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Abstract

In this paper, it is shown that the Foster–Lyapunov criterion is sufficient to ensure the
existence of an invariant probability measure for both discrete- and continuous-time
Markov processes without any additional hypotheses (such as irreducibility).
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1. Introduction

In the last 30 years, a great deal of attention has been paid to the existence of invariant
probability measures for Markov chains and for continuous-time Markov processes. In general,
it is not a simple matter to determine whether a given Markov process on a general state space
has an invariant probability measure. For discrete-time Markov chains, a rather complete
discussion on this subject is available in [8].

Sufficient conditions for the existence of an invariant probability measure based on a Foster–
Lyapunov-type criterion (see (2.2) and (2.3), below) have been presented in the literature for
both the discrete- and continuous-time cases. This Foster–Lyapunov criterion, also known as
the drift condition, is written in terms of a set C, called the ‘test’ set. In addition to satisfying
the Foster–Lyapunov criterion, these sufficient conditions require an assumption on the test
set C and other additional hypotheses. For example, some of the hypotheses that have been
considered for the existence of an invariant probability measure for the discrete-time case are
as follows.

• The set C is compact. In this case, Tweedie proved the result in [10], with the additional
condition that the Markov chain is a T -chain. The result also holds if, instead of being
a T -chain, the chain is weak Feller (see [10] or [8, p. 296]). For weak Feller chains it is
worth mentioning that there are some necessary and sufficient conditions for the existence
of an invariant probability measure not requiring the Foster–Lyapunov criterion (see, for
example, [4] and the references therein).
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• The set C satisfies a uniform countable-additivity condition (see [11, Equation (4)]). In
this case, Tweedie proved the existence of an invariant probability measure in [11].

• The set C is ‘petite’ (see Definition 2.5, below) and the chain is irreducible. As discussed
by Tweedie [11, p. 347], with the set C petite, the Foster–Lyapunov criterion is known
to ensure the existence of an invariant probability measure when the chain is irreducible.
This was shown in [9] for a small set C, and was generalized to a petite set in [8].

To the best of the authors’ knowledge, the most general sufficient condition for the existence
of an invariant probability measure, written in terms of the Foster–Lyapunov criterion and a
petite test set C, requires the additional hypothesis that the chain is irreducible. The aim of this
paper is to remove this additional hypothesis. We extend the existing results in the literature
by showing that if the drift condition is satisfied for a petite test set C, then there exists an
invariant probability measure (without any additional hypotheses such as irreducibility). It
must be pointed out that, in the discrete-time case, the authors proved that this drift condition
also becomes necessary if the Markov chain is assumed to be a T ′-chain [2]. Here, we obtain
results for a discrete-time Markov chain evolving on an arbitrary space with countably generated
σ -field and for a continuous-time (Borel right, nonexplosive) Markov process evolving on a
locally compact, separable metric space equipped with its Borel σ -field.

Finally, we note that, by using [11, Lemma 5], it is easy to show that if the Foster–
Lyapunov criterion is satisfied for a set satisfying the uniform countable-additivity condition (see
[11, Equation (4)]), then it is also necessarily satisfied for a petite test set. Therefore, apparently,
for the purposes of ensuring the existence of an invariant probability measure, the drift condition
(2.2), below, for a petite test set C is more general than the uniform countable-additivity
condition.

The paper is organized in the following way. In Section 2, we present the main definitions
that will be required throughout the paper. In Section 3, we present the main results for the
discrete-time case. The continuous-time case is considered in Section 4.

2. Definitions

Denote the set of positive real numbers by R+, the set of positive integers by N, and let
R

∗+ := R+ \ {0} and N
∗ := N \ {0}. Let (X, B) be a measurable space. For any A ∈ B,

1A(x) denotes the indicator function associated with A. In this paper, we consider two types
of time-homogeneous Markov process: a discrete-time Markov chain {�n}n∈N with associated
transition probability function denoted by G, and a continuous-time Markov process {Xt }t∈R+
with associated transition semigroup denoted by {P t }t∈R+ . For the latter, for every t ∈ R+ we
shall write P t(x, A) = Px(Xt ∈ A), where x ∈ X is the initial condition (i.e. X0 = x) and
A ∈ B.

We now recall some classical definitions related to Markov processes. For a complete
exposition on the subject, the reader is referred to the book of Meyn and Tweedie [8], or the
papers [5], [6], and [7].

