
J. Austral. Math. Soc. (Series A) 26 (1978), 154-162

TOTALLY UMBILICAL SUBMANIFOLDS OF
QUATERNION-SPACE-FORMS

BANG-YEN CHEN

(Received 1 August 1977)

Communicated by J. Virsik

Abstract

Totally umbilical submanifolds of dimension greater than four in quaternion-space-forms are
completely classified.

Subject classification (Amer. Math. Soc. (MOS) 1970): 53 B 25, 53 C 40.

1. Introduction

A quaternion manifold is defined as a Riemannian manifold whose holonomy
group is a subgroup of Sp(w)-Sp(l) = Sp(m)xSp(l)/{± identity}. The irre-
ducible symmetric spaces Sp(l+w)/Sp(l)xSp(m) and Sp(l,/n)/Sp(l)xSp(/tt)
are the two most important examples of quaternion manifolds. It is well known
that these two spaces have constant quaternion sectional curvature for m greater
than or equal to 2. We simply call quaternion manifolds with constant quaternion
sectional curvature the quaternion-space-forms.

In this paper, we shall completely classify totally umbilical submanifolds of
dimension greater than 4 in quaternion-space-forms. The dimension of a manifold
will always indicate its real dimension. We shall prove the following

THEOREM. Let N be an n-dimensional (n>4) totally umbilical submanifold in a
Am-dimensional quaternion-space-form M of quaternion sectional curvature c^O.
Then N is one of the following submanifolds:

(a) a quaternion-space-form immersed in M as a totally geodesic, quaternion
submanifold, or
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(b) a complex-space-form immersed in M as a totally geodesic, half-quaternion
submanifold, or

(c) a real-space-form immersed in M as a totally geodesic, totally real sub-
manifold, or

(d) a real-space-form immersed in M as a totally real extrinsic sphere.
Case (b) {respectively, (c) and (d)) occurs only when n^lm {respectively, n^m

and n < m).

Since every 4/M-dimensional quaternion-space-form of zero quaternion sectional
curvature is a flat space, classification of totally umbilical submanifolds in such a
space follows from a well-known result of Cartan (1946). For the classifications
of totally umbilical submanifolds in a complex-space-form and Cayley plane, see
Chen-Ogiue (1974) and Chen (1977), respectively.

2. Preliminaries

Let M be a 4/n-dimensional quaternion manifold with metric g. There exists a
3-dimensional vector space V of tensors of type (1,1) with local basis of almost
Hermitian structures I,J,K such that (i) IJ= —JI= K, and (ii) for any local
cross-section ifi of V, Vx >p is also a cross -section of V, where X is an arbitrary
vector field in M and V the Levi-Civita connection on M. It is well known that the
existence of such vector bundle V on a Riemannian manifold implies that it is a
quaternion manifold (Ishihara, 1974).

Let A" be a unit vector on the quaternion manifold M. Then X,IX,JX and KX
form an orthonormal frame in M. We denote by Q{X) the 4-plane spanned
by them, and call it the quaternion 4-plane determined by X. Every
2-plane (or simply plane) in a quaternion 4-plane is called a quaternion

\. plane. The sectional curvature for a quaternion plane is called a quaternion sectional
curvature. A quaternion manifold is called a quaternion-space-form if its quaternion
sectional curvatures are equal to a constant c. It is known that a quaternion
manifold is a quaternion-space-form if and only if its curvature tensor R is of the
following form:

(2.1) R{X, Y)Z = ic{g{Y,Z)X-g{X,Z) Y+g{IY,Z)IX-g{IX,Z)IY

+ 2g{X,IY)IZ+g{JY,Z)JX-g{JX,Z)JY

+ 2g{X,JY)JZ+g{KY,Z)KX-g{KX,Z)KY

+ 2g{X,KY)KZ}

ifor some constant c. Moreover, it is known that quaternion-space-forms are
^locally symmetric (Ishihara, 1974).

