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1. Introduction. Let p be a prime, and let 5 be a Sylow ^-subgroup of a 
finite group G. J. Thompson (13; 14) has introduced a characteristic subgroup 
JR(S) and has proved the following results: 

(1.1) Suppose that p is odd. Then G has a normal p-complement if and only if 
C{Z{S)) and N(JR(S)) have normal p-complements. 

(1.2) Suppose that G is p-solvable and contains a normal p-sub group P such 
that C(P) C P. Assume that SL(2, p) is not involved in G. Then 

G = C(Z(S))N(JR(S)). 

Recently, Thompson introduced (15) a characteristic subgroup J0(S) that is 
quite similar to JR(S) but also satisfies a "replacement theorem" (Theorem 
3.1).x He then proved (Corollary 3.5) that for p odd, (1.2) holds without 
assuming ^-solvability if we substitute J0(S) for JR(S). 

In this paper we prove the following results. 
(1.3) Suppose that p is odd. Then G has a normal p-complement if and only if 

N(Z(J0(S))) has a normal p-complement. 
(1.4) Suppose that p is odd and that G contains a normal p-subgroup P such 

that C(P) ÇZ P. Assume SL(2, p) is not involved in G. Then Z(J0(S)) is a 
characteristic subgroup of G. 

(1.5) Suppose that p is odd and that SL(2, p) is not involved in G. Then two 
elements of S are conjugate in G if and only if they are conjugate in N(Z (J0 (S) ) ). 

In §2 we state some stronger forms of these results, and in §9 we obtain 
some analogues for a characteristic subgroup ZJ*(S) having the property that 
CS(ZJ*(S)) QZJ*(S). 

These results were obtained in several stages. The proofs of (1.1) and (1.2) 
are also valid, with slight changes, for J0(S) and a number of similarly defined 
subgroups. We first proved (1.3), (1.4), and (1.5) for all of these subgroups 
under the additional assumptions that G was ^-solvable in (1.4) and that all 
proper subgroups of G were ^-solvable in (1.5). 

Both (1.3) and (1.5) are ultimately derived from (1.4). The exclusion of 
SL(2, p) in (1.4) guarantees (Lemma 6.3) that G is p-stable by a definition 
similar to that introduced by Gorenstein and Walter in (7). This means that 
certain ^-subgroups P and elements x cannot satisfy the commutator condition 
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[[P, x], x] = 1. An easy example (Example 10.1) shows that this condition or 
some related hypothesis is necessary to obtain the conclusion of (1.4). 

Originally, we had assumed ^-solvability in (1.4) in order to reduce it, by 
induction, to the case where G had a normal ^-subgroup P for which the Sylow 
^-subgroup of G/P was cyclic. Thompson used his Replacement Theorem to 
show that this type of argument w âs unnecessary for J0(S) in (1.2). Thus, 
for p odd and Jo(S) in place of JR(S), he obtained (1.2) and an important 
case of (1.4), without assuming ^-solvability (Corollary 3.5 and Theorem 3.2). 
Using Thompson's results and our previous methods, we showed that a 
counter-example to (1.4) must contain a subgroup P and an element x such 
that [[[P, x], x], x] = 1. By generalizing the Replacement Theorem for odd 
primes, wre obtained [[P, x]y x] = 1 and thus derived a contradiction that 
completed the proof. Unfortunately, the condition [[P, x], x] = 1 is unexcep­
tional when p = 2. In fact, (1.4) fails rather spectacularly for p = 2, although 
some characteristic subgroup other than Z(J0(S)) might satisfy (1.4). We give 
some examples of this failure, and some counter-examples to other generaliza­
tions, in §10. In §3, we include the statements and proofs of several results of 
Thompson. Thus, this paper is self-contained except for the first two lemmas 
of §6 and some standard results and techniques. In some other, unpublished 
work, Thompson has proved that we may replace Z(J0(S)) by J0(S) in (1.3) 
if p ^ 5, and in (1.4) if p ^ 7 and G is ^-solvable. 

My thanks are due to Professor J. Walter for suggesting some questions 
that led to the present paper and to Professor J. Thompson for communicating 
his results to me before publication. I am also grateful to the National Science 
Foundation for its partial support during the preparation of this paper. 

2. Definitions and statement of main results. All groups considered 
in this paper will be finite. Let G be a finite group. For every finite set 5, 
denote the number of elements of S by \S\. We write H ÇZ G (H CL G) to 
indicate that H is a subgroup (a proper subgroup) of G. If H ÇZ G and K is a 
subset of G, denote the normalizer and centralizer of K in H by NH(K) and 
CH(K). UK contains a single element x> let CH(x) = CH(K). When there is 
no danger of confusion, we write N{K) and C(K) for NG(K) and CG(K). 
For every x Ç G and every element or subset y of G, let yx = x~lyx. 

For every pair of elements x and y of G, let [x, y] be the commutator 
x~1y~1xy. For x £ G and H Ç G, let [H, x] be the subgroup of G generated by 
all the commutators of the form [h, x] for h G H. Define [x, H] similarly, and 
also [H, K] for H, K ÇZ G. For elements or subgroups xi, x2, . . . , xn of G we 
define iterated commutators inductively by 

[Xif X2} • • • , Xn—i, Xn\ = [[Xi, X2, . . . , X w _iJ , Xn\ \fl ^- o) 

and 
[xh x2',0] = xi, [xi, x2; n] = [[xi, x2\ n — 1], x2] (n ^ 1). 

A subquotient of G is a factor group of the form H/K, where H, K Ç G and 
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K is a normal subgroup of H. Let 1 denote both the identi ty element and the 
ident i ty subgroup of G. We say t h a t a finite group Go is involved in G if Go is 
isomorphic to a subquot ient of G. 

G is called an elementary Abelian group if G is a direct product of groups of 
the same prime order p. In this case, we shall occasionally consider G to be an 
addi t ive group and therefore a vector space over the field GF(p) oip elements. 
Thus , the automorphisms of G correspond to the linear transformations of G 
over G¥(p). We will denote the zero element of a vector space by 0 or 1. 

An operator group A on G is a group A in which every a Ç A corresponds to 
an automorphism x —» xa of G with the proper ty t h a t xab = (xa)b for all x £ G 
and a, b £ A. (Different elements of A may correspond to the same au to ­
morphism of G.) In particular, a group of linear transformations on a vector 
space V may be considered as an operator group on V. Let 

CA(G) = {a £ A: xa = x for all x £ G} 
and 

CG(A) = {x £ G: xa = x for all a £ ^ } . 

(We use braces to denote sets, ra ther than the groups they generate.) A is said 
to be faithful if CA (G) = 1. A is said to be irreducible on G if G is an e lementary 
Abelian group and if 1 and G are the only subgroups H oi G such t h a t Ha — H 
for all a £ A. 

Il M and N are normal subgroups of G and N Ç if, we consider G to be an 
operator group on ikf/iV by the definition 

(xN)° = (g-^N (x £ M, g £ G). 

We define CG(M/N) and CM/N(G) and irreducibility of G on ikf/iV according 
to the definitions for operator groups. 

Let p be a prime. An element or subgroup of G is called a p-element or 
p-subgroup if its order is a power of />. I t is called a p'-element or p'-subgroup 
if its order is not divisible by £. We adhere to the convention t h a t p° = 1, 
thus the ident i ty element is considered to be both a ^-element and a ^ '-element, 
and the ident i ty subgroup is considered similarly. We say t h a t G is p-solvable 
if each of its composition factors is either a /?-group or a / / -group. I t is easy 
to show tha t the product of normal ^-subgroups is a normal ^-subgroup, and 
tha t , therefore, G contains a unique maximal normal ^-subgroup, denoted by 
Op(G). Similarly, G contains a unique maximal normal / / - subgroup, denoted 
by 0P' (G). Le t Ov>,v(G) be the subgroup of G t h a t contains Ov> (G) and satisfies 

Op..p(Ç)/Op,(G) = Op(G/OAG)). 

We say t h a t G has a normal p-complement (namely, Ov>{G)) if G = 0P',P(G). 
Let |G|P be the order of a Sylow ^-subgroup of G. 

For each Abelian subgroup A of G, let m (A) be the mn&, or minimal number 
of generators of A) and let dR(G) be the maximum of the numbers m (A). 
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Similarly, let d0(G) be the maximum of the orders of the Abelian subgroups 
of G. Define 

séR{G) = {A: A QG} A Abelian, and m{A) = d{G)} 

and 

s/oiP) = [A: A Ç G , A Abelian, and \A\ = d0(G)}. 

Then JR(G) and Jo{G) are the subgroups of G generated by the elements of 
S$R{G) and S$0{G), respectively. These definitions will be used only when G 
is a p-group. Since we will not use dR{G)} S$ R{G), and JR{G), we let 

d{G) = d0{G), J / ( G ) = J/0(G), and J{G) = J0(G) 

throughout this paper. 
We require concepts of ^-stability and p-constraint similar to those of 

Gorenstein and Walter (7) and Gorenstein (6). 

DEFINITION 2.1. Let p be an odd prime. Let G be a finite group such that 
0P(G) y£ 1. Then G is p-stable if it satisfies the following condition: 

Let P be an arbitrary p-subgroup of G such that Ov> {G)P is a normal subgroup 
of G. Suppose that x £ N{P) and x is the coset of C(P) containing x. If 
[P, x, x] == 1, then x e On{N{P)/C{P)). 

DEFINITION 2.2. Let p be an odd prime. Let G be a finite group such that 
Op(G) ^ 1, and let P be a Sylow p-subgroup of Ov>tP(G). Then G is p-constrained 
if CG(P) C C W G ) . 

For an arbitrary prime p, let ^év{G) be the set of all subgroups M of G 
that are maximal with respect to the property that Ov(M) ^ 1. 

DEFINITION 2.3. Let p be an odd prime and let G be a finite group. We say that 
G is p-stable {p-constrained) if every element of ̂ V{G) is p-stable {p-constrained) 
according to Definition 2.1 {Definition 2.2). 

Note that if Ov{G) ^ 1, t h e n ^ ^ G ) = {G}, therefore the above definitions 
are consistent. If p does not divide |G|, then G is trivially ^-stable and p-
constrained since^P{G) is the empty set. By Lemma 1.2.3 and Theorem B of 
Hall and Higman (10), a ^-solvable group H is ^-constrained regardless of p, 
and is ^-stable except possibly when p = 3 and H has a non-abelian Sylow 
2-subgroup. 

More generally, for every prime p, let V2 be a two-dimensional vector space 
over GF(^) and let SL(F2) be the special linear group on V2, i.e., the group 
of all linear transformations of determinant one on V2. We define the quadratic 
group Qd{p) for the prime p to be the semi-direct product of F2 by SL(F2) . 

We say that a finite group H of linear transformations over a finite field of 
characteristic p is called a p-stable linear group if no element of H has the 
quadratic polynomial {x — l ) 2 as its minimal polynomial. Suppose that 
Op{H) = 1 and i f is irreducible on V. Turning from multiplicative to additive 
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notation, we obtain that 

[v, x, x] = (ir1 + vx)~l + 0" 1 + vx)x = -vx~l + v^-u* = v(x-v2 

for v G V and x Ç H. Thus the semi-direct product HV is a ^-stable group if 
and only if H is a ^-stable linear group. Thus QA{p) is not a ^-stable group. 
Conversely, in Lemma 6.3 we show that a group G is ^-stable if Qd(/>) is not 
involved in G. 

The main results of this paper are the following. 

