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On Sylow intersections

Ariel Ish-Shalom

Let G be a finite group, p a prime divisor of |G| , and T
a p-subgroup of G . Define o(T) to be the number of Sylow

p-subgroups of G containing T . Call T a central p-Sylow
intersection if for some I E.Sylp(G) , T=N{S |5 €z}, and

if, in addition, T contains the center of a Sylow p-subgroup

of G . This work is inspired and motivated by work of G. Stroth
[J. Algebra 37 (1975), 111-120]. Generalizing an argument of his
we describe finite groups in which every central p-Sylow inter-

section T with p-rank(T) > 2 satisfies o(T) =p .

Related methods yield the description of finite groups in which
every central p-Sylow intersection T with p—rank(T) =2
satisfies o(T) = 2p .

1. Introduction

Let G be a finite group, p a prime divisor of the order of (G ,
and T a p-subgroup of G . Define 0(T) to be the number of Sylow
p-subgroups of G containing 7T , and p-rank(T) to be the maximal number

n such that 7T contains an elementary abelian subgroup of order pn . We

call T a p-Sylow intersection if for some I C Sylp(G) N

T=n{S | 5 €}, and we call T a central p-Sylow intersection if, in

addition, I contains the center of a Sylow p-subgroup of G .
In a previous paper [9] we proved
THEOREM 1. Let every central p-Sylow intersection T satisfy
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o(T) = 2p . Then there exists a non identity abelian subgroup, strongly
closed in a Sylow p-subgroup of G with respeet to G .

In that paper, [9], we also characterized those groups -G in which

o(T) = 6 for every central 2-Sylow intersection T .

This work is inspired and motivated by Stroth [10]. In that paper,
Stroth gives a detailed characterization of finite groups in which every
intersection of two distinct Sylow 2-subgroups is of 2-rank < 2 , and in
which there exists such an intersection of 2-rank = 2 . Generalizing an

argument of his we prove:

THEOREM 2. Let every central p-Sylow intersection T with
p-rank(T) > 2 satisfy o(T) =p . Let S be a Sylow p-subgroup of G .

Then either
() Q(Z(S)) is strongly closed in S with respect to G, or
(1) p-rank(S) =2 , or

(1i1) there exists some x € S with Cb(x) elementary abelian

of order p2 .

We remark that by Lemma 6 below, the condition of Theorem 2 forces
every central p-Sylow intersection I with p-rank(T) > 2 to belong to
Sylp(G) . We also remark that p-groups satisfying conclusion (7%} are
discussed in [7], Kapitel III, §1k. For p =2 , a subgroup S satisfying
(121) is dihedral or semidihedral by Lemma 4 of [17]. Thus we get

COROLLARY 3. Let every central 2-Sylow intersection T § Syl_(G)

2
satisfy 2-rank(T) =2 . Let 5 be a Sylow 2-subgroup of G . Then

either
(i) @(2(S)) is strongly closed in S with respect to G , or
(i1) 2-rank(S) = 2 .

We remark that for finite simple groups the conclusions of Corollary 3
are in fact equivalent to its assumptions. These finite simple groups were

already listed in [70], namely: L2(q), U3(q), Sa(q) , q even, Lz(q),

L3(q), U3(q) , g odd, A7, Mil , and simple groups of Janko-Ree type.

In this paper we also prove a generalization of Theorem 1.
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THEOREM 4. Let every central p-Sylow intersection T with
p-rank(T) = 2 satisfy o(T) =2p . Let S be a Sylow p-subgroup of G .

Then either

(i) there exists a non identity abelian subgroup, strongly
eclosed in S with respect to G , or

(i1) there exists some x € S with CS(x) elementary abelian

of order p2 .
Again, for p =2 , we get

COROLLARY 5. Let every central 2-Sylow intersection T with
2-rank(T) = 2 satisfy ofT) =L . Let S be a Sylow 2-subgroup of G .

Then either

(1) there exists a non identity abelian subgroup, strongly

closed in S with respect to G , or
(i) S <s dihedral or semidihedral.

