CONGRUENCE RELATIONSHIPS FOR INTEGRAL RECURRENCES

N.S. Mendelsohn

A sequence $\{u_n\}$, n = 0, 1, 2, 3, ... is said to be an integral recurrence of order r if the terms satisfy the equation

$$u_n = a_1u_{n-1} + a_2u_{n-2} + \dots + a_nu_{n-r}$$

for n = r+1, r+2, ..., and a_1 , a_2 , ..., a_r are integers, $a_r \neq 0$. In this case we will say that $\{u_n\}$ satisfies the relation $[a_1, a_2, \ldots, a_r]$. The sequence $\{u_n\}$ is uniquely determined when u_1, u_2, \ldots, u_r are given specified values. If u_1, u_2, \ldots, u_r are integers all the terms of $\{u_n\}$ are integers. The generating function $f(t) = u_1 t + u_2 t^2 + \ldots$ takes on the form $f(t) = \frac{Q(t)}{R(t)}$ where Q(t) depends on the values of u_1, u_2, \ldots, u_r and $R(t) = t^r - a_1 t^{r-1} - a_2 t^{r-2} - \ldots - a_r$. We will refer to R(t) as the <u>characteristic polynomial</u> of the recurrence. The matrix

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ \vdots & & & & \ddots \\ \vdots & & & & \ddots \\ 0 & 0 & 0 & 0 & \dots & 1 \\ a_{r} & \dots & a_{3}, a_{2}, a_{1} \end{pmatrix}$$

Canad. Math. Bull. vol. 5, no. 3, September 1962.

of order r, is the companion matrix of the polynomial R(t). The determinant of A is $(-1)^{r+1}$ a. Also, a set of r sequences $\{u_n^{(1)}\}$, $\{u_n^{(2)}\}$, ..., $\{u_n^{(r)}\}$ satisfying the relation $[a_1, a_2, \ldots, a_r]$, is said to be a <u>basis</u>, if for any sequence $\{w_n\}$ which satisfies the given relation, there exist uniquely determined constants b_1, b_2, \ldots, b_r such that

$$w_n = b_1 u_n^{(1)} + b_2 u_n^{(2)} + \dots + b_r u_n^{(r)}$$
,

for $n = 1, 2, 3, \ldots$

Essentially, we prove the following congruence property for sequences satisfying the relation $[a_1, a_2, \ldots, a_r]$. There exists a basis of sequences $\{u_n^{(1)}\}, \{u_n^{(2)}\}, \ldots, \{u_n^{(r)}\},$ such that for any prime p which does not divide a_r , there exist infinitely many integers k with the property that a block of r consecutive terms of each sequence of the basis starting with the k th term, has (r-1) of these terms divisible by p while the remaining term is congruent to 1 mod p. A bound for the smallest k is determined.

The proof of the theorem is the same for all r so we will state and prove it in the case r = 3.

THEOREM. Let u_n , v_n , w_n be three sequences satisfying the relation [a, b, c] where a, b, c are integers, $c \neq 0$, with the following initial conditions: $u_1 = 0$, $u_2 = 0$, $u_3 = c$; $v_1 = 1$, $v_2 = 0$, $v_3 = b$; $w_1 = 0$, $w_2 = 1$, $w_3 = a$. Then for any prime p such that $p \nmid c$, there exists infinitely many integers k such that $u_k \equiv v_{k+1} \equiv w_{k+2} \equiv 1 \mod p$ and $u_{k+1} \equiv u_{k+2} \equiv v_k \equiv v_{k+2} \equiv w_k \equiv w_{k+1} \equiv 0 \mod p$. Also, if k is the smallest value of k then

$$k_4 \mid (p^2 + p + 1) (p^2 + p) p^2 (p-1)^3$$
.

Proof: First note that the sequences $\{u_n\}$, $\{v_n\}$, $\{w_n\}$ form a basis for sequences satisfying the relation [a, b, c]. It is easy to verify by induction that for $k = 1, 2, 3, \ldots$,

$$A^{k} = \begin{pmatrix} 0 & 1 & 0 & \\ 0 & 0 & 1 & \\ c & b & a & \end{pmatrix} = \begin{pmatrix} u_{k} & v_{k} & w_{k} \\ u_{k+1} & v_{k+1} & w_{k+1} \\ u_{k+2} & v_{k+2} & w_{k+2} \end{pmatrix}$$

The matrix A is non-singular and we consider its entries to lie in the field of integers mod p. The set of all such matrices form a group of order $(p^2 + p + 1)(p^2 + p)p^2(p-1)^3$. Hence A has order k_1 , where $k_1|(p^2 + p + 1)(p^2 + p)p^2(p-1)^3$, from which the result follows.

We make the following remarks.

- (1) If a, b, c be rationals rather than integers the result still holds if we avoid those values of p which divide any of the denominators of a, b, c when these are expressed in their lowest terms.
- (2) The congruences of our theorem hold if k_1 is replaced by any multiple k_1 t. Now if p_1 , p_2 , ..., p_m are distinct primes, and the corresponding values of k are k_1 , k_2 , ..., k_m , then for k equal to the l.c.m. of k_1 , k_2 , ..., k_m , the congruences of our theorem hold simultaneously for each of the primes p_1 , p_2 , ..., p_m .
- (3) If we merely require of u_k, v_{k+1}, w_{k+2} that they be congruent to each other (but not necessarily congruent to 1) then the value of k₁ is usually lowered and is always a divisor of (p² + p + 1) (p² + p) p²(p-1)². This follows by considering the group of matrices modulo the scalar matrices.

(4) In the case r=2 for a relation [a, 1], the second basis sequence is merely the first sequence shifted a term. The theorem then reads. Let $\{u_n\}$ be a sequence such that $u_1=0$, $u_2=1$, $u_1=au_1+u_1$. For any prime p, there exists an integer k, such that $k|(p+1)p(p-1)^2$ and such that $u_k\equiv u_{k+2}\equiv 1 \mod p$, $u_{k+1}\equiv 0 \mod p$. In particular, by taking a=1, the theorem holds for the famous Fibonacci sequence.

This paper was written at the Summer Research Institute of the Canadian Mathematical Congress.

University of Manitoba