscheidungsproblem. Proc. London Math. Soc., 2nd ser.,
42, 230-265.

Wolfram, S. 1985. Undecidability and intractability in theoretical
physics. Phys. Rev. Lett., 54(8), 735-738.

Zuse, K. 1969. Rechnender Raum. Braunschweig, Friedrich Vieweg.

APPENDIX

Existence theorem: An arrangement of even and odd
particles exists at the inputs such that every intersection in
a directed-graph circuit is treated as an AND gate (rather
than an OR gate). (Adding delays trivially creates universal
NAND gates.)

Proof: The truth table for AND is (1) inputs 0 and O give
an output 0; (2) inputs 0 and 1 give an output 0; (3) inputs 1
and 0 give an output 0; and (4) inputs 1 and 1 give an output
1 (Fig. 2). Therefore, it is sufficient to demonstrate that for
any possible arrangement of output particles on any given
gate, there must exist corresponding inputs (for each of the
four cases listed above) that produce this output in a manner
consistent with an AND gate. Each of the four possible cases
is addressed separately below.

Bahr: On fundamental limits to glacier flow models

Consider the output of a gate O = (n, N), where N is the
total number of particles at the output, and n is the number
of odd particles at the output.

1. If the output is O, then one set of the possible AND gate
inputs is 0 and 0. Note that for an output 0, n<N/2. So
there exist inputs I, = (n/2, N/2) and I, = (n/2, N/2)
which will both be 0 as required. (Fractional values may
be rounded as appropriate. See below.)

2. If the output is O, then one set of the possible AND
gate inputs is 0 and 1. Consider inputs Iy = (n—m, N-M)
and L, = (m, M), where (a) m>M/2 and (b) M<N.
Condition (a) ensures that input I, will be 1. Condition
(b) ensures that I; is well defined. Also note that
n—m<n-(M/2)<(N/2)-(M/2) by condition (a) and
because n<N/2 (as required for the output to be 0).
Therefore n—-m<(N-M)/2 and I; is 0 as required.

3. If the output is O, then one set of the possible AND
gate inputs is 1 and 0. Then inputs Iy = (m, M) and
L, = (n—=m, N-=M) will be 1 and 0 as required (by the
same argument as above).

4. If the output is 1, then the AND gate requires inputs
1 and 1. Note that for an output 1, n>N/2. So there exist
inputs Iy = (n/2, N/2) and I, = (n/2, N/2) which will both
be 1 as required.

In the degenerate case where n=N/2, rounding may not
work. However, the same proof then applies by doubling all
particles at all of the inputs. This guarantees that n/2 and N/2
are whole numbers, and we choose the leading particles to
be even (0) or odd (1) as necessary.

MS received 27 June 2008 and accepted in revised form 26 October 2008

https://doi.org/10.3189/002214309788608831 Published online by Cambridge University Press

https://doi.org/10.3189/002214309788608831

