INVEX FUNCTIONS AND DUALITY

B. D. CRAVEN and B. M. GLOVER

(Received 25 January 1983; revised 18 June 1983)

Communicated by B. Mond

Abstract

For both differentiable and nondifferentiable functions defined in abstract spaces we characterize the generalized convex property, here called cone-invexity, in terms of Lagrange multipliers. Several classes of such functions are given. In addition an extended Kuhn-Tucker type optimality condition and a duality result are obtained for quasidifferentiable programming problems.

1980 Mathematics subject classification (Amer. Math. Soc.): 90 C 30.

1. Introduction

The Kuhn-Tucker conditions for a constrained minimization problem become also sufficient for a (global) minimum if the functions are assumed to be convex, or to satisfy certain generalized convex properties [14]. Hanson [10] showed that a minimum was implied when convexity was replaced by a much weaker condition, called *invex* by Craven [4], [5]. For the problem,

Minimize
$$f_0(x)$$
 subject to $-g(x) \in S$,

where S is a closed convex cone, the vector $f = (f_0, g)$ is required to have a certain property, here called *cone-invex*, in relation to the cone $\mathbf{R}_+ \times S$. Some conditions necessary, or sufficient, for cone-invex were given in Craven [5]; see also Hanson and Mond [12]. However, it would be useful to characterize some recognizable classes of cone-invex functions.

The present paper (a) represents several classes of cone-invex functions, (b) characterizes the cone-invex property, for differentiable functions, in terms of Lagrange multipliers (Theorems 2 and 3), using Motzkin's (or Gale's) alternative

^{© 1985} Australian Mathematical Society 0263-6115/85 \$A2.00 + 0.00

theorem; (c) extends some of these results to a class of nondifferentiable functions, namely quasidifferentiable functions [16]. In this final section we shall also establish a Kuhn-Tucker type optimality condition and a duality theorem for cone-invex programs with a quasidifferentiable objective function. Several examples are given to illustrate the results.

2. Definitions and symbols

Consider the constrained minimization problem:

(P)
$$\underset{x \in X_0}{\text{Minimize }} f_0(x) \text{ subject to } -g(x) \in S,$$

in which $f_0: X_0 \to \mathbf{R}$ and $g: X_0 \to Y$ are (Fréchet) differentiable functions, X and Y are normed spaces, $X_0 \subset X$ is an open set, and $S \subset Y$ is a closed convex cone. Suppose that (P) attains a local minimum at x = a. If a suitable constraint qualification is also assumed, then the Kuhn-Tucker conditions hold:

$$(KT) \qquad (\exists \lambda \in S^*) f_0'(a) + \lambda g'(a) = 0, \quad \lambda g(a) = 0, \neg g(a) \in S.$$

Here $S^* = \{v \in Y': (\forall y \in S)vy \ge 0\}$, in which Y' denotes the (topological) dual space of Y, and vy denotes the evaluation of the functional v at $y \in Y$. (In finite dimensions, vy may be expressed as v^Ty , in terms of column vectors. Note that x and y here do not generally relate to the spaces X and Y.)

The Kuhn-Tucker conditions are valid under weaker differentiability assumptions on f_0 and g, in particular, if the functions are linearly Gâteaux differentiable at the point a, ([3]). Now let $f = (f_0, g)$: $X_0 \to \mathbb{R} \times Y$; $K = \mathbb{R}_+ \times S$, where $\mathbb{R}_+ = [0, \infty)$; $r = (1, \lambda)$; $S_0 = \{\alpha(y + g(a)): \alpha \in \mathbb{R}_+, y \in S\}$, $K_0 = \mathbb{R}_+ \times S_0$. Then $K_0^* = \mathbb{R}_+ \times S_0^*$, where $S_0^* = \{\lambda \in S^*: \lambda g(a) = 0\}$. Then $r = (r_0, \lambda)$ with $r_0 \in \mathbb{R}_+, \lambda \in S_0^*$. Now (KT) holds if and only if there holds:

$$(KT +)$$
 $(\exists r \in K_0^*, r_0 > 0)rf'(a) = 0, \quad rf(a) = f_0(a); -g(a) \in S.$

Let KT(P) denote the set of a X_0 such that (KT +) holds, for some $r \in K_0^*$. Let $Z = \mathbb{R} \times Y$. Denote by (D_1) the formal Wolfe dual of the problem (P), namely

$$(D_1) \quad \underset{u \in X_0, \lambda \in Y'}{\text{Maximize}} f_0(u) + \lambda g(u) \quad \text{subject to } \lambda \in S^*, f_0'(u) + \lambda g'(u) = 0.$$

Let $E = \{x \in X_0: -g(x) \in S\}$, the feasible set of (P); denote by W the set of $u \in X_0$, such that (u, λ) is feasible for (D_1) , for some $\lambda \in S^*$. The formal Lagrangean dual of the problem (P) is the problem

$$(D_2)$$
 Maximize $\phi(\lambda)$, where $\phi(\lambda) = \inf\{f_0(x) + \lambda g(x) : x \in X_0\}$.

Note that weak duality ([3]) holds automatically for (P) and (D_2) , that is $f_0(x) \ge \phi(\lambda)$ whenever x is feasible for (P) and λ for (D_2) .