Definition 2.1. A set E ∈ B is called absorbing for {Xt }t∈R+ or for {�n}n∈N if E �= ∅ and if
P t(x, E) = 1 for all x ∈ E and t ∈ R+, or, respectively, G(x, E) = 1 for all x ∈ E.

Definition 2.2. A set E ∈ B is called closed for {Xt }t∈R+ or for {�n}n∈N if E �= ∅ and if
Px(Xt ∈ E for all t ∈ R+) = 1, or, respectively, Px(�n ∈ E for all n ∈ N) = 1.
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Definition 2.3. If b = {bk}∞k=0 is a sequence of real numbers defining a probability on N, then
the stochastic kernel K�

b associated with the discrete-time Markov chain {�k}k∈N is defined
on X × B by

K�
b (x, A) :=

∞∑
k=0

bkG
k(x, A) for all x ∈ X and all A ∈ B.

Definition 2.4. IfF is a probability distribution on R+, then the stochastic kernelKX
F associated

with the continuous-time Markov process {Xt }t∈R+ is defined on X × B by

KX
F (x, A) :=

∫ ∞

0
P t(x, A)F (dt) for all x ∈ X and all A ∈ B.

The resolvent associated with the transition semigroup {P t }t∈R+ is defined by

R(x, A) :=
∫ ∞

0
P t(x, A)e−t dt. (2.1)

Definition 2.5. A set C ∈ B is called a petite set for {Xt }t∈R+ or for {�n}n∈N if there
exist a probability distribution F on R

∗+ and a nontrivial measure ν on (X, B) such that
KX

F (x, A) ≥ ν(A) for all A ∈ B and all x ∈ C, or, respectively, there exist a probability
b on N

∗ and a nontrivial measure ν on (X, B) such that K�
b (x, A) ≥ ν(A) for all A ∈ B and

all x ∈ C.

Definition 2.6. For a discrete-time Markov chain {�n}n∈N, the first hitting time τ�
A of the set

A ∈ B is defined as
τ�
A := inf{n ≥ 1 : �n ∈ A}.

We also define L�(x, A) := Px(τ
�
A < ∞) for all (x, A) ∈ X × B.

We next define the extended generator A for {Xt }t∈R+ , and its domain D(A).

Definition 2.7. Define D(A) to be the set of all measurable functions V : X × R+ → R for
which there exists a measurable function U : X×R+ → R such that, for each x ∈ X and t > 0,

Ex

[∫ t

0
U(Xs, s) ds

]
< ∞,

Ex[V (Xt , t)] = V (x, 0) + Ex

[∫ t

0
U(Xs, s) ds

]
.

The set D(A) is referred to as the domain of the extended generator A for {Xt }t∈R+ . This
generator is defined over D(A) as follows: AV := U for V ∈ D(A).

We conclude this section by presenting the Foster–Lyapunov criterion. For a discrete-time
Markov chain with transition probability function G, this criterion can be stated as follows.

Condition 2.1. (Foster–Lyapunov criterion: discrete-time case.) There exist an extended-
valued nonnegative measurable function V defined on X, with V (x0) < ∞ for at least one
x0 ∈ X; a set C; and a constant d ∈ R+ such that

GV (x) ≤ V (x) − 1 + d 1C(x). (2.2)
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For a continuous-time Markov process with extended generator A, the Foster–Lyapunov
criterion instead has the following statement.

Condition 2.2. (Foster–Lyapunov criterion: continuous-time case.) There exist a nonnegative
measurable function W ∈ D(A), a set C, and a constant d ∈ R+ such that

AW(x) ≤ −1 + d 1C(x). (2.3)

3. The discrete-time case

In this section, it is assumed that the σ -field B associated with the state space X is countably
generated. We show that if the Foster–Lyapunov criterion is satisfied for a petite test set C,
then an invariant probability measure exists.

Theorem 3.1. Suppose that the Markov chain {�n}n∈N satisfies the Foster–Lyapunov criterion
(2.2) for a petite set C and for every x in X. Then there exists an invariant probability measure
for {�n}n∈N.