THEOREM A. Let p be an odd prime, and let She a Sylow p-subgroup of a finite 
group G. Assume that G is p-stable and that C(Op(G)) Q Op(G). Then Z(J(S)) 
is a characteristic subgroup of G. 

THEOREM B. Let p be an odd prime, and let S be a Sylow p-subgroup of a finite 
group G. Assume that Qd(^) is not involved in G. Suppose that W is a non­
empty subset of S, g G G, and that W° is contained in S. Then there exist c £ C(W) 
and n £ N(Z(J(S))) such that g = en. 

THEOREM C. Let p be an odd prime, and let S be a Sylow p-subgroup of a finite 
group G. Assume that G is p-stable and p-constrained. Suppose that W is a 
non-empty subset of S, g G G, and W9 is contained in S. Then there exist 
c (E Op>(C(W)) and n G N(Z(J(S))) such that g = en. 

THEOREM D. Let p be an odd prime, and let S be a Sylow p-subgroup of a finite 
group G. Then G has a normal p-complement if and only if N(Z(J(S))) has a 
normal p-complement. 

These results yield several corollaries. 

COROLLARY 2.1. Let p be an odd prime, and let S be a Sylow p-subgroup of a 
finite group G. Assume either that Qd(p) is not involved in G or that G is p-stable 
and p-constrained. Then: 

(a) Two elements or subsets of S are conjugate in G if and only if they are 
conjugate in N(Z(J(S))). 

(b) For every x G G, Z(J(S))X H 5 C Z(J(S)). 

Corollary 2.1 (b) states that Z(J(S)) is strongly closed, and therefore 
weakly closed, in 5 with respect to G, as defined by Wielandt (19, p. 205). 
For every subgroup H of G, let Ov(H) be the subgroup of G generated by all 
the ^/-elements of H. By Corollary 2.1 (b) and a theorem of P. Hall and 
Wielandt (9, p. 212), we obtain the following corollary. 

COROLLARY 2.2. Let p be an odd prime, and let S be a Sylow p-subgroup of a 
finite group G. Let N = N(Z(J(S))). Assume either that Qd(p) is not involved 
in G or that G is p-stable and p-constrained. Then G/Op(G) is isomorphic to 
N/Ov(N). 

Note. In order to apply the Hall-Wielandt theorem, we use the facts that 
Z(J(S)) is Abelian and p is odd. An alternate proof of Corollary 2.2 that does 
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not require these facts may be obtained from Corollary 2.1 (a) by using 
(11, pp. 485-488; in particular, Theorem 3.6 and Remark 3). 

3. Two theorems of Thompson. In this section we require several 
results of Thompson, including his generalization of (1.2). All the theorems 
and corollaries in this section were proved by Thompson, but only Theorem 3.1 
and Corollary 3.1 have been previously published. 

The following two elementary lemmas will sometimes be used without 
explicit reference. 

LEMMA 3.1. Let G be a group. Suppose that x £ G and that H Ç G. Thenx^N(H) 
if and only if [x, H] C H. 

Proof. For h £ H, hx = h[h, x]. 

LEMMA 3.2. Let G be a group and let x, y, z Ç G. Then: 

(a) [x, yz] = [x, z][x, y]z = [x, z][x} y][x, y} z] and [yz, x] = [y, x]z[z, x] = 
[y, x][y,x, z][zt x]. 

(b) Suppose that A Ci G and that A is Abelian. If [x, A] is Abelian and 
a, b G A, then [x, a, b] = [x, b, a]. 

(c) Suppose that H Ç G. Then H normalizes [x, H], and [x, H; n] Ç [x, H; m] 
for all non-negative integers m and n such that n ^ m. 

Proof. One may obtain (a) by straightforward calculation. Then (b) follows 
from the first equation in (a), and (c) follows by induction from the identity 

[x, y]z = [x, 2]_1|x> yz]. 

LEMMA 3.3. Suppose that G is a finite p-group and that H is a non-identity 
normal subgroup of G. Then H C\ Z{G) ^ 1. 

Proof. The proof is found in (16, Theorem 14, p. 144). 

THEOREM 3.1. (REPLACEMENT THEOREM (15)). Let S be a finite p-group, 
and let A £ s/(S). 

(a) Suppose that x G S and that [x, A] is Abelian. Let M = [x, A]. Then 
MCA{M) e^f(S). 

(b) Suppose that B is an Abelian subgroup of S that is normalized by A. If 
[B, A, A] ?* 1, then there exists A* Ç s/(S) such that A C\ B C A* C\ B and 
[A*, A, A] = 1. 

Proof, (a) Let C = CA(M). Clearly, MC is an Abelian group, thus it 
suffices to show that \MC\ è \A\. Since M is Abelian and CS(A) = A, 

\MC\ = \M\\C\/\CC\ M\ = \M\\C\/\A C\ M\ = \M\\CA{M)\/\CM{A)\. 

Hence we wish to show that \M/CM(A)\ ^ \A/CA(M)\. 
Suppose that a, b G A and that [x, a] = [x, b] modulo CM{A). Since 

[x, a]~![x, b] = (x^x*)-1 (x-W) = (xa)~lx\ 
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then (x")-1^6 G CM(A). But A centralizes CM(A), therefore 

(xa)-lxh = ((s0)-1*6)""1 = x~lxha~l = [xtbar1]. 

Thus [x, bar1] £ CM(A). For every c 6 A, 1 = [x, to-1, c] = [x, c, 6a"1], by 
Lemma 3.2 (b). Thus bar1 £ CA(M). 

Now let ai, . . . , an be a set of coset representatives for CA(M) in ^4. By the 
above paragraph, no two of the elements [x, ai], . . . , [x, aw] are congruent, 
modulo CM(A). Hence | M / C M ( ^ ) | ^ | ^ /C A (M) | , as desired. 

(b) Assume that [B, A, A] j* 1. Now, AB is a group in which B and iV^^l) 
are normal subgroups. Since [B, A, A] ^ 1, we have that [B, A] Çt A. By 
Lemma 3.1, B does not normalize A Therefore, B/NB(A) is a non-trivial 
normal subgroup of AB/NB(A). By Lemma 3.3 there exists b G B such that 
the coset bNB(A) lies in Z ( 4 5 / ^ ( ^ 4 ) ) . Let M = [6, 4 ] and 4 * = ikfCA(ikf). 
Since bNB(A) G Z C A B / i V ^ ) ) , we have that 

M = [6,4] Ç7VB(,4) 

and therefore 4 * Ç iVsC4). Thus 

[^*, A, A] C [[7VSU), 4 ] , 4 ] ç [4, 4 ] = 1. 

Moreover, as b G NB(A), we have that Af = [b, A] <£ A. Since 

then 
ii* n 5 2 M"(̂ 4 n 5 ) 3 A n B. 

COROLLARY 3.1 (14). Suppose that S is a finite p-group and that B is an 
Abelian normal subgroup of S. Then there exists A G s/{S) such that B normalizes 
A and [B,A,A] = 1. 

Proof. Choose A G s/(S) such that A C\ B is maximal. By the Replace­
ment Theorem, [B, A, A] = 1. Hence 

[B,A]QCS(A) =A; 

thus B £ N(A), by Lemma 3.1. 

COROLLARY 3.2. Suppose that p is an odd prime and that S is a Sylow p-sub-
group of a finite p-stable group G. Let P = Op(G), and assume that C(P) = P. 
Then P is the only element of s/ (S). 

Remark 3.1. In this result and in the following results in this section that use 
^-stability (except Corollary 3.3), we require the definition of ^-stability only 
for Abelian ^-subgroups P and elements x such that [P, x, x] = 1. 

Proof. UP = 1, then G = 1. Thus we may assume that Op(G) = P ^ 1. 
Since P Ç C(P), P is Abelian. Since [Op>(G),P] C Op>(G) C\ P = 1 and 
C(P) £ P , we have that 0P'(G) = 1. Suppose that s/(S) contains an element 
A different from P . Choose A such that A Pi P is maximal. Assume that 
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[P,A,A] 9e 1, and take A* to satisfy the Replacement Theorem. Since 
A C\P CA* r\P, A* QP. Hence A* = P. But then 

(3.1) [P,A,A] = [A*,A,A] = 1. 

Since 0,» (G) = 1 and C(P) = P , then 

0,(G/C(P)) = 0 , (G/P) = l. 

By (3.1) and the definition of ^-stability, A Q P. This contradiction completes 
the proof. 

LEMMA 3.4. Let pbe a prime and let G be a group of linear transformations on a 
finite-dimensional vector space V over a finite field of characteristic p. If P is a 
non-identity p-subgroup of G, then 1 C CV(P) C V. 

Proof. Since P ^ 1, we have that CV(P) C V. In the semi-direct product 
PV of V by P , F is a non-trivial normal subgroup. By Lemma 3.3, 

CV(P) = vnZ(PV) 9* 1. 

COROLLARY 3.3. Let p be an odd prime and let G be a p-stable linear group of 
transformations of a finite-dimensional vector space V over a finite field F of 
characteristic p. Suppose that A is a non-identity Abelian p-subgroup of G. Then 
\A\ < \V/CV(A)\. Therefore, 

\A\ S \V\/\F\p. 

Proof. Let H be the semi-direct product of V by G. Then V = C{ V) C Op (H). 
Let 5* be a Sylow ^-subgroup of H that contains A V. Now, vx~l = [v, x] for 
v G V and x G G. Since G is a p-stable linear group, no non-identity element 
x of G satisfies [V, x, x] = 1. We may merely repeat the proof of Corollary 3.2 
to show that j / ( 5 ) = { V}. Thus 

\A\\CV(A)\ = \ACV(A)\ < \V\. 

By Lemma 3.4, CV(A) 9e 1. Hence 

\A\ ^ \V\/p\Cv{A)\ ^ \V\/p\F\. 

LEMMA 3.5. Let S be a Sylow p-subgroup of a finite group G. Then: 
(a) If A e s/($) and A ç P C S, then Z(J(S)) C A and Z(J(S)) Q 

Z(J(P)); 
(b) If P is a p-subgroup of G that contains J(S), then J(S) = J(P). 

Proof, (a) Since Z(J(S))A is Abelian and \A\ = d(S), we have that 
Z(J(S)) QA.HAQPQS, then 

d(P) = \A\ = d(S) and Z(J(S)) QAQ J(P) e J(S). 

Hence Z(J(S)) Q Z(J(P)). 
(b) As in (a), d(P) = d(S). Hence J(S) C J(P). Also \J(P)\ è \J(S)\ 

since P is conjugate to a subgroup of 5. Therefore, J(S) = J(P). 
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LEMMA 3.6 (Frattini argument). Let H be a normal subgroup of a finite 
group G. Let S be a Sylow p-subgroup of H. Then G = HN(S). 

Proof. Let g 6 G. Then S9 is a Sylow ^-subgroup of H. Therefore, there 
exists h e H such that S9 = S\ Then gh~l 6 N(S), thus g = {gh~l)h Ç N(S)H. 
Therefore G = N(S)H = HN(S). 

THEOREM 3.2. Let p be an odd prime, and let S be a Sylow p-subgroup of a 
finite group G. Suppose that B is an Abelian normal p-subgroup of G. If G is 
p-stable, then Z(J(S)) C\ B is a normal subgroup of G. 

Proof. The theorem is trivial if B = 1. Assume that B ^ 1; thus Op(G) ^ 1. 
Let C = Z(J(S)) r\ B, and let L be the largest normal subgroup of G con­
tained in N(C). Now, L P\ 5 is a Sylow ^-subgroup of L. By the Frattini 
argument, 

(3.2) G = LN(L n S) = LN(J(L H S ) ) . 