A function h: $X_0 \to Y$ is S-convex if, whenever $0 < \alpha < 1$ and $x, y \in X_0$,

$$\alpha h(x) + (1 - \alpha)h(y) - h(\alpha x + (1 - \alpha)y) \in S;$$

h is locally S-convex at $a \in X_0$ if this inclusion holds whenever $x, y \in U$, where U is a neighborhood of a in X_0 . If the function h is linearly Gâteaux differentiable then h is S-convex if and only if, for each $x, y \in X_0$,

(1)
$$h(x) - h(y) - h'(y)(x - y) \in S.$$

The function h is S-sublinear if h is S-convex and positively homogeneous of degree one (that is, $h(\alpha x) = \alpha h(x)$, $\forall \alpha \ge 0$). If $Y = \mathbb{R}$, $S = \mathbb{R}_+$ we shall denote the subdifferential of a convex function h at $a \in X_0$ by $\partial h(a)$, where

$$\partial h(a) = \{ v \in X' : v(x-a) \leqslant h(x) - h(a), \text{ for all } x \in X_0 \}.$$

If h is continuous at a then $\partial h(a)$ is a non-empty weak* compact convex subset of X' ([17]); by (1) if h is linearly Gâteaux differentiable at a then $\partial h(a) = \{h'(a)\}.$

Following [5], a function $f: X_0 \to Z$ is called K_0 -invex, with respect to a function $\eta: X_0 \times X_0 \to X$, if, for each $x, u \in X_0$,

(2)
$$f(x) - f(u) - f'(u)\eta(x, u) \in K_0$$

(This property may be called *cone-invex* when the cone K_0 is fixed.) The function f is called K_0 -invex at u on $E \subset X_0$ if (2) holds for given $u \in X$, and for each $x \in E$. We are assuming f is linearly Gâteaux differentiable.

Define the following (possibly empty) set, contingent on a set $D \subset X$,

aint
$$D = \{ x \in D : (\forall z \in X, z \neq 0) (\exists \delta > 0) x + \delta z \in D \}.$$

If D is convex, $x + \alpha \delta z \in D$ also when $0 < \alpha < 1$, so aint D equals the algebraic interior of D, as usually defined. If the cone S has non-empty (topological) interior int S, then $\emptyset \neq \text{int } S \subset \text{aint } S$. Define the polar sets of sets $V \subset X$ and $A \subset X'$ as

$$V^{0} = \{ w \in X' : (\forall x \in V) \ w(x) \ge -1 \};$$
$$A^{0} = \{ x \in X : (\forall w \in A) \ w(x) \ge -1 \}.$$

We shall also require in section V the following (not necessarily linear) concept of differentiability. A function $h: X_0 \to Y$ is directionally differentiable at $a \in X_0$ if the limit

$$h'(a, x) = \lim_{\alpha \downarrow 0} \alpha^{-1} (h(a + \alpha x) - h(a))$$

exists for each $x \in X$, in the strong topology of Y. If $Y = \mathbf{R}$ and h is a convex functional then, for each $a \in X_0$, $h'(a, \cdot)$ exists and is sublinear ([17]).

For a function h: $X_0 \to \mathbb{R}$, the level sets of h ([24]) are the sets

$$L_h(\alpha) = \{ x \in X_0 : h(x) \leq \alpha \}, \quad (\alpha \in \mathbf{R}),$$

and the effective domain of $L_h(\cdot)$ is the set $G_h = \{\alpha \in \mathbb{R}: L_h(\alpha) \neq \emptyset\}$. This point-to-set mapping L_h is called lower semi-continuous (LSC) at $\alpha \in G_h$ if $x \in L_h(\alpha)$, $G_h \supset (\alpha_i) \to \alpha$ imply the existence of an integer k and a sequence (x_i) such that $x_i \in L_h(\alpha_i)$ (i = k, k + 1, ...) and $x_i \to x$. The point-to-set mapping L_h is strictly lower semi-continuous (SLSC) at $\alpha \in G_h$ if $x \in L_h(\alpha)$, $G_h \supset (\alpha_i) \to \alpha$ imply the existence of an integer k, a sequence (x_i) , and b(x) > 0 such that $x_i \in L_h(\alpha_i - b(x)||x_i - x||)$, (i = k, k + 1, ...), and $x_i \to x$.

The range of a function f is denoted by ran f; the nullspace by N(f). For a continuous linear function $g: X \to Y$ we will denote by $g: Y' \to X'$ the transpose operator of $g: X \to Y$ where $g: X \to Y$ is called by $g: X \to Y$. The constraint $g: X \to Y$ is called locally solvable at $g: X \to Y$ if $g: X \to Y$. The constraint $g: X \to Y$ is called locally solvable at $g: X \to Y$ if $g: X \to Y$ in the constraint $g: X \to Y$ is called locally solvable at $g: X \to Y$ in the constraint $g: X \to Y$ in the constraint $g: X \to Y$ is locally solvable at $g: X \to Y$ in the constraint $g: X \to Y$ is locally solvable at $g: X \to Y$ if $g: X \to Y$ in the constraint $g: X \to Y$ is locally solvable at $g: X \to Y$ if $g: X \to Y$ in the constraint $g: X \to Y$ is locally solvable at $g: X \to Y$ if $g: X \to Y$ in the constraint $g: X \to Y$ is locally solvable at $g: X \to Y$ if $g: X \to Y$ in the constraint $g: X \to Y$ is locally solvable at $g: X \to Y$ if $g: X \to Y$ in the constraint $g: X \to Y$ is locally solvable at $g: X \to Y$ if $g: X \to Y$ in the constraint $g: X \to Y$ is locally solvable at $g: X \to Y$ if $g: X \to Y$

For a set $A \subset X$, we shall denote the *closure* of A by \overline{A} . We shall assume throughout that the dual space X' (or Y') is endowed with the weak* topology (see [3]), thus for a set $V \subset X'$, \overline{V} represents the weak* closure of V. The results in Section 4 do not depend on the dimensions of the spaces, and would extend readily to locally convex spaces (for example, space of distributions).

3. Classes of cone-invex functions

In this section we illustrate the broad nature of cone-invexity by presenting several classes of such functions, and some simple concrete examples.