For any two vectors X, Y in M, if Q{X) and Q{ Y) are orthogonal, the plane
M.X, Y) spanned by X, Y is said to be totally real. An isometric immersion x: N->M
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from a Riemannian manifold N into M is said to be totally real if each tangent
plane of N is carried into a totally real plane by x in M.

Let TV" be an almost Hermitian manifold and y: N' -> M an isometric immersion
form JV' into Af. Then W is called a half-quaternion submanifold of Af if each
holomorphic plane in N' is carried into a quaternion plane in Af. A Riemannian
manifold is called a real-space-form if it has constant sectional curvature and a
Kaehler manifold is called a complex-space-form if it has constant holomorphic
sectional curvature.

Let Af' be a quaternion manifold and z: Af'-> Af an isometric immersion from
Af' into Af. We call Af' a quaternion submanifold of Af if quaternion 4-planes in
Af' are carried into quaternion 4-planes by z.

3. Basic formulas

Let N be an n-dimensional submanifold of a quaternion manifold Af with
metric g and local almost Hermitian structures /, / , K. We have

(3.1) / 2 = / 2 = A:2 = - 1 ,

(3.2) IJ=-JI=K, JK=-KJ = I, KI=-IK = J,

(3.3) g(IX, IY) = g(JX,JY) = g{KX, KY) = g(X, Y).

Moreover, for any two orthonormal vectors X, Y in Af which span a totally
real plane, we have

(3.4) gUX,PY) = 0, 4,,P = I,J,orK.

Let V and V be the Levi-Civita connections on Af and TV, respectively. The
second fundamental form h of the immersion is defined by the equation;
h(X, Y) = VXY-V'XY for vector fields X, Y tangent to N. For a vector field £
normal to iV, we write

(3.5) Vx£ = -AeX+Dx£,

where — Ag X (respectively, Dx f) denotes the tangential component (respectively,
the normal component) of V x £. A normal vector field £ is said to be parallel if
D£ = 0. The submanifold N is said to be totally umbilical if h{X, Y) = g{X, Y) H,
for all vector fields X, Y tangent to N, where H = trace hjn is the mean curvature
vector of N in Af. If the second fundamental form h vanishes identically, N is
called a totally geodesic submanifold of Af. A totally umbilical submanifold
with nonzero parallel mean curvature vector is called an extrinsic sphere.

Let R, R' and jR-̂  be the curvature tensors associated with V, V and D, respec-
tively. For the second fundamental form h of N in Af, we define the covariant
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derivative, denoted by Vx h, to be

(3.6) (Vxh)(Y,Z) = Dx(h(Y,Z))-h(V'x Y,Z)-h(Y,V'xZ).

Then, for all vector fields X, Y,Z, W tangent to N and vector fields £17 normal
to # , the equations of Gauss, Codazzi and Ricci take the following forms (see
Chen, 1973):

(3.7) g(R(X, Y)Z, W) = g(R'(X, Y)Z, W)+gQi{X,Z),h{Y, W))

-g(h(X,W),h(Y,Z)),

(3.8) (R(X, Y) zy- = (Vx h) (Y, Z) - (VY h) (X, Z),

(3.9) g(R(X, Y)£,r,) = g(RN(X, Y){,v)-g([Ag,Ay](X), Y),

where 1 in (3.8) denotes the normal component.
We call the submanifold N an invariant submanifold of M if we have

(3.10) R(X,Y)TNcTN,

for all X, Y in the tangent bundle TN of N.

4. Proof of the theorem

We first prove the following lemmas.

LEMMA 1. Under the hypothesis of the theorem, N is an invariant submanifold and
H is parallel.

PROOF. Since JV is a totally umbilical submanifold of dimension greater than 4
in a quaternion-space-form M, we have

(4.1) h(X, Y)=g(X, Y)H,

for all vector fields X, Y tangent to JV. By (3.6), we have

(4.2) (Vx h) (Y, Z) = g( Y, Z) Dx H.