If / (S ) Ç L H 5, then 7(5) = J (L H 5) by Lemma 3.5. But in this case 

G = LN(J(L r\S)) = LN(J(S)) Q LN(C) = N(C). 

Thus we may assume that 

(3.3) J(S) £LnS. 

Let L\ be any normal subgroup of G contained in L. Let M be the subgroup 
of G that contains L\ and satisfies M/Li = Ov{G/L\). Then ilf is a normal 
subgroup of G and I f = L i ( M H S ) . Since 5 normalizes G, i f Ç iV(C). 
Therefore, I Ç L This applies, in particular, when L\ = C(Ci) for some 
normal subgroup C\ of G that contains C. We obtain 

(3.4) Op(G/C(Ci)) C L / C ( C i ) . 

Since G is ^-stable, we have that i Ç L whenever 

(3.5) C C Ci Ç G, Ci is a normal ^-subgroup of G, and 

[Ci ,4 , .4] = 1. 

By Corollary 3.1, there exists A 6 j / ( 5 ) such that [B, A, A] = 1. By (3.5), 
A C L. Thus 

(3.6) d ( L n S ) = d ( S ) , J ( L n 5 ) Ç / ( 5 ) , and CQ Z{J{S)) C Z ( / ( L P i 5 ) ) , 

by Lemma 3.5 (a). Let X = Z(J(L P\ 5)) . By the Frattini argument, 

(3.7) G = LN(LnS) = LiV(X). 

Let F be the (normal) subgroup of G generated by all the conjugates of C 
in L. By (3.6) and (3.7), 
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(3.8) FÇI = Z(J(Lr\S)). 

Now by (3.3) there exists A € s/(S) such that A (£ L. Choose A such that 
A r\ V is maximal. By (3.5), 

(3.9) [V, A, A] *1. 

From the Replacement Theorem we obtain A* € s/(S) such that 

[A*,A,A] = 1 and A r\ V C A* ^ V. 

Because of the choice of A, A* Ç L H S. By (3.8) and Lemma 3.5 (a). 

[V,A,A]Q[X,A,A]Q[A*,A,A] = 1, 

contrary to (3.9). This completes the proof of Theorem 3.2. 

COROLLARY 3.4. Let p be an odd prime and let S be a Sylow p-subgroup of a 
finite p-stable group G. Then: 

(a) Z(J(S)) is a normal subgroup of G if and only if Z(J(S)) is contained in 
a normal Abelian subgroup of G; 

(b) / / Ov (G) contains an element of se {S), then Z(J(S) ) is a normal subgroup 
ofG. 

Proof, (a) One part is trivial. Conversely, if Z(J(S)) is contained in a 
normal Abelian subgroup B of G, we may apply Theorem 3.2. 

(b) By Lemma 3.5 (a), Z(J(S)) C Z(J(Op(G))). Apply (a). 

LEMMA 3.7. Let S be a Sylow p-sub group of a finite group G. Let H be a subgroup 
of Z{J{S)). Then 

N(H) = C(H)(N(J(S)) r\ N(H)). 

Proof. Since C(H) is a normal subgroup of N(H), C(H) (N(J(S)) C\ N(H)) 
is a subgroup of N(H). Let T be a Sylow ^-subgroup of C(H) that contains 
J(S). By the Frattini argument, 

N(H) = C(H)(N(T) H N(H)). 

By Lemma 3.5 (b), J(S) = J(T). Thus J(S) is a characteristic subgroup of T; 
thus N(T) C N(J(S)). Hence 

N(H) C C(H)(N(J(S)) r\ N(H)) C iV(iJ). 

COROLLARY 3.5. Le£ £ 6e aw odd prime and let S be a Sylow p-sub group of a 
finite group G. Suppose that G is p-stable and that C(Op(G)) C Op(G). Then 

G = C(Z(S))N(J(S)). 

Proof. Let P = Ov{G). Since P C 5, then Z(5) C C(P) C P . Therefore, 
Z(5) Ç,Z{P). By Theorem 3.2, Z(P) C\ Z(J(S)) is a normal subgroup of G. 
Hence, by Lemma 3.7, 

G = C(Z(P) H Z(J(S)))N(J(S)) ç C(Z(S))N(J(S)) C G. 
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Remark 3.2. In (4), we proved that G = (C(Z(5)), N(7(5))) when p = 2, 
C(Op(G)) Ç 0P(G), and the symmetric group of degree four is not involved 
in G. 

4. A replacement theorem for odd primes. In this section we generalize 
Theorem 3.1 for odd primes and use it to obtain Theorem A. 

LEMMA 4.1. Let G be a group, and let x, y, z G G. 
(a) [x, y] = [y, x]~K 
(b) (P. Hall) [x, y~\ z]y[y, z~\ x]z[z, x~\ y]x = 1. 
(c) Let H be the subgroup of G generated by x,y, and z. If [H, H] C Z (H), then 

[x, yz] = [x, y][x, z] and [yz, x] = [y, x][z, x]. 

(d) If X, F C G, /A«» [X, F] = [F, X]. 
(e) (Three Subgroups Lemma; P. Hall) Suppose that X, Y, Z Ç. G and that 

[X, Y,Z] = [Y,Z,X] = 1. 
r*«» [z, x, F] = l. 

Proof. Parts (a) and (b) follow from computation. Part (c) is a consequence 
of Lemma 3.2 (a). Parts (d) and (e) are obvious applications of (a) and (b). 

THEOREM 4.1. Let S be a finite p-group. Suppose that A £ s/(S), B is a 
normal subgroup of S of nilpotence class at most two, and [B, B] Ç Z(J(S)). 
Assume that [B, A; 3] ^ 1 or that p is odd and [B, A, A] ^ 1. Then there 
exists A* G s/{S) such that A C\ B C A* Pi B and [A*, A, A] = 1. 

Remark 4.1. We do not know whether A* exists if p = 2 and [B, A, A] ^ 1. 
In the proof of Theorem 4.1, as in that of Theorem 3.1, A* has the form 
[x, A]CA([x, A]) for some x G B. Examples show that for p = 2 there may 
be no subgroup A* of this form. 

Proof. We first note that since 

[JB, Ar\B,A]Q [B, B, 7(5)] = 1 and [A H B, A, B] Ç [A, A, B] = 1, 

we have that [A, B, A C B] = 1 by the Three Subgroups Lemma. Thus 

(4.1) AC\B centralizes [B, A]. 

Since S is a nilpotent group, then 

(4.2) [B, A; r] = 1 for some least positive integer r, 

and thus 

(4.3) [B, A ; n] is Abelian for some least positive integer n. 

Suppose that [B, A; n + 1] ^ 1. Then r ^ » + 2 ^ 3. Now, 4 does not 
centralize [^, A; r — 2] since [B, A; r — 1] ^ 1. Take x G [5, ̂ 4 ; r — 3] such 
that A does not centralize [x, A]. Let M = [x, A]. Since r ^ « + 2, 

I Ç [5, 4 ; r - 2] Ç [B,A;n] 
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by Lemma 3.2 (c). By (4.3), M is Abelian. Therefore, the Replacement 
Theorem yields MCA(M) G s/{S). By (4.1), A C\ B Q CA(M). However, 
M $£ A, since A does not centralize M. Consequently, 

MCA{M) H 5 2 M(A r\B)Z}AC\B. 

By Lemma 3.2, 

[MCA(M),A,A] = [M,A,A] C [B,A;r] = 1. 

Clearly, we may take 4 * = MCA(M). 
Thus we may assume that 

(4.4) [B,A;n+l] = 1. 

We may also assume that 5 = AB, and thus that [B, B] C Z(5). Let 
J3' = [5, B]. Let 5i, 52, . . . be the terms of the lower central series of S, i.e., 

St = [S,S;i - 1], i = 1,2, 

A simple induction argument using Lemma 3.2 shows that, modulo B'y 

(4.5) Si=[BfA;i-l]9 i = 2, 3, . . . . 

By (4.4), S„+2 Ç [5, 4 ; n + l]Bf = S ' Ç Z(S). Therefore, 

(4.6) S„+3 = 1. 

Let m be the greatest integer not exceeding \{n + 4). By (9, Corollary 
10.3.5, p. 156), 

lvra> ^raj £ ^ 2 m £ On+3 = 1. 

Therefore [B, A; m — 1] is Abelian, thus w - 1 ^ w by (4.3). We obtain 

tt^m-l^!(w + 4 ) - l = §w + l ; 

thus n g 2. By (4.4) and (4.6), 

(4.7) [#, 4 ; 3] C [ 5 , 4 ; » + 1] = 1, 

and 

(4.8) 55 = 1. 

Henceforth, we may assume that p is odd and that [B} A; 2] ^ 1. Take 
x G B such that 4 does not centralize [x, 4 ] . Let b, c £ A. Taking y = b~l 

and z — [x, c] in Lemma 4.1 (b), we obtain 

[[x, b], [x, c]]6"1^-1 , [x, c]~\ x]z[[x} c], x~\ fe-i]* = 1. 

Since B' C Z(S), this yields 

[[*, b], [x, c]] = [b~\ [x, c]~\ x]-1 

(4.9) = [[b-\ [x, c]'1]-1, x] (by Lemma 4.1 (c)) 

= [[fo c]-1> b-1], x] (by Lemma 4.1 (a)). 
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Let B = B/B', A = AB'/B', and S = S/B'. Since [B, A; 3] = 1, we have 
that [B,Â,Â] Ç Z(S). By Lemma 4.1 (c) applied to the group [B,Â]Â, 
and by Lemma 3.2 (b), 

[[x, c]~\ &"1] EE [[x, c], b-1]-1 s [x, c, b] = [x, b, c] modulo Bf. 

Since B' QZ(S), (4.9) yields 

[[x, b], [x, c]] = [[x, c, ft], x] = [[x, 6, c], x]. 

By using Lemma 4.1 (a) and by applying symmetry, we obtain 

[[x, b], [x, c]]-1 = [[x, c], [x, b]] = [[x, 6, c], x] = [[x, b], [x, c]]. 

Thus [[x, 6], [x, c]]2 = 1. Since /> is odd, then [[x, b], [x, c]] = 1. Therefore, 
[x, A] is Abelian. 

Let M = [x, ^ ] . By the Replacement Theorem, M C ^ i f ) G J / ( 5 ) . By 
(4.1) and (4.7), 

AC\BQ CA(M) and [MCA(M), A, A] = 1. 

Since x was chosen such that A does not centralize [x, A], we have that 
M <£ A C\ B. Therefore, we may let A* = MCA(M). This completes the 
proof of Theorem 4.1. 

We obtain the following straightforward analogues of Corollaries 3.1 and 3.2. 

COROLLARY 4.1. Let p be a prime. Suppose that S is a finite p-group and that 
B is a normal subgroup of S such that [B, B] C Z(B) H Z(J(S)). Then there 
exists A Ç s/(S) such that [B, A ; 3] = 1, and if p is odd, there exists A Ç ^/(S) 
such that [B, A, A] = 1. 

COROLLARY 4.2. Suppose that p is an odd prime and that S is a Sylow p-sub-
group of a finite group G. Let P = 0P(G). Assume that [P, P] Ç Z(5), that 
C(P) Ç P, and that G is p-stable. Then P contains an element of s/(S). 

By substituting Corollary 4.1 for Corollary 3.1 in the proof of Theorem 3.2, 
we obtain the following theorem. 