Those finite simple groups satisfying the hypothesis of Corollary 5
are: L2(q), U3(q), Sz(q) , q even, L2(q) s ¢ £3,5 {(mod 8) , and

simple groups of Janko-Ree type, as can be verified by [4] and by Remark 8
of [91.

2. Preliminary resuits
LEMMA 6. (Z) If T is a p-subgroup of G then o(T) =1 (mod p)
(it) Let T and T' be p-Sylow intersections in G . If TcCT' ,
then o(T) =z o(T'") , and if T < T' , then o(T) > o(T') .
(iii) If T <s a p-Sylow intersection satisfying o(T) = 1 , then
T € Sylp(G) .

(iv) If T is a p-Sylow intersection satisfying o(T) =1 +p,
then NS(T)/T is cyelice of order p , for every Sylow p-subgroup S of
G containing T .

Proof. Assertion (Z) is Lemma 6 of [8]. Assertion (ii) is trivial
once we notice that any p-Sylow intersection T 1is the intersection of

those Sylow p-subgroups containing it. Assertion (4i%7) is also trivial.
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Denote by £ the set of 1 +p Sylow p-subgroups of G containing
T , and take any S € @ . The subgroup IVS(T) acts by conjugation on

Q' = O\s} . 1Ir g € IVS(T) stabilizes some R € Q' , then being a
p-element, g € Ng(T) nRS SnR . But SODSNRDT forces SNR=T
by (), (i), and (iiZ), so that NS(T)/T acts faithfully on Q' . In
fact, every g € (IVS(T)/T)# acts fixed point freely on ' , whence

|2 | =p yields assertion (iv).

The following result is due to Alperin. The first part is Theorem 5.2
of [1], and the second is a strengthening of the Corollary in [2],

achieved by self suggestive changes in its proof.

THEOREM 7 (Alperin). Let x and y be elements of S ESylp(G) »

such that x 1is conjugate to y 1in G . Then there exist central
p-Sylow intersections H, <5, i=1, ..., n, and elements
t; €N (H) , ©=1, ..., n, such that N4(H,) ¢ Sylp(lVG(Hi)) s

=1, ..., n, that ti 18 a p-element if Hi c S, and that, setting

xl=x,x2=::c1, ...,xn+l=x12.“n,weget x, EHi,
1 =1, ..., n, and T 0 =Y -

Moreover, if Cgly) € Sylp (CG(y)) » then we can assure in addition
that

(7) C (xt) CH., 2=1, ..., n, and that

(i1) |cS(xl)| < ICS[x2)| <... = ICS(xn+l)| }

Let S Dbe a Sylow p-subgroup of G . Denote by J the set of
elements in S\Z(S) , which are conjugate in G to an element of
Q(Z(S)) . Denote by J* the set of those elements J € J which are
conjugate to an element of §(2(S)) in IVG(CS(j))

LEMMA 8. (i) J =@ <if and only if 9(2(S)) <is strongly closed in
S with respect to G .

(i1) For every j € J there exists some S' € Sylp (CG(J')] c Sylp(G) s
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such that CS(j) =S nS" (whence O(Cs(j)] >p ).

(2i2) If J # @ there exist j € J and g , a p-element of
IVG(CS(J')) » such that:

(1) 4 €(z(s9) ;

(2) Culg) =5ns?; and

s
(3) Hglcg(d) € Sylp(lvG(cS(a‘))) ;
in particular, J + § implies J* # 9.

Proof. Assertion (Z) is obvious. To satisfy assertion (71}, any
g' ¢ Sylp(CG(j)] containing CS(j) will do. To prove (7i%7) choose some
x €J , and some y € Q(Z(S)) such that &« is conjugate in G to y .
Now quote Theorem 7. As |CS(y)| > |CS(x)| , the set

{x | ICS(ka < |Cs(xk+l)|} is not empty; let <, De its maximal

element, and set j=2x, , g = t; , and H

3 H. . Clearly g €dJ ,

0 0 )

i  ea(zs)) , and Cg(§) CH . Now j is conjugate in N (H) to

-1
-

J which is an element of H n 2(S) < Z(H) . Thus HC CS(J') and we

are done.