- (I) Each cone-convex function is invex, by (1) with $\eta(x, a) = x a$.
- (II) Let $q: X \to Y$ and $\varphi: X \to X$ be Hadamard differentiable with q S-convex and φ surjective $(\varphi(X) = X)$. Assume further that either (a) $(\forall a \in X) \operatorname{ran}(\varphi'(a)) = X$, or (b) $(\forall x, a \in X) [\operatorname{ran}(\varphi'(a))]^* \subset N(\varphi(x) \varphi(a))$, and $[\varphi'(a), \varphi(x) \varphi(a)]^T(X')$ is (weak*) closed. (In (b), we consider $\varphi(x) \varphi(a) \in X''$, the second dual of X; note also that (a) implies (b).) Then the function $g = q \circ \varphi$ is S-invex on X. For hypothesis (a), this follows from [4]. For hypothesis (b), let $A = \varphi'(a)$

and let
$$c = \varphi(x) - \varphi(a)$$
, given $a, x \in X_0$. Then

$$[\operatorname{ran}(A)]^* \subset N(c) \Leftrightarrow \{(\forall \lambda \in X') \lambda A = 0 \Rightarrow \lambda(c) \geqslant 0\}$$

since
$$[ran(A)]^* = N(A^T)$$

$$\Leftrightarrow (0, -1) \notin [A, c]^T (X')$$
 since $[A, c]^T (X')$ is closed

$$\Leftrightarrow (\exists \eta \equiv \eta(x, a) \in X) A \eta = c$$

by Theorem 7 (below) and the Remark following it

$$\Rightarrow (q \circ \varphi)'(a)\eta(x,a) = q'(\varphi(a))\varphi'(a)\eta(x,a) = q(\varphi(a))(\varphi(x) - \varphi(a))$$

$$= q(\varphi(x)) - q(\varphi(a)) - s$$
 for some $s \in S$, since q is S-convex

 $\Rightarrow q \circ \varphi$ is S-invex at a.

EXAMPLE 1. Let $X = \mathbb{R}^2$, $Y = \mathbb{R}$, $S = \mathbb{R}_+$, $q(x, y) = 3x^2 - 2xy + 2y^2$ and $\varphi(x, y) = (x - ax^3, y + by^3)$, where a, b > 0. Then $g = q \circ \varphi$ is invex on X but not convex.

(III) Let $\alpha: X_0 \to Y$ be S-convex; let $\beta: X_0 \to \mathbf{R}$ satisfy $\beta(X_0) \subset \mathbf{R}_+ \setminus \{0\}$; let α and β be Fréchet (or linearly Gâteaux) differentiable. Assume either (a) β is convex and $\alpha(X_0) \subset -S$; or (b) β is affine; or (c) β is concave and $\alpha(X_0) \subset S$. Then the function $g(\cdot) = \alpha(\cdot)/\beta(\cdot)$ is S-invex on X_0 with kernel η defined by

$$\eta(x,a) = (\beta(a)/\beta(x))(x-a).$$

The spaces X and Y here may have any dimensions, finite or infinte.

PROOF. Let $x, a \in X_0$. Then, with the stated η ,

$$g(x) - g(a) - g'(a)\eta(x, a)$$

$$= \frac{1}{\beta(x)} \left\{ \alpha(x) - \frac{\alpha(a)\beta(x)}{\beta(a)} - \frac{\beta(a)\alpha'(a) - \alpha(a)\beta'(a)}{\beta(a)} (x - a) \right\}$$
(since $\beta(x) > 0$)

$$= [\beta(x)]^{-1} \{\alpha(a) + \alpha'(a)(x - a) - [\alpha(a)/\beta(a)][\beta(a) + \beta'(a)(x - a)] - \alpha'(a)(x - a) + [\alpha(a)/\beta(a)]\beta'(a)(x - a) + s\}$$

for some $s \in S$, because $\alpha(x) - [\alpha(a)(x - a)] \in S$ since α is S-convex, and

$$-\alpha(a)\beta(x) + \alpha(a)[\beta(a) + \beta'(a)(x-a)] \in S$$

assuming either (a) or (b) or (c). Hence $g(x) - g(a) - g'(a)\eta(x, a) = [\beta(x)]^{-1}s \in S$.

EXAMPLE 2. Let $X = Y = \mathbb{R}^2$, $S = \mathbb{R}^2$ (the nonnegative orthant in \mathbb{R}^2), $\beta(x, y) = 1 - x$, $\alpha(x, y) = (x^2 + y^2, x + 2y)$. Then $g(\cdot) = \alpha(\cdot)/\beta(\cdot)$ is \mathbb{R}^2_+ -invex on $\{(x, y): x < 1\}$. In this case g is not \mathbb{R}^2_+ -convex since the Hessian matrix of (x + 2y)/(1 - x) is never positive semidefinite.

EXAMPLE 3. Let $X = \mathbf{R}^n$; let $\alpha(x) = (\alpha_1(x), \alpha_2(x), \dots, \alpha_m(x)) \in \mathbf{R}^m$ where each componant α_i is convex on an open domain $X_0 \subset \mathbf{R}^n$; let $\beta(x) = c + d^T x$, with constant $c \in \mathbf{R}$ and $d \in \mathbf{R}^n$; assume that $\beta(x) > 0$ when $x \in X_0$; let $S = \mathbf{R}^m_+$. Then $g(\cdot) = \alpha(\cdot)/\beta(\cdot)$ is \mathbf{R}^m_+ -invex on X_0 , but not generally \mathbf{R}^m_+ -convex.

EXAMPLE 4. Let X, X_0 and β be as in Example 3; let I = [0, 1]. Let $h: X_0^* \times I \to \mathbf{R}$ be any function such that $h(\cdot, t)$ is convex on X_0 for each $t \in I$ and $h(x, \cdot)$ is continuous on I for each $x \in X_0$. Let C(I) denote the space of continuous functions from I into \mathbf{R} ; let $C_+(I)$ denote the convex cone of nonnegative functions in C(I). Define the function $\alpha: X_0 \to C(I)$ by $(\forall x \in X_0, \forall t \in I)\alpha(x)(t) = h(x, t)$. Then α is $C_+(I)$ convex on X_0 , and $g(\cdot) = \alpha(\cdot)/\beta(\cdot)$ is $C_+(I)$ -invex on X_0 .