THEOREM 4.2. Let p be an odd prime, and let S be a Sylow p-sub group of a 
finite group G. Suppose that B is a normal p-subgroup of G of nilpotence class at 
most two and that [B, B] Ç Z(J(S)). If G is p-stable, then Z{J(S)) C\ B is a 
normal subgroup of G. 

We may remove the restriction on B in Theorem 4.2. 

THEOREM 4.3. Let p be an odd prime, and let S be a Sylow p-subgroup of a 
finite group G. Suppose that B is a normal p-subgroup of G. If G is p-stable, then 
Z{J{S)) C\ B is a normal subgroup of G. 

Proof. Assume the theorem fails for some group G. Suppose that B is a 
counter-example of least order. Let Z = Z(J(S)), and let B\ be the (normal) 
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subgroup of G generated by all the conjugates of Z f~\ B in G. Then Bx C B 
and Z C\ Bi = Z C\ B. Hence Z C\ B± is not a normal subgroup of G. By the 
choice of B, 

(4.10) B = Bi, the smallest normal subgroup of G that contains Z C\ B. 

Let Bf = [B, B]. Then B' C B, thus Z H ^ i s a normal subgroup of G. 
Since 

[ Z H 5 , 5] Ç Z H 5 ' , 

then Zr\BQCG(B/(ZnB')). By (4.10), B Q CG(B/(Z H B')). Thus 
B'QZr\B'QZ. Therefore, Z H £ centralizes 5 ' and (4.10) yields 
B C C{Bf). Thus 5 satisfies the hypothesis of Theorem 4.2. This contradiction 
completes the proof of Theorem 4.3. 

We may now prove Theorem A. Assume the notation and hypothesis of 
Theorem A, and let P = Op(G) and Z = Z(J(S)). Since Z is an Abelian 
normal subgroup of S, then [P, Z, Z] = 1. Since G is ^-stable and C(P) C P , 
we have that 

ZC(P)/C(P) ç Op(G/C(P)) = P / C ( P ) . 

Therefore, Z C P . Take 5 = P in the preceding theorem. We find that Z is 
a normal subgroup of G\ Let a be an automorphism of G, and take g Ç G such 
that S* = S'. Then Z« = Z(J(Sg)) = Z9 = Z. 

Remark 4.2. By using Lemma 5.3, we may avoid invoking ^-stability to 
show that Z ÇZ P . The preceding results in §§3 and 4 use ^-stability only in 
connection with the replacement theorems. Hence, Theorem A holds if we 
only require that AC{P)/C{P) Q Op(G/C(P)) whenever A G ^f(S), P is a 
normal ^-subgroup of G, and [P, ^4, ^4] = 1. 

Under the stronger hypothesis that Qd(^>) is not involved in G and that 
C(Op(G)) CZ Op(G), we may show by a more complicated argument that 
d(Op(G)) = d(S). Then by Lemma 6.3, G is ^-stable, thus Corollary 3.4 (b) 
applies. 

To obtain an analogue of Corollary 3.3, we require some concepts of sym-
plectic geometry, as in (2, p. I l l and Chapter I I I ) . The following result may be 
verified by straightforward computation. 

LEMMA 4.2. Let V be a finite-dimensional vector space of even dimension over a 
field F of characteristic different from two. Suppose that f is a non-singular 
skew-symmetric bilinear form on V and that G is a subgroup of the symplectic 
group on V with respect tof. Let H be the set of all ordered pairs (x, a), for x G V 
and a Ç F. Define multiplication in H by 

(x, a) (y, £) = (* + y, £/(*, y) + a + 0). 

For each g Ç G, define a mapping A (g) of H into itself by 

(x,a)A(g) = (x°,a). 
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Then: 
(a) Hforms a group under multiplication-, 
(b) For (x, a) and (y, 13) in H, [(#, a), (y, /3)] = (0,/(x, 3/)); 
(c) A is an isomorphism of G into the automorphism group of H. 

In discussing a group G of linear transformations of a vector space V, let 
[V, G] be the subspace of V generated by the elements of the form vx~x for 
v G V and x £ G. This definition coincides with the previous definition of 
[V, G] if V and G are embedded in their semi-direct product. As usual, we 
consider G to be a group of linear transformations on the dual space V* by 
denning 

fe(v) = f(v°~l) for / G F*, g G G, and v G V. 

LEMMA 4.3. Let H be a group of linear transformations of a finite-dimensional 
vector space V. Let F* be the dual space of V. Then Cv* (H) is the subspace of V* 
orthogonal to [V, H]. 

Proof. Let v G V, f £ V*, and h £ H. Ii f £ CV*(H), then 

/ ( O =/(»*) -/(») =/ r l W -/(») =/(*>) -/(») = 0. 
Conversely, if/ is orthogonal to [V, H], then 

r\v) =f»(v) - m =/(»»-') -/(») =/(«*" - P) = 0. 
COROLLARY 4.3. Let p be an odd prime and let A be an Abelian p-group of 

symplectic transformations of a finite-dimensional vector space V over a finite field 
F of characteristic p. Let M — [V, A]. Then there exists a subgroup B of A 
such that: 

(a) [V,B,B] = 1 and 
(b) \A/B\ ^ \M/CM(A)\"K 

Proof. Construct a group H as in Lemma 4.2, and let S be the semi-direct 
product of H by A. Then [H, H] = Z{H) = Z(S). By Corollary 4.1, there 
exists C G s/(S) such that [H, C, C] = 1. Let 

Do = {x: x G V and (x, a) G C for some « G i7}, 

D = {(x, a) : x G D0 and a G F}, 

and 5 = i H C#. Note that D = C C\ H since Z(5) C C. Since C is 
Abelian, DQ is an isotropic subspace of V and Z> is Abelian. However, 
B Ç Ci? Ç Cs(Do) ; thus 5 centralizes Z), by the construction of H. Therefore, 

d(s) = |c| = |c/(cni7)||cn^| = \CH/H\\D\ = 
\A r\ CH\\D\ = \B\\D\ = \BD\. 

Since BD is Abelian, £ D G j / ( 5 ) . Moreover, since B = A C\ CH and 
[H, C, C] = 1, then 

[#, S, B] Ç [#, Cff, CH] ç [H, C, C][ff, i ï ] = [H, H]. 
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Therefore [V,B,B] = 1. We shall show that B satisfies (b). 
Since D0 is isotropic, |JD0| ^ |F | 1 / 2 . Thus 

(4.11) d(S) = \BD\ = \B\ \D0\ \F\ ^ \B\ \V\1/2\F\. 

Let IF be a maximal isotropic subspace of CV(A). 
Since F is a symplectic space, V is A -isomorphic to V*. Hence, by Lemma 

4.3, 

(4.12) \V/M\ = \V/[V,A]\ = \CV(A)\, 

and the radical of CV(A) is CV(A) P\ [V, A], that is, CM(A). Therefore, a 
maximal isotropic subspace W of CV(A) has order 

(4.13) \W\ = \CM(A)\ \CV(A)/CM(A)\^ = \CV(A)\^\CM(A)\^. 

Let 
Wo = {(x, a) : x £ W,a £ F}. 

Then AW0 is Abelian. By (4.11), (4.12), and (4.13), 

\A\ \F\ |Cy(.4)|1/2 |CM(,4)|1/2 = \AWo\ è d(S) = \B\ \M\v*\Cv(A)\"*\F\. 

Thus \A/B\ S \M/CM(A)\1/2. 

Remark 4.3. For arbitrary primes p and arbitrary Abelian p-groups of 
linear transformations, Corollary 4.3 holds if we substitute for (b) the 
condition: 

(b') \A/B\ ^ \M/CM(A)\. 

This may be proved by similar methods that use only Lemmas 4.2 and 4.3 
and Thompson's Replacement Theorem. 

5. A conjugacy condition. Let ^ be the class of all finite ^-groups. We 
define a characteristic junctor K to be a mapping from ^ into ^? with the 
following properties: 

(a) K(P) Ç P f o r a l l P Ç <*f; 
(b) If P G ^ and \P\ > 1, then \K(P)\ > 1; 
(c) If P , Q G *$ and if <t> is an isomorphism of P onto Q, then 

<t>(K(P)) = K(Q). 

Consider the following conditions for a prime p, a finite group G} and a 
characteristic functor K. 

(Cp) Let S be a Sylow p-sub group of G. If W Ç S, g 6 G, awd IF'7 C 5, //zew 
there exist c £ CG(W) and n (E NG(K(S)) such that g = en. 

(Cp*) Let S be a Sylow p-subgroup of G. If W is a p-subgroup of NG(K(S)), 
g e G, and WQ C NG(K(S)), then there exist c £ CG(W) awd « 6 NG(K(S)) 
such that g = en. 

Note that in both (Cp) and (Cp*) we obtain PF*7 = IFW; thus IF is conjugate 
to W° in N(K(S)). Suppose that F is a non-empty subset of S and IF is the 
subgroup of 5 generated by F. If g £ G and V° is contained in 5, then W9 Ç 5. 
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Since C(V) = C(W), the conclusion of Theorem B is equivalent to (Cp) for 
K(S) = Z(J(S)). 

LEMMA 5.1. Let G be a finite group, p a prime, and K a characteristic functor. 
Then (Cp) and (Cp*) are equivalent. 

Proof. Obviously, (Q,*) implies (Cv). Conversely, assume that G satisfies 
(Cp). Let S be a Sylow ^-subgroup of G, and let N = NG(K(S)). Suppose that 
W is a ^-subgroup of N, g £ G, and W° C iV. Take k, m £ N such that 
W* ç 5 and Wm Ç 5. Then 

(T^m)m-1^ = j p * c 5. 

By (CP), there exist c £ C(WW) and n £ N such that m~lgk = en. Now, 
g = mcnk~x = (mcm~l) (mnk~l). Since mnk~l £ iV and 

w c m - i = c»_l e aw™)™"1 = c(wo. 
G satisfies (Q,*). 

THEOREM 5.1. LeJ p be a prime and let S be a Sylow p-subgroup of a finite 
group G. Let K be the characteristic functor given by K(P) = Z(J(P)). Suppose 
that G has at least one of the following properties: 

(a) Whenever Z(S) C H C S, then N(H) satisfies (Cp) ; 
(b) Every element of <y^v{G) satisfies (Cv). 

Then G satisfies (Cv). 

Proof. Let J = J(S). Clearly, we may assume that S T* 1. Note that if 5 
satisfies (a), then every Sylow ^-subgroup of G satisfies (a). We prove the 
theorem in four steps, the first of which is the most difficult. 

(I) IfgtG and Z(S)g C S, then Z(S)Ç C Z(J). 

Proof. We require the methods of Burnside (9, p. 46) and Thompson (13). 
Suppose some g £ G violates (I). Then Z(S) Q S°~\ but Z(S) <£ Z(J(S9~1)). 
Out of all the Sylow ^-subgroups Si of G for which 

Z ( 5 ) C 5 i but Z(S) g Z ( / ( 5 i ) ) , 

choose Si such that \N(J) Pi 5i| is maximal. Let D = N(J) C\ Si and let T0 

be a Sylow ^-subgroup of N(J) C\ N(D). Then D C Si, thus D is not a 
Sylow ^-subgroup of N(J). By Sylow's theorem, 

(5.1) \N(D) H 5i| > \D\ and | r 0 | = \N(J) n #(£>)!„ > |£>|. 