Thus, equation (3.8) reduces to

(4.3) (R(X, Y)Zy = g(Y,Z)DxH-g(X,Z)DYH.

Since the dimension of N is greater than 4, for each unit vector field X tangent
to N, there is a unit vector field Y tangent to N orthogonal to Q(X). For such Y,
(4.3) gives (R(X, Y)Y)± = DXH. On the other hand, (2.1) and (3.4) imply
(R(X, Y) Y)x = 0. Thus, DxH = 0 for all vectors X tangent to N, that is, H is
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parallel. Substituting this into (4.3), we see that (R(X, Y)Z)L = 0, for all vector
fields X, Y,Z tangent to N. Thus, N is an invariant submanifold of M.

LEMMA 2. Under the hypothesis of the theorem, N is locally symmetric.

PROOF. Since His parallel by Lemma 1, (4.2) gives Vh = 0. From (3.7) and (3.8),
we find

(4.4) g(R(X, Y)Z, W) = g(R\X, Y)Z, W) + ac*{g(X,Z)g(Y, W)

-g(X, W)g(Y,Z)}.
(4.5) g(R(X, 7)Z,£) = 0,

for all vector fields X, Y,Z, W tangent to N and vector field £ normal to N, where
a2 = g{H, H). From (4.4) and (4.5), we get

(4.6) R'(X, Y)Z = R(X, Y)Z+**{g(Y,Z)X-g(X,Z) Y).

Because H is parallel, a is a constant. Thus, by using VR = 0, we get

(4.7) VV(R(X, Y)Z) = R(yvX, Y)Z+R(X,VV Y)Z+R(X, Y)VVZ

= R(y'v X, Y)Z+R(X, V'v Y)Z+R(X, Y)VVZ

+ R(h(X,U), Y)Z+R(X,h(U, Y))Z

+ R(X, Y)(h{U,Z)).

Consequently, (4.5) and (4.7) imply

(4.8) U(g(R(X, Y)Z, W)) = g(R(y'v X, Y)Z, W) +g{R{X,V'v Y)Z, W)

+g(R(X, Y)V'VZ, W)+g(R(X, Y)Z,YV W),

for all vector fields X, Y,Z, W, U tangent to N. From (4.6) and (4.8), we find

(4.9) U(g(R(X, Y)Z, W)) = U(g(R'(X, Y)Z, W))-g{(VvR')(X, Y)Z, W)

+ o?U{g{X,Z)g{Y, W)-g{X, W)g(Y,Z)}.

Therefore, (4.4) and (4.9) imply that N is locally symmetric.

LEMMA 3. If N is an n-dimensional (« > 4) invariant submanifold of a quaternion-
space-form M of quaternion sectional curvature c^O, then N is a totally real
submanifold, or a half-quaternion submanifold, or a quaternion submanifold of M.

PROOF. Let X, Y be two vectors tangent to N. From (2.1) we find

(4.10) R{X, Y)X= Jc{g( Y, X) X-g(X, X) Y+ 3g(IY, X) IX

+ 3g(JY, X)JX+ 3g(KY, X) KX}.
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Since N is an invariant submanifold of M, (4.10) implies

(4.11) g( Y, IX) IX+g( Y,JX)JX+g( Y, KX) KXe TN,

from which we see that if the component of Fin Q(X) is nonzero, the component of
Y in Q(X) is nonzero, the component lies in TN. Therefore, we may choose an
orthonormal basis for each TpN, pe N, in the following form:

where each Bt = {eil+ +i,_,+i. •••» î,+...+<,} is a subset of a quaternion 4-plane
Q(Et), I = 1,..., k, for some E,; moreover, Q(EX),..., Q(Ek) are mutually orthogonal.
In particular, the number of elements in each Bt is fixed as p varies on N.

Case (1). If each Bl contains exactly one element, then N is a totally real
submanifold of M.