REMARK. In (III), η depends on β alone, not on α . For a fixed affine function β : $X_0 \to \mathbf{R}_+ \setminus \{0\}$, the convex cone $\{g(\cdot) = \alpha(\cdot)/\beta(\cdot): \alpha \text{ is } S \text{ convex on } X_0\}$ consists of functions, all of which are S-invex with the same kernel η . A similar statement holds when the hypothesis on β is replaced by another of the hypothesis in (III). (Unfortunately, there is no obvious extension to a cone of invex functions $\alpha(\cdot)/\beta(\cdot)$ with both α and β varying over appropriate classes of functions.) Similarly, if φ : $X \to X$ is surjective and $\operatorname{ran}(\varphi'(a)) = X$ for each $a \in X$, then the convex cone $\{g = q \circ \varphi: q: X \to Y \text{ is } S\text{-convex}\}$ consists of S-invex functions with the same kernel η , using (II). The result in (III) remains valid when α and β are merely directionally differentiable, provided that the definition of cone-invexity is suitably extended, as given below in (11).

- (IV) For real-valued functions (that is, $Y = \mathbb{R}$) it will be shown (in section (IV) that every pseudoconvex function ([14]) is invex. The converse is *not* valid.
- (V) Let $g: X_0 \to Y$ be a linearly Gâteaux differentiable function and suppose that there exists a point $\bar{x} \in X_0$ such that

(3)
$$g'(a)\bar{x} \in -int S.$$

This assumes that int $S \neq \emptyset$. We shall show that g is S-invex at a on X_0 .

PROOF. Since int $S \neq \emptyset$, there is a weak* compact convex set $B \subset Y'$ such that $0 \notin B$ and $S^* = \text{cone } B$ (B is called a base for S^* , see [6]). Thus (3) can be expressed equivalently as $(\forall \lambda \in B) \lambda g'(a) \overline{x} < 0$. Now, since B is weak* compact, (4) $(\exists \theta \in \mathbb{R}) (\forall \lambda \in B) \lambda g'(a) \overline{x} \leq \theta < 0$.

For each $x \in X_0$, let $b_x = \inf\{\lambda[g(x) - g(a)]: \lambda \in B\}$; clearly $b_x > -\infty$ since B is weak* compact and convex. By (4), since $\theta < 0$ and $b_x > -\infty$, there exists a sufficiently large positive number γ_x such that $b_x \ge \gamma_x \theta$ (thus γ_x is defined for each $x \in X_0$). The invex kernel is now defined by $\eta(x, a) = \gamma_x \overline{x}$. Thus

$$(\forall x \in X_0)(\forall \lambda \in B) \lambda g'(a) \eta(x, a) \leqslant \gamma_x \theta \leqslant b_x \leqslant \lambda [g(x) - g(a)].$$

Hence g is S-invex at a on X_0 .

This is a slightly extended version of a result by Hanson and Mond [12] in finite dimensions. Note that (3) is a version of the well-known Slater constraint qualification for a program such as (P).

EXAMPLE 5. Let $X = Y = \mathbb{R}^2$, and $S = \mathbb{R}^2$, then the function $g(x, y) = (y - x^2 - 1, x + y^2 - 2)$ is \mathbb{R}^2 , invex at the point a = (0, 0) on \mathbb{R}^2 , since

$$g'(0,0)(-1,-1) = (-1,-1) \in -int \mathbb{R}^2_+$$

Clearly g is not \mathbb{R}^2 -convex at (0,0).

4. Differentiable functions

In this section we shall consider invexity in mathematical programming problems involving linearly Gâteaux differentiable functions.

THEOREM 1. (a) (Hanson [10], Craven [5]) Let $a \in KT(P)$; let f be K_0 -invex at a with respect to η on $E = \{x \in X_0: \neg g(x) \in S\}$. Then (P) attains a global minimum at the point a.

(b) Let f_0 be invex on X_0 , then $a \in X_0$ is a (global) minimum of f_0 over X_0 if and only if $f'_0(a) = 0$.

PROOF. (a) Let
$$x \in E$$
. Then, since $\lambda g(x) \le 0$ and $\lambda g(a) = 0$ for each $\lambda \in S_0^*$, $f_0(x) - f_0(a) \ge rf(x) - rf(a) \ge rf'(a)\eta(x, a) = 0$,

since $a \in KT(P)$. Here $r = (1, \lambda)$, where λ is the Lagrange multiplier associated to a.

(b) Since X_0 is an open set we need only establish sufficiency, which follows immediately by (2) with $f'_0(a) = 0$.

REMARK 1. If E is replaced by $E \cap U$, where U is a neighborhood of a in X_0 , then (P) attains a local minimum at a in (a). As a consequence of Theorem 2 (to follow) we will establish the converse to part (b) above (see Remark 3), thus if every stationary point of f_0 is a minimum then f_0 is invex on X_0 .

THEOREM 2. Let $a \in KT(P)$; define K_0 from K and g(a); assume the regularity hypotheses, that the convex cone $J_x = [f(x) - f(a), f'(a)]^T(K_0^*)$ is weak* closed for each $x \in E$, and that $g'(a)u \in -\text{aint } S$ for some $u \in X$. Then f is K_0 -invex on E at a, for some n, if and only if

(5)
$$(\forall x \in E) f_0(x) + \lambda g(x) \geqslant f_0(a) + \lambda g(a),$$

where λ is any Lagrange multiplier satisfying (KT). Also, if f is K_0 -invex on W and J_x is weak* closed for each $x \in W$ then (D_1) reaches a maximum at $(u, v) = (a, \lambda)$.