Let i be a subgroup of N(D) P\ 5i that contains Z>. Suppose that 
Z(S)a C Z(7) for every a f i . Let F be the subgroup of D generated by all 
the subgroups of the form Z(S)a for a £ A. Then J C C(F) and 4 Ç N ( F ) . 
Let 5* be a Sylow ^-subgroup of N(V) that contains 4 . Then 5* H C(F) is 
a Sylow ^-subgroup of C(F). Take cG C(F) such that 

/ C ( 5 * n C(F ) ) C Ç5* C . 
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Then J = J(5*c) and Ac C S*c C N(J). Thus 

(5.2) Z(S) = Z(S)C Ç (50e and |(Si)c H #( / ) | è Ml = M(. 

If £> C -4, then by (5.2) and the choice of Su 

Z(S) C Z(/ ( (Si) c ) ) and Z(S) = Z(5) c _ 1 C Z( / (S i ) ) , 

which is false. Hence 4̂ = Z>. 
Taking ^ = Z(5i)2>, we obtain Z(SX) C 2?. By (5.1), £> C # ( # ) C\ Si. 

Hence we cannot take A = N(D) Pi S\. Thus there exists a G N(D) P\ Si 
such that Z(5) a £ Z ( / ) . Note that Z(S)a Ç D Ç JV(/). 

Let Ti be a Sylow ^-subgroup of N(D) that contains 7V Then we have 

Z(S) Ç D Ç T i , Z(5) a C D C T i , 
(5.3) 

| # r i ( J ) | = | r 0 | > |2?|, and Z(5i) Ç 2? C 5i. 

Let J^7 be the set of all non-identity ^-subgroups H of G with the following 
properties: 

(i) There exists a Sylow ^-subgroup T of N(H) and an element g of N(H) 
such that 

z(S) ç r, z(sy = z(sy c r, and |AW)I > |z>| ; 
(ii) If G has property (a), then Z(S2) ^ H ^ S2 for some SylowT ^-subgroup 

S2 of G. 
By (5.3), 1} G Jtif] therefore, Jif is non-empty. Define a partial ordering 

( ^ ) o n J f a s follows: H ^ K ii 
(i)' \N(H)\P< \N(K)\P, or 

(ii)' \N(H)\P = \N(K)\P and |iV(77)| ^ I W ) I -
Let i7 be a maximal element of ffl with respect to ^ . Let N = N(H). Take 

r and g to satisfy (i). If G has property (a), then N satisfies (Cp) by (ii). 
Otherwise, G satisfies (b) and, by (i)' and (ii)', N G ^P{G). Thus, in any 
case, TV satisfies (Cp). By (i), there exists n G NN(Z(J(T))) such that 
Z(S)n = Z(5)a . Let T* be a Sylow ^-subgroup of N(Z(J(T))) that contains 
r , and let S3 be a Sylow ^-subgroup of G that contains T*. Then HQ r ç 5 3 ; 
thus 

r = s3niv(77) D Z ( 4 ) . 

Clearly, Z(S3) C Z(JT) C Z(J(T)). Hence Z{J{T)) G ̂ . By the maximality 
of H, 

\N(T)\P S \N(Z(J(T)))\P = |T*| ^ |7V(i7)|, = | r | . 

Therefore, T is a Sylow ^-subgroup of N(T) and thus of G. Since Z(S) CZ 7" 
and | # r ( / ) | > |Z>|, our choice of S1 insures that Z(S) ç= Z(J(T)). 

Take b £ G such that 5 = T&. Since 5 and 7(7") are contained in C(Z(S)), 
there exists c G C(Z(S)) such that / ( r ) C 5C. Clearly, J(T) = J(S)C = Jc. 
Thus, 

J** = j(ry = j(S) = J. 
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Let h = cb. Then b = c~lh and h G iV(J'). Take n as in the above paragraph, 
and let k = nb. Then 

* = nb G N(J(T)Y = N(J) 
and 

n = Ô&&-1 = c~lhkh~lc. 

Let F = ZGS)***"1 Since hkh-1 G W ) , F Ç Z(7). Moreover, 

Z(S)a = Z(S)n = Z(S)c~lMh~lc = Z{S)hm~lc = Yc. 

By (5.3), P Ç D Ç tf(7) Ç N{Z{J)). 
Let X = N(Z(S)). If G satisfies (a), let M = Z . Otherwise, let M be an 

element of <Jtv{G) that contains X. In either case, M satisfies (Cp) by the 
hypothesis of the theorem. Therefore, M satisfies (Cp*) by Lemma 5.1. 
Moreover, S is a Sylow ^-subgroup of M. Since c G C(Z(5)) Ç J{ and 
Y Q Z(J) Q S, Y and Yc are ^-subgroups of NM(Z(J)) that are conjugate 
in Af. By ( C / ) , there exists w G NM(Z(J)) such that Fc = Fw. Since 
F Ç Z ( 7 ) , 

Z(S)a = Yc = Ym QZ(J), 

contrary to the choice of a. This completes the proof of step (I). 

(II) G satisfies (C„) for W = Z(S). 

Proof. Suppose that g G G and that Z{S)g C 5. By (I), Z(S) ' Ç Z(7). 
Therefore, C(Z{S)) contains J9 and 5. Take c G C(Z(S)) such that 
(Jff_1)c C 5, and let w = g~lc. Then g = c r 1 . Clearly, Jn = 7(5) = 7 ; thus 
» G # ( 7 ) £ N{Z{J)). 

(III) G satisfies (Cp) when CS(W) is a Sylow p-subgroup of CG(W). 

Proof. Let Z = Z(7). Suppose that g G G and that W C 5. Then Z(S) 
centralizes W°. Therefore, Z(S) '"1 C C(IF). Take a G C(W0 such that 
Z(S)°~la e C5(W) By (II), there exists c G C(Z(S)) and » G iV(Z) such 
that g~xa = en. Then 

w° = wan~'c~1 = wn~lc~\ 
Let M = N(Z(S)) if G satisfies (a) ; otherwise, let M be an element oi<J?p(G) 
that contains N(Z(S)). Then 5 is a Sylow ^-subgroup of M, and M satisfies 
(Cp) and (Cp*). Since Wg Q S, W Q NM(Z). Consequently, 

Wn~Y C N(Z) and W*'1 = Wgc Q Mc = M. 

Thus W° and Wn are ^-subgroups of NM(Z) that are conjugate in M. By 
(Cp*), there exist d G CV(TT^) and m G NM(Z) such that c = dm. Then for 
all w £ W, 

wn~1 _ ^ a r c - 1
 = WQC _ ^^dm _ ((W0\d)m = (w0)m = Wgm' 

hence w = wgmn. Thus 

gmw G C(W), mn G N(Z), and g = (gmn) (mn)~l. 
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(IV) G satisfies (Cp) for arbitrary W. 

Proof. Let Z = Z(J). Suppose that W° C S. Let Si be a Sylow ^-subgroup 
of G that contains some Sylow ^-subgroup of N(W). Take x G G such that 
S* = 5i and let V = W^"1. Then W C Slf F = I P " 1 C 5, and NS(V) is a 
Sylow ^-subgroup of N(V). Now, C5(F) = NS(V) H C(F), which is a Sylow 
^-subgroup of C(V). Also, F* = IF C 5 and Vxg = Wg C 5. By (III) , there 
exist c, d £ C(V) and m, n £ N(Z) such that c-1ra = x and d« = xg. Since 
W = Vx = Vm, we have mrhdm = M ) m Ç C(F)m = C(IF). Therefore, 

m-lcdm 6 C(IF), w"1» G N(Z), 

and 

g = x~ldn = m~lcdn = (m~lcdm)(m~ln). 

This completes the proof of Theorem 5.1. 

LEMMA 5.2. Le/ pbea prime and let S be a Sylow p-sub group of a finite group G. 
Suppose that P = S C\ Op>,p(G) and G = G/Op>(G). If CS(P) C P , *fow 
C(0„(G)) ç 0 , (0 ) . 

Proof. Let C = C(P). Since P is a normal subgroup of 5, CS(P) is a Sylow 
^-subgroup of C. But 

C5(P) = P r\ C(P) = Z(P) and Z(P) C Z(C). 

Thus Z(P) is a Sylow ^-subgroup of C that is contained in the centre of its 
normalizer in C. By a theorem of Burnside (8, p. 203), C has a normal 
^-complement. Thus C = Op>lP(C). Since Op>(C) C Op>(G), then 

C(P) = CÇO^, p (G) . 

Let L = Op>tP(G) and ikf = Op>(G). Since L/ikf is a £-group, then L = MP. 
By the Frattini argument, 

G = LN(P) = MPN(P) = MN(P). 

Suppose that 

x G Cë(Op(G)) = CG(MP/M). 

Take x G N(P) such that x lies in the coset x. Then 

[x,P] Q MC\P = 1. 

Thus x e C(P) C L , and x G L/^f = Op(G). 

LEMMA 5.3. Let P be a normal subgroup of a finite p-group S, and let A be 
the automorphism group of S. Then CA(P) C\ CA(S/P) is a p-group. 

Proof. Let a G CA(P) C\ CA(S/P) and n = \P\. We will show that an = 1. 
Suppose that g Ç 5 and that ga = gh. Then A Ç P and 

r = gft, r 2 = (^ ) a = gah = gh\..., r n = ^ w = g. 
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THEOREM 5.2. Let G be a finite group, p a prime, and K a characteristic 
functor. Assume that every subquotient Q of G has the following properties: 

(a) If C(0P(Q)) Cj Op(Q), then K(QV) is a normal subgroup of Q for every 
Sylow p-subgroup Qp of Q; 

(b) 7/101 < \G\, then Q satisfies (Q,). 
Then, if 0P(G) 9^ 1, G satisfies (Cp). 

Note. For p odd, Theorem A and Example 10.1 show that G satisfies (a) 
for some K if and only if Qd(p) is not involved in G. In that case we may let 
K(P) = Z(J(P)). 

Proof. Let P = Op(G), N = N(K(S)), and R = PC(P) C\ S. Since PC(P) 
is a normal subgroup of G, the Frattini argument yields 

(5.4) G = PC(P)N(R) = C(P)PN(R) = C(P)N(R). 

Let M = Op>(N(R)), Px = S H Op>tP(N(R)), and Q = N(R)/M. Then 

CsiPJ ç CS(R) c C5(P) Ç i ^ ç P i . 

By Lemma 5.2, CQ(Op(Q)) C O „ ( 0 . By (a), K(SM/M) is a normal subgroup 
of Q. By the definition of a characteristic functor, K(SM/M) = K{S)M/M. 
Thus X (5) Af is a normal subgroup of N(R). Since i£(S) is a Sylow ^-subgroup 
of K(S)M, we have that 

(5.5) N(R) = M(N(K(S)) H iV(P)) = MNN(R) 

by the Frattini argument. However, 

[ ? , i ] ç p n i = i . 

Hence, by (5.4) and (5.5), 

G = C(P)N(R) = C(P)MNN(R) = C(P)NN(R) = C(P)N. 

Suppose that C(P)S C G. Take IF Ç 5 and g € G such that W ç 5. 
Choose d G C(P) and n £ N such that rfw = g. Then 

Wd = WQn~Y Ç iVw_1 = iV. 

Since d € C(P)S C G and W Ç C(P)S, there exist c G C(W) and m Ç iV 
such that cm = d. Hence g = dn = c(mn). Thus G satisfies (Cp). 