Proof. By hypothesis, the set F ∈ B defined by F := {x ∈ X : V (x) < ∞} is nonempty
and, from [8, Lemma 11.3.6], is an absorbing set for the Markov chain {�n}n∈N. From
[8, Theorem 11.3.4],

Ex[τ�
C ] ≤ V (x) + b 1C(x)

and, thus, for all x ∈ F , we have Ex[τ�
C ] < ∞, meaning that L�(x, C) = 1 for all x ∈ F . De-

fine D := F ∩C. From the fact that F is absorbing, it follows that L�(x, D) = L�(x, C) = 1
for all x ∈ F , showing that D �= ∅. Since C is a petite set for the Markov chain {�n}n∈N, there
exist a probability b on N

∗ and a nontrivial measure ν on B such that K�
b (x, A) ≥ ν(A) for

all x ∈ C and all A ∈ B. In particular, for x ∈ D, we have K�
b (x, X \ F) = 0, meaning that

ν(X \ F) = 0 and ν(F ) = ν(X) > 0. Let us denote by G the Markov kernel corresponding
to G restricted to F , and by {�n}n∈N the Markov chain associated with G. Consequently, it
follows from the previous discussion that D is a petite set for {�n}n∈N. Now, by combining the
fact that L�(x, D) = 1 for all x ∈ F with [5, Theorem 4.1(i)], we find that the Markov chain
{�n}n∈N is Harris recurrent and satisfies

GV (x) ≤ V (x) − 1 + d 1D(x) for all x ∈ H .

By applying [8, Theorem 11.0.1], from this we find that there exists an invariant probability
measure π for the Markov chain {�n}n∈N and, consequently, for the Markov chain {�n}n∈N.
This completes the proof.

4. The continuous-time case

In this section, it is assumed that the state space X is a locally compact and separable metric
space equipped with its Borel field B(X), and that {Xt }t∈R+ is a nonexplosive, Borel right
process. Following the framework of [3], [6], and [7], and as defined in Section 2, {Xt }t∈R+
is a time-homogeneous Markov process with state space (X, B(X)) and associated transition
semigroup {P t }t∈R+ . Recall that, for every t ∈ R+, we have P t(x, A) = Px(Xt ∈ A),
where x ∈ X is the initial condition, A represents the extended generator of {Xt }t∈R+ , D(A)

represents the domain of the extended generator (see Definition 2.7), and R represents the
resolvent associated with the transition semigroup {P t }t∈R+ (see (2.1) and Definition 2.4).

Since R is a transition probability function, we can define {�R
n }n∈N to be the Markov chain

associated with R.
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Theorem 4.1. Suppose that {Xt }t∈R+ is a nonexplosive, Borel right process satisfying the
Foster–Lyapunov criterion (2.3) for a petite set C and for every x belonging to a closed set H .
Then there exists an invariant probability measure for {Xt }t∈R+ .

Proof. Let C be a petite set, let H be a closed set for {Xt }t∈R+ , let W : X → R+ be a
measurable function in D(A), and let d ∈ R+ be a constant such that (2.3) is satisfied for every
x ∈ H . By using the comparison theorem [7, Theorem 1.1] and the fact that H is closed, we
find that

e−tP tW(x) ≤ −te−t + e−tW(x) + de−t

∫ t

0
P s(x, C) ds for all x ∈ H . (4.1)

By integrating (4.1) and using the fact that H is absorbing for the Markov chain {�R
n }n∈N, from

this we find that

RW(x) ≤ −1 + W(x) + dR(x, C ∩ H) for all x ∈ H . (4.2)

There exist a constant α > 0 and a petite set D for the Markov chain {�R
n }n∈N such that

RW(x) ≤ −α + W(x) + d 1D(x) for all x ∈ H . (4.3)

If C ∩ H = ∅ then this inequality is trivially satisfied. If C ∩ H �= ∅ then, by following
the same arguments as in the proof of [3, Theorem 5.1], we easily find from (4.2) that (4.3) is
satisfied.

Define the extended-valued nonnegative function V on X as

V (x) :=
⎧⎨
⎩

1

α
W(x) for x ∈ H ,

∞ for x ∈ H c.

Set d = d/α. Since H is absorbing for the Markov chain {�R
n }n∈N, we find from (4.3) that

RV (x) ≤ −1 + V (x) + d 1D(x) for all x ∈ X.

From Theorem 3.1, it follows that there exists an invariant probability measure for {�R
n }n∈N

and, consequently, for {Xt }t∈R+ , by using [1, Lemma 1].
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