PROOF. Let $-g(x) \in S$ and $x \neq a$. Let M = f'(a) and c = f(x) - f(a). Then,

$$(6) \quad (\exists \eta \in X) f(x) - f(a) - f'(a) \eta \in K_0$$

- \Leftrightarrow $(\exists \mu \in X, \exists t \in \mathbf{R})ct M\mu \in K_0, t \in \text{int } \mathbf{R}_+ \text{ (by substituting } \eta = \mu/t)$
- $\Leftrightarrow (\exists (t, \mu) \in \mathbf{R} \times X)[c, M] \begin{bmatrix} t \\ \mu \end{bmatrix} \in K_0, [0, 1] \begin{bmatrix} t \\ \mu \end{bmatrix} \in \operatorname{int} \mathbf{R}_+$
- $\Leftrightarrow \quad (\mathbf{Z}, q) p[1, 0] + q[c, M] = 0, q \in K_0^*, 0 \neq p \in \mathbf{R}_+$ (by Motzkin's alternative theorem, see [3, p. 32],

since the cone $J_x = [c, M]^T(K^*)$ is weak* closed)

$$\Leftrightarrow \quad (\nexists r \in K_0^*) r(c) = -1, rM = 0 \quad (\text{substituting } r = p^{-1}q)$$

- $(7) \quad \Leftrightarrow \quad [(r \in K_0^*, rM = 0) \Rightarrow r(c) \geq 0]$
- (8) \Leftrightarrow $[(r \in K_0^*, r_0 > 0, rM = 0) \Rightarrow r(c) \geqslant 0]$ (since if $0 \neq r \in K_0^*, r_0 = 0, rM = 0$ then $0 = \lambda g'(a)u < 0, \text{ from } 0 \neq \lambda \in S^* \text{ and } g'(a)u \in -\text{aint } S;$ the case r = 0 is trivial. Note $r = (r_0, \lambda)$.).

$$\Leftrightarrow f_0(x) + \lambda g(x) \ge f_0(a) + \lambda g(a)$$
(since $(1, \lambda)M = 0$ for any Lagrange multiplier λ satisfies (KT)).

Finally if f is K_0 -invex on W then, using the above characterization,

$$f_0(z) + \overline{\lambda}g(z) \geqslant f_0(y) + \overline{\lambda}g(y),$$

for all $z, y \in W$ with $(y, \overline{\lambda})$ feasible for (D_1) . Since $a \in KT(P)$, (a, λ) is feasible for (D_1) , thus $f_0(a) = f_0(a) + \lambda g(a) \ge f_0(a) + \overline{\lambda} g(a) \ge f_0(y) + \overline{\lambda} g(y)$, for each $y \in W$. Hence (a, λ) is optimal for (D_1) . It is easily shown that if f is K_0 -invex on $W \cup E$ then duality holds between (P) and (D_1) , (see [10]).

REMARK 2. The proof that (5) characterizes K_0 -invexity at a in Theorem 2 does not require the assumption that $\lambda g(a) = 0$. If it is assumed then (5) is equivalent to $f_0(x) - f_0(a) \ge -\lambda g(x) \ge 0$, and thus to something a little stronger than a minimum of (P) at the point a. A corresponding result for local minimization follows if x is restricted to $E \cap U$, where U is a neighborhood of a.

If the cone J_x is not assumed weak* closed, then the Kuhn-Tucker conditions (KT) may be replaced by the doubly asymptotic Kuhn-Tucker conditions (see [25], [18], [7])

$$(AKT)$$
 $(\exists \operatorname{net}(r_a) \subset K^*)r_a f'(a) \to 0, \quad r_a f(a) \to f_0(a), a \in E,$

where the net (r_{α}) need not converge. Denote by AKT(P) the set of points a at which (AKT) holds for (P). Then the result of applying Motzkin's theorem in the proof of Theorem 2 is replaced by

$$(\exists \operatorname{net}(r_{\alpha}) \subset K_0^*) r_{\alpha}(c) \to -1, \quad r_{\alpha}M \to 0.$$

Hence with $a \in AKT(P)$ and $g'(a)u \in -aint S$ for some $u \in X$, f is K_0 -invex at a on E if and only if

$$f_0(x) + \lambda_{\alpha}g(x) \geqslant f_0(a) + \lambda_{\alpha}g(a)$$

holds eventually, that is for all $\alpha \geqslant \overline{\alpha}$ (some index).

We now establish Theorem 2 under alternative regularity assumptions and characterize K_0 -invexity using the Lagrangean dual, (D_2) .

THEOREM 3. Let $a \in KT(P)$; define K_0 from K and g(a); assume that J_x is weak* closed for each $x \in E$. In addition suppose that one of the following is satisfied:

- (a) g is S-convex at a.
- (b) $(\forall \lambda \in S_0^* \setminus \{0\})(\exists x = x(\lambda) \in X)\lambda g'(a)x < 0$.

Then f is K_0 -invex at a on E if and only if (5) holds for each $x \in E$ and each Lagrange multiplier λ . Furthermore, if J_x is weak* closed for each $x \in X_0$, then f is K_0 -invex at a on X_0 if and only if the Lagrangean dual (D_2) reaches a maximum at λ (the Lagrange multiplier satisfying (KT) at a) with $\varphi(\lambda) = f_0(a)$.

PROOF. By inspection of the proof of Theorem 2 we need only establish $(8) \Rightarrow (7)$ and the result will follow. Hence assume $r \in K_0^*$, $r_0 = 0$ and rM = 0. Thus, letting $r = (r_0, \lambda)$, $\lambda g'(a) = 0$ with $\lambda \in S_0^*$. If (a) holds then, by (1), $\lambda g(x) \ge \lambda g(a)$, $(\forall x \in E)$ and consequently $r(c) \ge 0$ as required. If (b) holds then the result follows as in Theorem 2, since $\lambda g'(a) \ne 0$, for each $\lambda \in S_0^* \setminus \{0\}$.

Finally, suppose (D_2) reaches a maximum at λ with $\phi(\lambda) = f_0(a)$ and $a \in KT(P)$. Then, by weak duality, we have

$$f_0(x) + \lambda g(x) \geqslant \phi(\lambda) = f_0(a) = f_0(a) + \lambda g(a), \quad \forall x \in X_0.$$

Thus by the above f is K_0 -invex at a on X_0 . Conversely, if f is K_0 -invex at a on X_0 then $\phi(\lambda) = f_0(a) + \lambda g(a) = f_0(a)$ using (5).