Case (2). If each Bx contains exactly four elements, then each Bt spans a quaternion
4-plane. The quaternion structure on M then induces a canonical quaternion
structure on N. With respect to this canonical quaternion structure, N becomes a
quaternion submanifold of M.

Case (3). If neither case (1) nor case (2) holds, then there is a B} which contains
either 2 or 3 elements. Without loss of generality, we may assume that / = 1.

Case (3.1). If B1 = {eve2}, then, for any eeB,, &l, we have

R(e1,e2)e= ^{gie^Ie^Ie+gie^Je^Je+gie^Ke^Ke}

by virtue of (2.1). Since g(eve2) = 0 and eve2 lie in the same quaternion 4-plane,
at least one of g(elt Ie2), gfe^Je^ and g(ev Ke2) is nonzero. Thus, from (3.10),
Bj contains at least two elements. This shows that if Bx contains two elements, all
other Bt contain at least two elements. If each Bt contains exactly two elements,
then we have

Bi = W. e2}, B2 = {e3, ej,..., Bk = {e2k_v e2k}, 2k = n.

Since e2i_x and e2i are two orthonormal vectors lying in the same quaternion
4-plane, e2i is a linear combination of Ie2i_v Je2i_x, Ke2i_x, namely,

e2i = aIeti

with a2+b2 + c2 = 1. Now, we define a (1, l)-tensory on TN by

= al+bJ+cK,

theny2 = — 1, that is, j defines an almost complex structure on N. It is clear that N
with this canonical almost complex structure forms a half-quaternion submanifold
of M. Moreover, j with the induced metric is almost Hermitian.
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Case (3.2). If Bx = {eve2,e3}, then, for any eeBt, l±\, we have

(4.12) R(ea,efi)e = \c{g{ea,Iefi)Ie+g{ea,Jep)Je+g{ea,Kep)Ke)

for all a,jS= 1,2,3. Since N is an invariant submanifold, R{ea,efi)eeTN.
Because the following matrix

g(evJe2) g(e

g(et, Ie3) g(ev Je3) g(elt Ke3)

g(e2,Ie3) g(e2,Je3) g(ez,Ke3)

is of rank 3, (4.12) implies that Ie, Je and Ke lie in TN. Thus, 5, contains 4 elements.
Applying the same argument to Bv we obtain a contradiction.

LEMMA 4. If N is a quaternion submanifold of a quaternion manifold M, then N
is totally geodesic.

PROOF. From the definition of the second fundamental form, we have

(4.13) h{X,IY) = VX(IY)-VX(IY) = /Vx Y-VX(IY) + (VXI) Y.

Since V x / i s a linear combination of I,J,K, (V Y / ) Y is tangent to N. Comparing
the normal components of both sides of (4.13), we find

(4.14) h(X,IY) = Ih(X, Y).

Hence, we get

(4.15) h(IX, IY) = -h(X,Y).

Similarly, we have

(4.16) h(JX,JY) = h(KX,KY) = -h(X, Y).

On the other hand, by using K = / / , we find h(KX, KY) = -h(JX,JY) = h(X, Y).
Comparing this with (4.16), we get h(X, Y) = 0. Thus, N is totally geodesic in M.

LEMMA 5. Let N be a totally umbilical submanifold of dimension n {n > 4) in a
quaternion-space-form of quaternion sectional curvature c^=0. IfN is a half-quaternion
submanifold, then N is a complex-space-form immersed in M as a totally geodesic
submanifold in M.

PROOF. If TV* is a half-quaternion submanifold of M, N has a canonical almost
Hermitian structure (J,g). From Lemma 2, N is locally symmetric with respect to
the induced metric, thus, M is Kaehlerian. From the equation of Gauss, for any
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plane section v in N, the sectional curvature a and a' of ir in M and N satisfy
a'(tr) = O{IT)+O?, where a2 = g(H,H). Since, for any holomorphic plane section
ir(X,jX), the sectional curvature of the quaternion-space-form M satisfies
O{TT(X,JX)) = c, the holomorphic sectional curvature of N is equal to the constant
c+a2. Thus, A îs a complex-space-form. Therefore, Was well as Mare J-pinched.
Consequently, the ratio of c+a 2 : £c+a2 is 4 : 1 . But this is impossible unless
a = 0, that is, N is minimal. Since N is totally umbilical, N is totally geodesic.