We assume henceforth that C(P)S = G. Suppose that W C S, g G G, and 
1/p (Z 5. Take c0 G C(P) and n0 £ S such that c0?Zo = g. We have n0 6 iV", 
and if W C P , then c0 G C(W0. We may assume that I f ^ P . Then 
1 C P C 5. Let G = G/P, 5 = 5 /P , and F = TT/P, and let g be the coset 
of P that contains g. Then 

I P £ 3 . 
By (b), 

(5.6) g = en for some c G CQ(W) and » € Nv(K(S)). 
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T a k e T Ç G such t h a t P C T a n d T/P = K(S). Since P C S, we have t h a t 

(5.7) 8 * 1, X ( S ) ^ 1, P C T , and 5 C iV(P) C G. 

Moreover, 

Le t w be an element of the coset n. T h e n n G iV(P) and W" C 5 . By (5.7) 
there exist <i G C(l/F) and m ^ N such t h a t dm = n. Obviously, d G CG(W). 
By (5.6), gm- 1 G CG(W). T h u s 

(5.8) g G CG(W)N. 

Let x be a / / -e lement of CG(W). Since G = C(P)S, G/C(P) is a /?-group. 
Hence x G C(P). T h u s x centralizes WP/P and P . By L e m m a 5.3, x cen­
tralizes WP. T h u s C G ( T T ) / C G ( ^ P ) is a £-group. When CS(W) is a Sylow 
^-subgroup of CG(W)j (5.8) yields 

g G C G ( 1 W = CG(WP)Cs(W)N ç C G ( W 0 ^ , 

as desired. T h e general case now follows by the method used in s tep (IV) of 
the proof of Theorem 5.1. 

Remark 5.1. After Theorem 5.1 (a) had been proved, i t was generalized in 
several ways by Alperin and Gorenstein (1) to the case where K is an a rb i t ra ry 
characterist ic functor. Using these generalizations, we may prove a s tronger 
form of Theorem 5.2, which we will no t require in this paper. 

T H E O R E M 5.2'. Let G be a finite group, p a prime, and K a characteristic 
functor. Assume that whenever Q is a subquotient of G and C(Op(Q)) CI 0P(Q), 
then K(QP) is a normal subgroup of Q for every Sylow p-subgroup Qv of Q. Then 
G satisfies (Cp). 

6. Proof of T h e o r e m B. In this section we show t h a t a finite group in 
which Qd(p) is no t involved mus t be ^-s table . Th is result then yields 
Theorem B. 

L E M M A 6.1 (Baer) . Let g be a p-element of a finite group G. Suppose that for 
every x G G, g and gx generate a p-group. Then g G 0P(G). 

Proof. Le t c be the nilpotence class of a Sylow ^-subgroup of G. Then 

[x, g; c + 2] = [(g*)-^, g;c+l] = l for all x G G. 

T h u s g is a (bounded) left Engel e lement of G (12, p . 207). By a theorem of 
Baer (12, p . 212), g lies in a normal ni lpotent subgroup N of G. Clearly, 
g G Op(N) ç Op(G). 

L E M M A 6.2. Let p be an odd prime and let F = GF(p). Assume that H is a 
group of linear transformations that acts irreducibly and faithfully on a vector 
space V over F. Suppose that H is generated by two p-element s, each with minimal 
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polynomial (x — l)2. Then there exists a field K of endomorphisms of V such 
that 

(a) F is contained in K ; 
(b) V has dimension two over K; and 
(c) either G is the special linear group of V over K, or \K\ = 9 and G is 

isomorphic to SL(2, 5). 

Proof. A similar but incorrect statement appears in (8, Lemma 4.1, p. 136). 
In the proof of that lemma, the authors showed that the dimension m oî V 
over F is even and that for a suitable basis of V, the elements x and y are 
represented by matrices of the form 

\o i) and (/ / ) • 
(Here, the submatrices are square matrices of degree \m, I being the identity 
matrix.) An easy argument shows that R is the matrix of a non-singular 
irreducible transformation. Let Ki be the algebra over F that is generated 
by R. By Schur's lemma, K± is a field. Let K be the field of endomorphisms 
of V represented by the matrices of the form 

\o s)' seKl-
Then K satisfies (a) and (b). Now, (c) follows from a result of Dickson 
(6, Theorem 2.8.4). 

Remark. The author thanks Professors J. Alperin and D. Gorenstein for 
informing him of the error in (8) and of the appearance of Dickson's result 
in (6). 

LEMMA 6.3. Let p be an odd prime, and let G be a finite group. The following are 
equivalent: 

(a) Qd(£) is not involved in G; 
(b) Every subquotient of G is p-stable. 

Proof. I t was pointed out in §2 that Qd(p) is not ^-stable and thus that (b) 
implies (a). Conversely, assume that some subquotient Q of G is not ^-stable. 
Take Q of minimal order. We will prove that Q is isomorphic to Qd(p). 

Clearly, we may assume that Q = G/l = G. Then by the definition of 
p-stability, 0P(G) 7e 1. Let H be a ^-subgroup of G of least order subject to 
the following conditions: 

(i) 0P' (G)H is a normal subgroup of G; 
(ii) N(H) contains an element x such that [H, x, x] = 1 and such that the 

coset of C(H) containing x lies outside Op(N(H)/C(H)). 
Let M = 0V>(G) and C = CG(MH/M). By the Frattini argument, 

(6.1) G = MHN(H) = MN{H). 
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Hence Af ç C Ç MN(H). Therefore, 

(6.2) C = M(N(H) r\C) = MC(H). 

Denote by a bar the image of an element or subgroup of G in the natural 
mapping of G onto G/M. By (6.1) and (6.2), 

W(H) = G = Nc(H), ~C(H~) = C = Co(H). 

Since N(H) C\ M Ç N(H) C\ C = C(H), we obtain the natural isomorphisms 

N(H)/C(H) s (N(H)/(C(H) H M))/(C(H)/(C(H) r\ M)) ^ 

NÎH)/CÏH) S Në(H)/Cë(H). 

Therefore, [5", £, x] = 1, but the coset of CG(H) containing x does not lie in 
Op(NG(H)/CG(H)). Therefore G is not ^-stable. Thus M = 1, C = C(#) , 
and H is a normal subgroup of G. 

Let i^ be a Sylow r-subgroup of C for any prime r. By the Frattini argument, 
G = CN(R). Take c G C and y 6 # ( £ ) such that cy = x; then [#, ;y, y] = 1. 
In the natural homomorphism of G onto G/C, 3> maps onto the coset of x and 
# ( £ ) maps onto G/C. Moreover, # Ç CCR) Ç # ( £ ) . Thus, iV(i?) is not 
^-stable. Hence G = N(R). Since 0P>{G) = 1 and r is an arbitrary prime, 
we have that C is a ^-group. 

Suppose that G contains a normal subgroup K such that 1 <ZL K ÇL H. 
Take i^ to be a minimal normal subgroup of G. Then i£ is an elementary 
Abelian group and G is irreducible on K. By Lemma 3.4, 

(6.3) Op(G/C(K)) = 1. 

Since [K, x, x] C [H, x, x] = 1, we obtain x G C(K) by (6.3) and our choice 
of H. Take N Ç G such that 

CG(H/K)QN and N/CG(H/K) = Op(G/CG(H/K)). 

Since G/i£ is ^-stable and [H, x, x] = 1 Ç K, we have x £ N. Therefore, 
x G CN(K). Let D = CG(H/K). Since N/D is a £-group, so are CN(K)D/D 
and C ^ W / C C A T C S : ) H D ) . NOW, 

(CN(K) H D ) / C = (CG(K) H CG(H/K))/CG(H), 

which is a ^>-group by Lemma 5.3. Since C is a ^-group, so are CN{K) C\ D 
and CN(K). Thus x G CN(K) C 0P(G). This is impossible since 

0 P ( G ) C / C Ç O , ( G / C ) . 

Hence i£ does not exist. Consequently, 

(6.4) H is an elementary Abelian group, and G is irreducible on H. 

Let w G G, and let G* be the subgroup of G generated by x, xw, and C. We 
choose w such that G*/C is not a ^?-group; this is possible by Lemma 6.1. 
Then Op(G*/C) C G*/C. Since 

[#, x, x] = 1 and [If, xw, xw] = [Hw, xw, xw] = [H, x, x]w = 1, 
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G* is not ^-stable. Therefore, 

(6.5) G = G*. 

We consider H as a vector space over GF(p). Let y be the linear trans­
formation of H given by conjugation by x. For each h £ H, 

Wy-v2 = [h,x,x] = 1. 

Thus (y - l ) 2 = 0, and y» - 1 = (y - l)p = (y - l)2(;y - iy~2 = 0. The 
same is true of the automorphism corresponding to xw. Hence by (6.4), (6.5), 
and Lemma 6.2, there exists a finite field K0 such that H is a two-dimensional 
vector space over K0 and G/C corresponds either to the special linear group of 
H over K0 or possibly (if \K0\ = 9) toSL(2, 5). Then the element y introduced 
above is contained in a subgroup L of G/C that isomorphic to SL(2, p). 
Since y (? Ov{L) and since every proper subgroup of G is ^-stable, we have that 
L = G/C. Thusi^o = GF(p). 

Thus G/C is isomorphic to SL(2, p). Therefore, G/C contains a unique 
subgroup T/C of order two, and the non-identity element of T/C corresponds 
to the automorphism h —> h-1 of H. Let T2 be a Sylow 2-subgroup of T. By 
the Frattini argument, 

G = TN(T2) = CT2N(T2) = CN(T2). 

Therefore, N(T2)H is not ^-stable; thus 

(6.6) G = N(T2)H. 

Let E = C C\ N(T2). Since C is a normal subgroup of G, E is normalized by 
N(T2). As it is obviously centralized by H, E is a normal subgroup of G. 
Moreover, 

[£, r 2 ] ç c n r 2 c op(G) n r2 = 1 ; 

thus E n H C G(r2) P\ # = 1. By (6.6), C = £ # . Consequently, 
C = EXH. Hence G/E is not ^-stable. Thus £ = 1, and C = H. This 
completes the proof of Lemma 6.3. 

We may now prove Theorem B by induction on |G|. Assume the theorem 
holds for all groups of order less that |G|. Obviously, wTe may assume that p 
divides |G|. By Theorem 5.1 (a), we may assume that Op(G) ^ 1. Let 
K(R) = Z(J(R)) for every subquotient R of G that is a ^-group. Then K is a 
characteristic functor. By Lemma 6.3 and Theorem A, K satisfies condition (a) 
of Theorem 5.2. Since Qd(^) is not involved in any subquotient of G, condition 
(b) holds by the induction hypothesis. Hence Theorem B follows from 
Theorem 5.2. 

COROLLARY 6.1. Let p be an odd prime and let S be a Sylow p-subgroup of a 
finite group G. Assume that Qd(p) is not involved in G. For every non-empty 
subset H of S, 

N(H) = C(H)(N(H) r\ N(Z(J(S)))). 
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7. Proof of Theorem C. 

LEMMA 7.1. Let G be a finite group and p a prime. Suppose that H C G and 
G = Op>(G)H. Let W be a p-subgroup of H. If g £ G and WQ Ç H, then there 
exist c G 0V'{G) C\ C(W) and h G H such that g = ch. 

Proof. Take b G Ov> (G) and k G H such that g = èfe. Then 

Let P be the subgroup of G generated by W and Wb. Then R Q H, and since 
17 Ç P Ç M V ( G ) , we have that 

R = W(0P>(G) r\R). 

Therefore, W and Wb are Sylow ^-subgroups of P and there exists 
d G 0V>(G) C\ R such that (Wb)d = W. For every x £ W, x~lxM G R and 
x = xM (modulo Op>(G)). Thus ar1*6* ^ H CV(G) = 1 for all x £ W. Let 
c = bd and A = d~lk. 