REMARK 3. (i) From the proof of Theorem 2 (in particular since $(6) \Leftrightarrow (7)$) we have the following equivalent condition for cone-invexity, namely f is K-invex at a

on a set $D \subset X$ if and only if

(9)
$$[(r \in K^*, rf'(a) = 0) \Rightarrow rf(x) \geqslant rf(a), \forall x \in D],$$

(we are assuming J_x is weak* closed for each $x \in D$). For real-valued functions the condition (9) gives the following: f is invex on D if and only if every stationary point of f in D is a (global) minimum. Functions satisfying this latter condition have been extensively studied by Zang, Choo and Avriel [24] (see also [22], [23]). Using the characterization (9) we easily obtain

f is K-invex at a on
$$D \Leftrightarrow rf$$
 is invex at a on D , for all $r \in K^*$.

Note that we do not need to specify that η be the same for all $r \in K^*$, this follows since (9) is independent of η . Now, coupling this result with the work in [24] we obtain the following technical characterization of cone-invexity:

f is K-invex on an open set
$$D \subset \mathbb{R}^n$$
 if and only if $(\forall r \in K^*) L_{rf}(\cdot)$ is strictly lower semi-continuous on G_{rf} .

(ii) Under suitable regularity assumptions [3], the Fritz John conditions

(FJ)
$$(\exists \lambda \in S^*, \exists \tau \geqslant 0, (\tau, \lambda) \neq (0, 0)) \tau f_0'(a) + \lambda g'(a) = 0, \quad \lambda g(a) = 0,$$

are necessary for optimality at $a \in E$; equivalently,

$$(FJ +) \qquad (\exists r \in K_0^*, r \neq 0) \, rf'(a) = 0.$$

Hence, using (9) above, it follows that f is K_0 -invex at a on E if and only if either, (FJ+) is not satisfied at $a \in E$ or, the corresponding Lagrangean function L(r,x)=rf(x) (for $r \in \mathbb{R} \times Y'$) attains a minimum at a over E. This result assumes that J_x is weak* closed for each $x \in E$, but does not require the other regularity conditions of Theorems 2 and 3. It is possible to consider Fritz John type conditions in an asymptotic form (see [7]) which would be applicable when J_x is not necessarily closed. The conditions (FJ) are known to be satisfied when the cone S has non-empty (topological) interior ([3]).

- (iii) The weak* closure assumption on the convex cone J_x is satisfied under either of the following assumptions:
 - (a) K_0 is a polyhedral cone, (in particular if $K = \mathbb{R}^n_+$).
 - (b) $[f(x) f(a), f'(a)](\mathbf{R}_+ \times X) + K_0 = \mathbf{R} \times Y$, for each $x \in E$.
- In part (b) we need the additional assumption that X and Y are complete, for the details see Nieuwenhuis [15], or Glover [7, Lemma 3]. Other sufficient conditions are given in Zalinescu [20] and Holmes [13].
- (iv) In Section 3 it was claimed that every pseudoconvex function is invex, this now follows easily from part (i) above since every stationary point of a pseudoconvex function is a (global) minimum. A related result was given in [24, Theorem 2.3] where it was shown that for a pseudoconvex function, $f: X \to \mathbb{R}$, $L_f(\cdot)$ is SLSC on G_f ; which is equivalent to invexity by part (i) above.

(v) In this section we have characterized cone-invexity at Kuhn-Tucker points using the Motzkin alternative theorem; for finite systems of differentiable functions on \mathbb{R}^n , a similar approach was suggested by Hanson [10] using Gale's alternative theorem.

5. Nondifferentiable functions

In this section we shall discuss cone-invexity for a class of nondifferentiable functions. We use the concept of quasidifferentiability to show that under cone-invex hypotheses the generalized Kuhn-Tucker conditions of Glover [7] are sufficient for optimality.

DEFINITION. A function $g: X_0 \to Y$ is S^* -quasidifferentiable at $a \in X_0$ if g is directionally differentiable at a and, for each $\lambda \in S^*$, there is a non-empty weak* compact convex set $\tilde{\partial}(\lambda g)(a)$ such that

(10)
$$g'(a, x) = \sup\{w(x) : w \in \tilde{\partial}(\lambda g)(a)\}.$$

Clearly if g is S*-quasidifferentiable at a then $\lambda g'(a,\cdot)$ is a continuous sublinear functional for each $\lambda \in S^*$. Hence $\tilde{\partial}(\lambda g)(a)$ coincides with $\partial(\lambda g)'(a,0)$ that is the subdifferential of $\lambda g'(a,\cdot)$ at 0 in the sense of convex analysis (see [17]). If g is S-convex at a then $\tilde{\partial}(\lambda g)(a) = \partial(\lambda g)(a)$; for convenience we shall omit the \sim in the sequel.

Clearly every linearly Gâteaux differentiable function is S^* -quasidifferentiable with $\partial(\lambda g)(a) = {\lambda g'(a)}$. For more general classes of nondifferentiable functions which are quasidifferentiable see Pshenichnyi [16], Craven and Mond [6], Clarke [2], and Borwein [1].

Let $g: X_0 \to Y$ be directionally differentiable at $a \in X_0$, then g will be called S-invex at a on a set $D \subset X_0$ if, for each $x \in D$, there is a $\eta(x, a) \in X$ with

(11)
$$g(x) - g(a) - g'(a, \eta(x, a)) \in S.$$

THEOREM 4 (Sufficient Kuhn-Tucker Theorem). Consider problem (P) with $a \in E$. Let f_0 be quasidifferentiable at a and g S*-quasidifferentiable at a. Further suppose that f is K-invex at a on E and that the generalized Kuhn-Tucker conditions

(12)
$$0 \in (\partial f_0(a) \times \{0\}) + \overline{\bigcup_{\lambda \in S^*} (\partial(\lambda g)(a) \times \{\lambda g(a)\})}$$

are satisfied. Then a is optimal for (P).