Now, we return to the proof of the theorem. By Lemma 1, A'is invariant. Thus,
Lemma 3 implies that Â  is a totally real submanifold, or a half-quaternion
submanifold, or a quaternion submanifold.

If W is a quaternion submanifold, Lemma 4 implies that A' is totally geodesic.
Since the quaternion structure on N is obtained from the restriction of the
quaternion structure on M, equation (3.7) of Gauss implies that the curvature
tensor of AT is also given in the form of (2.1). Thus AT is also a quaternion-space-form.

If A7 is a half-quaternion submanifold, Lemma 5 implies that N is a complex-
space-form immersed in M as a totally geodesic submanifold.

If A7 is a totally real submanifold, then, for any orthonormal vectors X, Y tangent
to A7, the quaternion 4-planes Q(X) and Q(Y) are orthogonal. Thus, (2.1) gives
o(ir(X, Y)) = Jc. By the equation of Gauss, AT is a real-space-form of sectional
curvature £c+a2. If AT is not totally geodesic in M, H^O. By the parallelism of H,
we find from the equation of Ricci that

(4.17) g(R{X,Y)H,IY) = Q,

for any orthonormal vectors X, Y tangent to N. On the other hand, for such X
and Y, equation (2.1) gives

g(R(X, Y)H,IY) = -icg(IX,H)g(IY,IY).

Thus, g(IX,H) = Q. Similarly, we have g(JX,H) = g(KX,H) = 0. Since this is
true for all X tangent to N, H is perpendicular to Q(TN). Thus, m>n — dimN.
This completes the proof of the theorem.

5. Remarks

REMARK 1. If n = 3, Lemma 3 is false. This follows from the fact that for any
3-dimensional subspace -n of a quaternion 4-plane Q(X) in a quaternion-space-
form, there exists a totally geodesic submanifold in M which is tangent to it.

REMARK 2. Let M be the complete quaternion-space-form

Sp(l+/H)/Sp(l)xSp(/n),

https://doi.org/10.1017/S1446788700011642 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700011642


162 Bang-Yen Chen [9]

and let N be the real-space-form SO(1 +/«)/{+ l}x SO (m). Then, by regarding
SO(l+/w) as a subgroup of Sp(l+/n) in the natural way, it is clear that
SO (1+ m) n Sp (1) x Sp (m) = { ± 1} x SO(w). This shows that

SO(l+7n)/{±l}xSO(m)

can be imbedded in Sp(l+»j)/Sp(l)xSp(w) as a totally geodesic submanifold.
Moreover, it is clear that the imbedding is totally real.

Since SO(/n)/{l}xSO(m-l) can be imbedded in SO(w+l)/{± 1}XS0(/M) as
an extrinsic sphere, there is an (m— l)-dimensional real-space-form imbedded in a
4/w-dimensional quaternion-space-form as an extrinsic sphere. Thus, both cases
(c) and (d) happen.

REMARK 3. Since SU(l +m)/S(U1x [/„,) can be imbedded in

Sp (1+ m)/Sp (1) x Sp (m)

as a totally geodesic, half-quaternion submanifold in a natural way, case (b) of the
theorem occurs.

REMARK 4. Since Sp(l +^)/Sp(l) x Sp(q) can be imbedded in

Sp(l+m)/Sp(l)xSp(/n)

as a totally geodesic, quaternion submanifold in a natural way for q<m, case (a) of
the theorem occurs.

REMARK 5. If we consider the corresponding results in Remarks 2, 3 and 4 for
spaces of non-compact type, we see that cases (a)-{d) in the theorem occur for
c<0 as well as c>0.
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