LEMMA 7.2. Le/ >̂ be an odd prime and let G be a finite p-stable group such 
that Op(G) ^ 1. Then G/Ov>{G) is p-stable. 

Proof. Let M = Ov>(G) and G = G/M. Then 0„,(G) = 1 and 0 , (6 ) ^ 1. 
Let P be a normal ^-subgroup of G. Suppose x G G and [P, #, x] = 1. Take 
P ç: G such that M QR and i?/Jkf = P . Let P be a Sylow ^-subgroup of P . 
By the Frattini argument, G = MN(P). Take x G iV(P) and L C iV(P) such 
that x lies in the coset x, C{P) C P, and L/C(P) = Op(N(P)/C(P)). Then 

[P, x, x] G P H M = 1. 

Since G is ^-stable, x G P. Therefore, x G LM/M. Since C(P)M/M C C Ô ( P ) 
and L/C(P) is a ^-group, we conclude that (LM/M)/CG(P) is a ^-group. 
Thus G is ^-stable. 

Consider the following condition for a prime £, a finite group G, and a 
characteristic functor X: 

(Fp) Let S be a Sylow p-subgroup of G. Then 

G = Op,(G)NG(K(S)). 

THEOREM 7.1. Let G be a finite group, p a prime, and K a characteristic functor. 
Suppose that S is a Sylow p-subgroup of G. Assume that G satisfies (Cp) and that 
every element of ^P{G) satisfies (Fp). Then, for every non-identity subgroup 
W of S, 

N(W) = 0V'{N(W))(N(W) C\ N(K{S))). 

Proof. Suppose that 1 C W C S. Let N = N(W) and L = 0P.(N). Then 
N is contained in some element M of ^P{G). Obviously, for any such M, 

(7.1) WQM and N = L(N C\ M). 
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Out of all the elements oi*JKv(G) that satisfy (7.1), choose M such that \M\P 

is maximal. Let T be a Sylow ^-subgroup of M that contains W. By (Fp) 
(for M) and Lemma 7.1, 

M = Op>{M)NM(K{T)) and 

ivn M = (<v(M) n cw)A^nM(z(r)). 
Now, Op>(M) C\ C(W) is a normal subgroup of N C\ M. Therefore, by (7.1), 
L(Op>(M) r\ C(W)) is a normal subgroup of N. Since it is a ^'-group and 
contains L, it must coincide with L. By (7.1) and (7.2), 

(7.3) TV = LNNr^M(K{T)) = LNN(K{T)). 

Let Mi be an element of Jtp(G) that contains N(K(T)). By (7.3), 
N = L(N r\ Mi). By our choice of Af, 

\T\ = \M\P ^ \M,\P ^ | W ( r ) ) | , ^ | iV(D|, è | r | . 

Therefore, T is a Sylow ^-subgroup of its normalizer. By Sylow's theorem, T is 
a Sylow ^-subgroup of G. Take g Ç G such that 7^ = 5. Then l^P C 5. By 
(Cp), there exist c £ C(W0 and n £ N(K(S)) such that g = cw. Now, 

K{T)C = K(TC) = K(T9n~l) = K(T9Y~l = K(S)n~' = K(S) 

and iV = iV(W0 = N{WC) = N(W)C = Nc. Therefore, by (7.3), 

N = L*NN(K(T))< = Ov.{Ne)NN{K(TY) = LNN(K(S)). 

This completes the proof of Theorem 7.1. 

We may now prove Theorem C. Let K(P) = Z(J(P)) for every finite 
£>-group P. Assume that G is ^-stable and ^-constrained. We will first verify 
the hypothesis of Theorem 7.1. 

Suppose that M £ ^P{G) and T is a Sylow ^-subgroup of M. Let 
M = M/OpJ(M) and f = TOp,(M)l_Op.{M). Since M is ^-stable and ^-con­
strained, M is ^-stable and C(Op(M)) C 0P(M), by Lemmas 7.2 and 5.2. 
By Theorem A, Z(J(T)) is a normal subgroup of M. Since 

Z ( / ( ? ) ) = Z(J(T))Op>(M)/Op>(M), 
then 

M = Op>(M)NM(Z(J(T))) 

by the Frattini argument. Thus I f satisfies (Fp). By Lemma 7.1, M satisfies 
(Cp). Hence by Theorem 5.1 (b), G satisfies (Cp). Thus, G satisfies the hypo­
thesis of Theorem 7.1. 

Suppose that F is a non-empty subset of S, g Ç G, and Vs is contained in S. 
Let W be the subgroup of 5 generated by V. Then W° Q S. By (Cp), there 
exist c e C{W) and n G N(Z(J(S))) such that g = en. By Theorem 7.1, 
there exist d £ Op>(N(W)) and m 6 iV(TF) H N(Z(J(S))) such that dm = c. 
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Now 
[W,d] Ç wnOp.(N(W)); 

thus d G C(W). Hence 

d e ov>{N(w)) r\ c{w) c oP,(c(w)) = OAC{V)) ç CV(;V(F)). 

Since g = d{mn) and w^ G N(Z(J(S)))> this completes the proof of 
Theorem C. 

COROLLARY 7.1. Let p be an odd prime and let S be a Sylow p-siibgroup of a 
finite group G. Assume that G is p-stable and p-constrained. Then for every 
non-empty subset H of S, 

N(H) = Ov\C{H)){N{H) r\ N(Z(J(S)))). 

8. Proof of Theorem D. We prove Theorem D by induction on |G|. 
Assume that the theorem is false and that G is a counter-example of least 
order. Using the method of Thompson, as in (13, pp. 43-44), we find that 
C(Op(G)) Ç Op(G), that G is solvable, and that there exists a prime q with 
the following properties: 

(i) the Sylow g-subgroups of G are Abelian; 
(ii) q 9* p] and 

(iii) p and q are the only prime divisors of \G\. 
Since p is odd, G has an Abelian Sylow 2-subgroup. Hence Qd(p) is not 
involved in G. By Lemmas 6.3, G is ^-stable. (This also follows from Theorem B 
of Hall and Higman (10).) Since C{Ov{G)) C Op(G), Z{J{S)) is a normal 
subgroup of G, by Theorem A. Thus G = N(Z(J(S))). This contradiction 
completes the proof of Theorem D. 

9. A self-centralizing subgroup. Let 5 be an arbitrary finite p-group. 
Define two sequences of characteristic subgroups of 5 in the following manner. 
Let KQ = 1 and So = S. Given K0, . . . , Ku and So, . . . , Siy let Ki+i and 
Si+i be the subgroups of S that contain K{ and satisfy 

K^/K^ ZViSt/Kt)) and Si+1/K, = C ^ - ( i W ^ ) . 

We let ZJi(S) = Kt for all i. Thus ZJ0(S) = 1, ZJX{S) = Z(J(S)), and 

ZJ0(S) C ZMS) Q . . . and S0 2 Si 2 . . . . 
Moreover, 

(9.1) Z / < + i (5 ) /Z / i (5 ) = ZJiiSt/ZMS)) for i = 0, 1, 2, . . . . 

Let n be the smallest integer such that ZJn(S) = ZJn+\(S) = . . . , and let 
ZJ*(5) = Z7B(5).Then 

1 = Kn+1/Kn = Z(J(Sn/Kn)), 
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and therefore Sn = Kn. We note that if x £ C{Kn), then x Ç St for all i. As 
a result, 

(9.2) C(ZJ*(5)) C Z J * ( S ) . 

Clearly, Z7* and ZJ0, ZJi, . . . determine characteristic functors, and ZJ* 
has the additional property (9.2). We shall prove that ZJ* satisfies some 
analogues of Theorems A through D. 

LEMMA 9.1. Let p be a prime and let She a Sylow p-subgroup of a finite group G. 
Suppose that N is a normal subgroup of G and that C(Op(G)) C 0P{G). Then: 

(a) CN{0P{N)) QOp(N); 
(b) If NQ Z(G), then CG/N(Op(G/N)) C Op(G/N). 

Proof, (a) Let x G CN(Op(N)) and P = 0P(G). Then 

[P,x] ^PC\N QOp(N). 

Thus x centralizes P/Op(N) and 0P(N). Since C(P) is a ^-group, x is a, p-
element by Lemma 5.3. Thus CN(Op(N)) is a normal ^-subgroup of N, and 
therefore CN(Op(N)) £ 0P(N). 

(b) Let P = 0P(G). Since C(P) ç P , we have that TV Ç P . Thus 

O„(G/i\0 = P/iV. 
Now 

CG(P/N) = C0(P/N) r\ CG(N). 

As in the proof of (a), CG(P/N) is a £-group. Hence CG/N(P/N) C P/iV. 

LEMMA 9.2. Le/ £ 6e a prime and let S be a Sylow p-subgroup of a finite group G. 
Suppose N is a normal subgroup of G and CS{N) C N Ç S. Then 

C(N) = Z(iV) X 0^(G). 

Proof. Let C = C(iV) and C = C/Op\C). Then Z(N) = S Pi C, which is 
a Sylow ^-subgroup of C. Since Z(N) C Z(C), Burnside's transfer theorem 
(9, p. 203) implies that 

C = Z(N)0P>(C) = Z(iV) X CV(C). 

Now, CV(C) £ Op>(G). On the other hand, 

[# , (V(G)] QNKOP'(G) = 1. 

Since C/Op>(C) is a ^-group, Op>(G) C CV(C). Thus Op>(G) = Op'(C). 

THEOREM A'. Le/ ?̂ 6e a?z 0<id prime and let S be a Sylow p-subgroup of a 
finite group G. Suppose that C(Op{G)) C Op(G) and that Qd(p) is not involved 
in G. Then, ZJ*(S) is a characteristic subgroup of G and C(ZJ*(S)) C ZJ*(S). 

Proof. Let K = ZJ*(S). Since [Op*(G), Op(G)] C O^(G) n O , ( G ) = l , we 
have that Ov>{G) = 1. Suppose that i£ is a normal subgroup of G. From the 

https://doi.org/10.4153/CJM-1968-107-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-107-2


1130 GEORGE GLAUBERMAN 

last step of the proof of Theorem A, we see that K is a characteristic subgroup 
of G. Since 0P'{G) = 1, we have that C{K) Q K by Lemma 9.2. 

Thus, it suffices to show that K is a normal subgroup of G. Take Ki, K2, . . . 
and 5i, 5*2, . . . as above. We shall prove by induction on \G\ t h a t i ^ is a normal 
subgroup of G for i =• 1, 2, . . . . We may assume that p divides \G\. 

By Lemma 6.3, G is ^-stable. Since K± = Z(J(S)), Kx is a normal subgroup 
of G by Theorem A. Let C = C(K1) and C = C/Kx. Then Si = 5 C\ C, 
which is a Sylow ^-subgroup of C. Therefore 

(9.3) Si/Ki is a Sylow ^-subgroup of C. 

Let P = Ov{C). By Lemma 9.1 (a), CC(P) C P . By Lemma 9.1 (b), 

Cd(Op(C)) ç 0,(C). 

Obviously, Qd(^) is not involved in C. Suppose that i is an integer and 
i ^ 2. By the induction hypothesis, (ZJi-.\(Si/Ki))/K\ is a normal, and 
therefore a characteristic, subgroup of C. By (9.1), 

Kt/K! = (ZJ^iSt/KM/Ki. 

Thus Kf/Ki is a characteristic subgroup of C. Hence Kt/Ki is a normal 
subgroup of G/Ki, and i£* is a normal subgroup of G. 

Since X = Kn for some w, we have that K is a normal subgroup of G. 