PROOF. It is easily seen that (12) is equivalent to the existence of $w \in \partial f_0(a)$ and nets $(\lambda_{\alpha}) \subset S^*$, $(w_{\alpha}) \subset X'$ with $w_{\alpha} \in \partial (\lambda_{\alpha} g)(a)$ for all α , such that

(13)
$$w + w_{\alpha} \to 0, \quad \lambda_{\alpha} g(a) \to 0.$$

Let $x \in E$, then

$$f_{0}(x) - f_{0}(a) \ge f'_{0}(a, \eta), \quad \text{by invexity}$$

$$\ge w(\eta), \quad \text{since } w \in \partial f_{0}(a)$$

$$= \lim_{\alpha} \left[-w_{\alpha}(\eta) \right], \quad \text{by (13)}$$

$$\ge \lim_{\alpha} \inf \left[-\lambda_{\alpha} g'(a, \eta) \right], \quad \text{since } w_{\alpha} \in \partial(\lambda_{\alpha} g)(a), \forall \alpha$$

$$\ge \lim_{\alpha} \inf \left(-\lambda_{\alpha} (g(x) - g(a)) \right), \quad \text{by invexity}$$

$$\ge \lim_{\alpha} \inf \lambda_{\alpha} g(a), \quad \text{as } x \in E \text{ and } \lambda_{\alpha} \in S^{*}$$

$$= 0, \quad \text{by (13)}.$$

Thus $f_0(x) - f_0(a) \ge 0$, for all $x \in E$ and so a is optimal.

REMARK 4. Theorem 4 generalizes the result of Hanson [10] and Craven [5] given in Theorem 1(a). The condition (12) has been shown to be necessary for optimality by Glover [7, Theorem 4] under the quasidifferentiability assumptions of Theorem 4 and the additional hypotheses that f_0 is arc-wise directionally differentiable at a ([6]) and g is locally solvable at a. In the special case of Theorem 4 in which f_0 and g are linearly Gâteaux differentiable at a it is easily shown that (12) is equivalent to (AKT).

We shall now consider an alternative characterization of optimality for invex programs under stronger hypotheses.

THEOREM 5. For problem (P) let $a \in E$; let f_0 be quasidifferentiable at a and let g be linearly Gâteaux differentiable at a. Furthermore assume ran([g'(a), g(a)]) is closed, X and Y are complete, and g is locally solvable at a. Then a necessary condition for a to be a minimum of (P) is that

(14)
$$(\exists v \in \overline{Q}) \ 0 \in \partial f_0(a) + vg'(a), \qquad vg(a) = 0,$$

where

(15)
$$Q = S^* - N([g'(a), g(a)]^T).$$

If f is K-invex at a on E then (14) is sufficient for optimality at a.

PROOF. (Necessity) Let $a \in E$ be optimal for (P). Then by Craven and Mond [6], using the local solvability hypothesis, there is no solution $(\alpha, x) \in \mathbf{R} \times X$ to

(16)
$$f'_0(a,x) < 0, \quad \alpha g(a) + g'(a)x \in -S.$$

Let A = [g'(a), g(a)], then (16) is equivalent to

(17)
$$A(\alpha, x) \in -S \Rightarrow f_0'(a, x) \geqslant 0.$$

Thus, by the separation theorem, ([16]), (17) is equivalent to

(18)
$$0 \in (\partial f_0(a) \times \{0\}) - [A^{-1}(-S)]^*.$$

By Theorem 1 in [8], $[A^{-1}(-S)]^* = A^T(\overline{Q})$ with Q given by (15). Thus (14) and (18) are equivalent as required.

(Sufficiency) Suppose (14) is satisfied at $a \in E$ and f is K-invex at a on E. Let $x \in E$. By (14) there are nets $(\lambda_{\alpha}) \subset S^*$, $(w_{\alpha}) \subset N(A^T)$ with $v = \lim_{\alpha} (\lambda_{\alpha} - w_{\alpha})$. Now,

$$f_{0}(x) - f_{0}(a) \geqslant f'_{0}(a, \eta),$$

$$\geqslant -vg'(a)\eta, \quad \text{by } (14)$$

$$= \lim_{\alpha} \left[-(\lambda_{\alpha} - w_{\alpha})g'(a)\eta \right]$$

$$= \lim_{\alpha} \left[-\lambda_{\alpha}g'(a)\eta \right], \quad \text{since } w_{\alpha} \in N(A^{T}), \forall \alpha$$

$$\geqslant \liminf_{\alpha} \left[-\lambda_{\alpha}(g(x) - g(a)) \right], \quad \text{by invexity}$$

$$\geqslant \liminf_{\alpha} \left[\lambda_{\alpha}g(a) \right], \quad \text{since } x \in E$$

$$= vg(a), \quad \text{as } w_{\alpha}g(a) = 0, \forall \alpha$$

$$= 0, \quad \text{by } (14).$$

Thus a is optimal for (P).

REMARK 5. Theorem 5 generalizes the results in [8]. If $Y = \mathbb{R}^n$ then the closed range condition is automatically satisfied. This result provides a non-asymptotic Kuhn-Tucker condition even if the usual 'closed cone' condition is not satisfied.

Consider the following program related to (P).

(D₃)
$$\begin{aligned} & \text{Maximize} \quad f_0(u) + vg(u) \\ & \text{subject to} \quad v \in \overline{Q(u)}, \, 0 \in \partial f_0(u) + vg'(u) \end{aligned}$$

where f_0 is quasidifferentiable, g is linearly Gâteaux differentiable and $Q(u) = S^* - N([g'(u), g(u)^T])$. Let $W_1 = \{u \in X: (u, v) \text{ is feasible for } (D_3) \text{ for some } v \in \overline{Q(u)}\}$.