COROLLARY 9. ILet S5 be a Sylow p-subgrowp of G . If o(T) =p for
every central p-Sylow intersection T with p-rank(T) = 2 , then
Q(2(8)) 1is strongly closed in S with respect to G .

Proof. If j €J , then T = Cs(j) is a central p-Sylow intersection

with p-rank(7T) = 2 and o{T) >p by (ii) of Lemma 8. Thus J = ¢ and
we are through by (i) of Lemma 8.

We remark that the results of Herzog and Shult [é] and those of Gomi
[5] follow from Corollary 9 and Goldschmidt [4].

3. Proof of Theorem 2

By Lemma 8 (%) and (iZi1), either conclusion (%) of our theorem holds, or
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or J*# @ . Thus we may assume the existence of 1 € Q[Z(S)) and j € J
such that 7% is conjugate to § in IVG(CS(J')) . By Lemma 8 (Z%),

o(cs(j)] >p ; hence, CS(j) being a central p-Sylow intersection,
p—rank(CS(j)) = 2 by the assumption of the theorem. As Z(CS(j))
contains the subgroup (%, j) , which is elementary abelian of order p2 .
it follows that

(*) Q(CS(J')) =i, §) ,

()

and that 0(2(5))

As CS((i, g =c.(d) , and IVS((i, NN (C (j)) , We have that

S S\V°S
I'JS(CS(j)) /CS(j) is a subgroup of IVS((i, j))/CS((i, J)) , which is
isomorphic to a subgroup of GL(2, p) - the automorphism group of an
elementary abelian group of order p2 . Thus, being a non-trivial
p-group, IVS(CS(j))/CS(j) is cyclic of order p .

Now IVG(C'S(j)) acts by conjugation on £ , the set of all cyclic

subgroups of (4, j) , and we claim that this action is transitive.

Indeed, take any g € IVS(CS(J')) \Co(4) . As g 1is a p-element which does

not centralize any element of (¢, j)N<Z) , it follows that g acts fixed
point freely on Q\{(2)} . Hence |Q| =p +1 yields that g acts

transitively on 9\{(Z)} . Concluding the fact that < is conjugate to J
in IVG(CS(J')) implies that (<) is conjugate to (j) in IVG(CS(J')) and

our claim is proved.

Proceeding with our proof, let us assume first that NS(CS(J')) cs .
Take any g € N (Wg(C5()))\H5(C(5)) to get Co(d) # Cs[jg) c Hg(cg(d))
whence 47 <7, §> implies that (jg)#SIVS(CS(j))\CS(j) . As
IVS(CS(J'))/CS(J') is cyclic of order p , no element of (jg)# has any
p-roots in CS(jg] . Hence, by the preceding paragraph, no element of

(1, j)# has any p-roots in Cs(j) . It follows by (*), that
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Cg(g) =<2, ), and conclusion (%) holds.

Assume then that Né

an elementary abelian subgroup of S of maximal order. If

(¢5(d)) =5, s0 that |S : Co(f)| =p . Let K be

| n Cs(j)| > p2 , then (*¥) forces J € K n CS(j) , whence K S.Cs(j) , and
(*) yields |k} = p2 . If |Kn CS(j)| <=p,then |K:Kn CS(j)I <p

implies that again |K| < p2 . Anyhow, conclusion (7Z) holds and we are

done.

4. Proof of Theorem 4

If p-rank(Z(S)] > 1 , then by our assuﬁption O(Z(S)) < 2p , whence
conclusion (7Z) holds by Theorem 1. Hence we may assume that
p-rank (2(S)) = 1 , whence Q(z(5)) is cyclic of order p , say,

Q(z(s)) =<4y .

If j € J , then p—rank[CS(j)) 2 2 . Thus, being a central p-Sylow
intersection, p < G(Cs(j)) < 2p . Hence Lemma 6 (7} yields that
O[Cs(j)] =1 +p , and Lemma 8 (£ii) that NS(CS(j))/CS(j) is eyclic of
order p .