THEOREM B'. Let p be an odd prime and let She a Sylow p-sub group of a finite 
group G. Assume that Qd(p) is not involved in G. Suppose that W is a non­
empty subset of S, g G G, and W9 is contained in S. Then there exist c G C{W) 
and n G N(ZJ*(S)) such that g = en. 

Proof. We use induction on |G|. Assume the theorem holds for all groups of 
order less than |G|. By Lemma 6.3, G is ^-stable. Clearly, we may assume that 
p divides \G\. If Ov(G) ^ 1, the result follows from Theorem A' and Theorem 
5.2. Assume Ov(G) = 1. By Theorem B, there exist d £ C(W) and 
m e N(Z(J(S))) such that dm = g. Since Op(G) = 1, N(Z(J(S))) C G. 
By the induction hypothesis, there exist df G C(W) and m' (Ï N(ZJ*(S)) 
such that d'm' = m. Then we may let c = dd' and n = m! to complete the 
proof. 

THEOREM C Let p be an odd prime and let S be a Sylow p-sub group of a 
finite group G. Assume that Qd(p) is not involved in G and that G is p-con-
strained. Suppose that W is a non-empty subset of S, g G G, and W9 is contained 
in S. Then there exist c Ç Ov>{C(W)) and n G N(ZJ*(S)) such that g = en. 

Proof. Let K(P) = ZJ*(P) for every finite £>-group P. Then G satisfies 
(Cp) by Theorem B'. The remainder of the proof is parallel to that of 
Theorem C. 
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THEOREM D'. Let p be an odd prime, and let S be a Sylow p-subgroup of a 
finite group G. Then G has a normal p-complement if and only if 

N(ZJ*(S))/C(ZJ*(S)) 

is a p-group. 

Proof. By imitating the proof of Theorem D, we find that G has a normal 
^-complement if and only if N(ZJ*(S)) has a normal ^-complement. Let 
Z = ZJ*(S) and L = N(Z). By Lemma 9.2, C{Z) = Z{Z) X Ov>(L). There­
fore, L has a normal ^-complement if and only if L/C(Z) is a ^>-group. 

10. Variations and counter-examples. The following lemma can be 
proved by straightforward computation. 

LEMMA 10.1. Let V and W be finite-dimensional vector spaces over a field F. 
Suppose that G is a faithful operator group of linear transformations on V and 
also on W, and suppose that f is a bilinear G-mapping of V and W into F. Let 
H be the set of all ordered triples (y, w, a) for v £ V, w £ W, and a Ç F. Define 
multiplication on H by 

Oi, Wi, ai) (v2, w2, a2) = Oi + v2, W! + w2, ai + a2 — f(v2, Wi)). 

For each g G G, define a mapping A (g) of H into itself by 

(y,w,a)A(9) = (v°,wg,a). 

Then: 
(a) H forms a group under multiplication ; 
(b) For (v, w, a), (vi, Wi, «i), and (v2, w2, a2) in H, 

(v, w, a ) - 1 = (—v, —w, —f(v, w) — a) 

and 

[Oi, wi, ai), (v2, w2, a2)] = (0,0,f(vi,w2) —f(v2,Wi)); 

(c) A is an isomorphism of G into the automorphism group of H. 

Example 10.1. The hypothesis of ^-stability, or some similar condition, 
seems necessary for Theorems A, B, and C and analogous statements. Simi­
larly, Theorem D and possible analogues fail for p = 2. For example, let p be 
a prime, and let G = Qd(p). A Sylow ^-subgroup 5 of G is a dihedral group 
of order eight if p = 2 and a non-Abelian group of order ps and exponent p 
if p is odd. Then Z(J(S)) = Z(S). The only characteristic subgroups are 
Z{S), S, and, if p = 2, the cyclic subgroup T of order four in S. Although 
C(Op(G)) = Op(G), none of these characteristic subgroups is a normal sub­
group of G. Thus G does not satisfy the conclusions of Theorem A, B, or C, 
and these conclusions are also invalid if we replace Z(J{S)) by any charac­
teristic subgroup of S. If p = 2, then G is isomorphic to the symmetric group 
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of degree four and does not have a normal ^-complement, although 

N(Z(S)) = N(T) = N(S) = S, 

which has a trivial normal ^-complement. Thus Theorem D fails for p = 2. 

Example 10.2. Let 5 be a Sylow 2-subgroup of a finite group G in which 
C(02(G)) C 02(G). If Qd(2) is not involved in G, there may be a characteristic 
subgroup K(S) of 5 that is normal in G (and depends only on 5, not on G). 
However, we will show that Z(J(S)) is not that subgroup. 

Let a be an odd prime and let F be a finite field of characteristic 2 that 
contains a primitive qth root of unity, say, co. Suppose that V and W are 
two-dimensional vector spaces over F. Let D be a dihedral group of order 2g 
with generators r and TV such that 

r2 = irQ = 1, r_17rr = TT~1. 

Let {#i, x2} and {y^y^) be bases of V and W, respectively. We consider D 
as a (faithful) operator group of linear transformations on V and W by 
defining 

xiT = x2, x2
T = xi, yiT = y 2, yf = yi, 

and 

X i r = COXi, X271" = C 0 _ 1 X 2 , ^ l * " = C 0 _ 1 ^ i , 3/271" = C03>2. 

Let / be the bilinear mapping of V and W into F determined by 

/ (*i , yi) = /(*2, ^2) = 1 and f(xx, y2) = f(x2, yi) = 0. 

T h e n / is a D-mapping, and we may construct a corresponding group H as in 
Lemma 10.1. By Lemma 10.1 (c), we may consider D to be a group of auto­
morphisms of H. Let G be the semi-direct product of H by D. 

Let 5 be the subgroup of G that is generated by H and r. Then 5 is a Sylow 
2-subgroup of G and 

Z(S) = Z{H) = {(0,0, a): a 6 i7}. 

C/rO") = {(/tai + 0*2, jyi + jy2, a): a, /3, 7 G ^} 

C Z T T O W = Z(S/Z(H)) = CH(T)/Z(H). 

Thus C,S(T) is a n elementary Abelian group of order 2|/ r |3. We claim that 
^ ( S ) = {Cs(r)}. 

Suppose that A is an Abelian subgroup of S and |^4| ^ 2|F|3. Since 
|S/ i ï | = 2 , \A r\H\ ^ \F\\ Now, the commutator map from H X H into 
Z(H) corresponds to a non-singular skew-symmetric bilinear form on the 
internal direct sum of V and W. This direct sum has order | F\4 and has maximal 
isotropic subspaces of order \F\2. Therefore, d(H) = \F\2\Z(H)\ = \F\3, and 

Moreover, 

and 
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\AC\H\-g \F\\ Hence A C\ H Ç. SS?(H), \A/(A H H)\ = 2, and 5 = AH. 
Since H/Z(H) is Abelian, 

(A C\ H)/Z(H) ç Z(S/Z(H)) = CH(T)/Z(H). 

Since \CH(T)\ = l^l3, A r\ H = C^(r). By the definition of H, 

CH(CH(r)) = CH(T). 

Hence 

| C 5 ( C H ( T ) ) / C H ( T ) | = 2 and Cs(r) = Cs(CH(r)) = CS(A H H) ^ A. 

Thus j / ( 5 ) = {CS(T)}. Consequently, J(S) = Z(J(S)) = Cs(r). However, 
Cs(r) is not a normal subgroup of G, although C(02(G)) = C(-H") Q H. In 
fact, since Cs{j) is an elementary Abelian group, no characteristic subgroup 
of J(S) is normal in G. 

A characteristic subgroup of 5 that may satisfy an analogue of Theorem A 
for p = 2 is given by Thompson in (15). 

Example 10.3. In Remark 3.1, we pointed out that the proof of Corollary 3.2 
requires ^-stability only for the case of an Abelian subgroup P and an element 
x such that [P, x, x] = 1. In general, these cases are not sufficient to prove 
Theorem A. 

Let p be an odd prime and let F be a two-dimensional vector space over 
GF(p). As is well known (2, p. 174), there exists a non-singular skew-
symmetric bilinear form / on V, and the corresponding symplectic group is 
just the special linear group SL(F) . By using Lemma 4.2, construct a group H 
and consider SL(F) to be a group of automorphisms of H. Let G be the semi-
direct product of H by SL(F) . Then Ov{G) = # a n d C(H) = Z(H) = Z(G), 
the only Abelian normal subgroup of G. Let x be an element of order p in 
SL(F) , and let 5 be the subgroup of G that is generated by H and x. Then 5 
is a Sylow ^-subgroup of C7, Csipc) is an elementary Abelian group of order p3, 
and J(S) = Z(J(S)) = Cs(x). But Cs(oc) is not a normal subgroup of G. 

Remark 10.1. By a result of Feit and Thompson (3, Lemma 8.2, p. 795), we 
need only consider subgroups P of nilpotence class at most two in the definition 
of ^-stability. 

Example 10.4. Let p be an odd prime and let S be a finite p-group. We 
showed that ZJ* (S) has the property that 

CS(ZJ*(S)) QZJ*(S) 

and satisfies analogues of Theorems A through D. The same property is 
possessed by J(S), but these analogues are false for J(S). 

Let L be the linear fractional (projective special linear) group of degree 
two over GF(^) . Then L may be considered (2, p. 200) to be a group of 
orthogonal transformations with respect to a non-singular symmetric bilinear 
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fo rm/ on a three-dimensional vector space V over GF(p). Let W = V. We 
construct a group H and consider L to be a group of automorphisms of i ï by 
using Lemma 10.1. Let G be the semi-direct product of H by L. 

Clearly, H = Ov(G) and C(H) Ç H. Since we observe that 

\G\ = \L\ \H\ = i £ ( ^ - 1)£7, 

|Qd(£)| = p(p2 - l)p\ and p is odd ,we see that |Qd(£)|2 = 2lGl2- Therefore, 
Qà(p) is not involved in G. Similarly, Qd(p) is not involved in the semi-
direct product LV. By Lemma 6.3, both of these groups are ^-stable. Let x be 
an element of order p in L. Since \V\ = pz and LV is ^-stable, x must have a 
minimal polynomial of the form (z — l ) 3 on F. Thus 

CF(x) = F ^ 2 and |CV(x)| = p. 

By Lemma 4.3, CV(x) is isotropic. By Lemma 10.1 (b), the subgroup 

{(v, w, a): v, w G Cv(x), a G F} 

is Abelian. But this subgroup is just CH{x). Let 5 be the subgroup of G 
generated by H and x. Then S is a Sylow ^-subgroup of G, Cs(#) is generated 
by CH(x) and x, and 

\Cs(x)\ =p\CH(x)\ =p*. 

Now, H/Z(H) has order >̂6. As in the discussion of Example 10.2, we may 
show that every maximal Abelian subgroup of H has order pA. But every 
element of H generates a cyclic group that is contained in a maximal Abelian 
subgroup of H. Thus J(S) = S, and consequently J(S) is not a normal sub­
group of G. Hence we cannot replace ZJ*(S) by J(S) in Theorem A'. 

Suppose that we assume p = 3 in the above example. Then \L\ = 12, and 
L is isomorphic to the alternating group on four symbols. Therefore, 

NG(J(S)) = NG(S) = S and N(J(S))/C(J(S)) = S/Z(J(S)), 

which is a ^>-group. Since G does not have a normal ^-complement, Theorem Dr 

is false for p = 3 if we replace ZJ*(S) by J(S). However, in some unpublished 
work, Thompson has proved that it is true for p > 3. 
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