We claim that
(%) ir 4, €d*, j, €7, and |Cg(d) : 5ld;) ncg(d)l =p s

then (Z%) holds.

Indeed, Cs(jl) n Cs[je) is a central p-Sylow intersection strictly
contained in Cg(d)) - Thus 1 +p =0(cs(5)) < o(cg(dy) n () vy
Lemma 6 (7). Hence, by Lemma 6 (), 2p < O(Cs(jl) n Cb[je)] , so that
p—rank[cs(jl] n QSng)) =1, and Q(Cs(jl) n Cs(j2)) = Q(z(8)) . Now
)#

(jl n @(z(5)) = @ , so that by the assumption of (*), no element of

(jl)# has any p-roots in Cb(jl) . As jl € J* , so is the case with the

elements of Q(Z(S))# . Thus, the fact that 2(C.(5,) n c(4,)) = 2(2(s))
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implies that Cs(jl] n CS(jQ) = (2(5)) = (1) , so that Cs(jl) is

elementary abelian of order p2 , and claim (*) is proved.

By Lemma 8 (%) and (ZiZ), either conclusion (%) of our theorem holds,

or J*# @ . Thus we may assume the existence of some jo €J* . If
Cg(d,) 1is not normel in S , take g € NS(NS(CS(jO))]\NS(CS(jO)) . Then .
3% € g, ana C5(j,) # cs[jg] c Nglcgldg)) - as wgleg(d))/eg(dy) s
eslig) + e5lip) ncsl7g)| = p » ana

(i) holds by (*). Hence we may assume that Cs(jo) is normal in S , so

cyclic of order p , it follows that

that |[S : C.lJ = . By the same argument we may assume now that
sYo p

CS(jO) is normal in IVG(S) , for otherwise we take any

€ N (SH\V {C,\F , and repeat the process, to show that (ZZ) holds. We
g * g 6\“sYo
may also assume that J* C CS(jO] . If this is not the case, take in (%)
any J € J \CS(JO) as J; , and j, as Jy > and conclude that (7Z)
holds.

We claim now, that Q(Z(Cs(jo)]] is strongly closed in S with

respect to G . To prove it, suppose that there exist
J' o€ S\Q(Z(Cs(jo))] , and k' €Q(Z(CS[J’O))) , such that j' is conjugate

to k' in G . By Theorem 7 we may assume that there exists a central

p-Sylow intersection H and elements GH\Q(Z(CS[J'O))] and

k €Hn Q(Z(Cs(jo))] » such that j is conjugate to k in N, (H) .

Assume first that k f Q(2(S)) . Then (k, Q(2(5))) < # ncgld) c#
yields that 1= o(H) <o(# n cs(jo)) < 2p by the assumption of the

theorem. Thus, by Iemm: 6, either O(H) =1 , whence H =S5 , or
o(#) = o(d n (7)) =olcg(d)) » ana #=c4(4,) - But a(z(cg(d,))) is

normal in (NG(S), IVG[CS(J'O))) , a contradiction.

Thus we may assume that k € Q[Z(S)) so that j € J . Moreover,
(J, Q(Z(S))) cCHn CS(j) C H yields as before that either # =S or
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H= Cb(j) . The first case is impossible as j ¢ Q(Z(S)) and
k € 9(z(s)) .

Thus J € J* , and as J* S-Cb(jo) , we have
7, 2(z(c5(G)))> < ¢5(d) n cgld ) = cgd) -

Using again the above argument yields CS(j) = Cs(jo) , So that
J € Q[Z(Cs(jo))) ,» a contradiction. Thus our claim is proved and
conclusion (Z) of our theorem holds.

We remark that the condition O(T) = 2p in the assumption of the
theorem is needed only to assure that if T < T' cC S € Sylp(G), where T'

is a p-Sylow intersection, then

(i) NS(T)/T is eyclic of order p , and

(ii) T' =S (see Lemma 6).
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