THEOREM 6. Let f be K-invex on $W_1 \cup E$ then weak duality holds for (P) and (D_3) . Let $a \in E$ be optimal for (P) and let (14) be satisfied for some $v \in \overline{Q}$, then (D_3) reaches a maximum at (a, v) with $Min(P) = Max(D_3)$. Thus (D_3) is a dual program to (P).

PROOF. Let $x \in E$ and let (u, \bar{v}) be feasible for (D_3) . Then,

$$f_0(x) - f_0(u) - \bar{v}g(u) \geqslant f_0'(u, \eta) - \bar{v}g(u)$$

$$= -\bar{v}g'(u)\eta - \lim_{\alpha} (\lambda_{\alpha} - w_{\alpha})g(u)$$
where we choose (λ_{α}) and (w_{α}) as in Theorem 5
$$= -\bar{v}g'(u)\eta + \lim_{\alpha} \left[-\lambda_{\alpha}g(u) \right], \quad \text{as } w_{\alpha}g(u) = 0$$

$$\geqslant -\bar{v}g'(u)\eta + \liminf_{\alpha} \left[\lambda_{\alpha}(g(x) - g(u)) \right], \quad \text{as } x \in E$$

$$\geqslant -\bar{v}g'(u)\eta + \liminf_{\alpha} \lambda_{\alpha}g'(u), \quad \text{by invexity}$$

$$= -\bar{v}g'(u)\eta + \bar{v}g'(u)\eta, \quad \text{as } w_{\alpha}g'(u) = 0, \forall \alpha$$

Thus weak duality holds for (P) and (D_3) .

Let $a \in E$ be optimal for (P). Now by assumption there is a $v \in \overline{Q} = \overline{Q(a)}$ such that (14) holds. Thus (a, v) is feasible for (D_3) . Hence, by weak duality,

$$f_0(a) + vg(a) = f_0(a) \ge f_0(u) + v\bar{g}(u)$$

for all (u, \bar{v}) feasible for (D_3) . Thus (a, v) is optimal for (D_3) and $Min(P) = f_0(a) = Max(D_3)$.

In order to establish a version of Theorem 2 for quasidifferentiable functions we require the following theorem of the alternative. We no longer require the completeness assumptions on X and Y.

THEOREM 7. Let h: $X \to Y$ be S-sublinear and weakly continuous. Let $z \in Y$. Then exactly one of the following is satisfied:

(i)
$$(\exists x \in X) -h(x) + z \in S$$
.

(ii)
$$(0,1) \in \overline{\bigcup_{\lambda \in S^*} (\partial(\lambda h)(0) \times {\{\lambda(z)\}})}.$$

PROOF. [Not (ii) \Rightarrow (i)]. For convenience let $B = \bigcup_{\lambda \in S^*} (\partial(\lambda h)(0) \times \{\lambda(z)\})$. Clearly B is a convex cone. Now suppose $(0, -1) \notin B$. Thus, by the separation theorem ([3, p. 23]), $\exists (\hat{x}, \beta) \in X \times \mathbb{R}$ such that

(19)
$$\begin{aligned}
-\beta &> \sup \{ \overline{w}(\hat{x}, \beta) \colon \overline{w} \in \overline{B} \} \\
&= \sup \{ \overline{w}(\hat{x}, \beta) \colon \overline{w} \in B \} \\
&\geqslant \sup \{ w(\hat{x}) \colon w \in \partial(\lambda h)(0) \} + \beta \lambda(z), & \text{for any } \lambda \in S^* \\
&= \lambda h(\hat{x}) + \beta \lambda(z), & \text{by continuity and sublinearity of } \lambda h.
\end{aligned}$$

Also as $0 \in S^*$, $-\beta > 0$. Let $\gamma = -\beta$. Then, for any $\lambda \in S^*$,

$$\lambda h(\hat{x}) - \lambda(\gamma z) < \gamma \Leftrightarrow \lambda(h(\bar{x}) - z) < 1$$
, where $\bar{x} = \hat{x}/\gamma$
 $\Rightarrow -h(\bar{x}) + z \in (S^*)^0 = S$, as S is a closed convex cone
 \Rightarrow (i) is satisfied by \bar{x} .

[(i) \Rightarrow Not (ii)]. Suppose $-h(x) + z \in S$ for some $x \in X$; and suppose, if possible, that $(0, -1) \in \overline{B}$. Hence there are nets $(\lambda_{\alpha}) \subset S^*$ and $(w_{\alpha}) \subset X'$ such that $w_{\alpha} \in \partial(\lambda_{\alpha}h)(0)$, $\forall \alpha$, and $w_{\alpha} \to 0$, $\lambda_{\alpha}(z) \to -1$. Thus $w_{\alpha}(x) \to 0$. Now, for each α , $0 \ge \lambda_{\alpha}(h(x) - z) \ge w_{\alpha}(x) - \lambda_{\alpha}(z) \to 1$. Thus we have a contradiction, hence $(0, -1) \notin \overline{B}$ and (ii) is not satisfied.

REMARK 6. Vercher [19] (see also Goberna et al. [9]) has established a result similar to Theorem 7 for arbitrary systems of sublinear functions defined on \mathbb{R}^n . It is possible to weaken the continuity requirement in Theorem 7 to λh lower semi-continuous for each $\lambda \in S^*$ (the proof is identical since (19) remains valid using [21, Theorem 1]). Consider the special case of Theorem 7 in which h = C, a continuous linear function. Then (ii) becomes

$$(20) \qquad (0,-1) \in \overline{[C,z]^T(S^*)}.$$

If the convex cone $[C, z]^T(S^*)$ is weak* closed then (20) becomes

(21)
$$(\exists \lambda \in S^*) \lambda C = 0, \quad \lambda(z) = -1.$$

Thus the first section of proof in Theorem 2 has established this 'linear' version of Gale's alternative theorem.

Consider the generalized Kuhn-Tucker conditions given in Theorem 4. If the convex cone $\bigcup_{\lambda \in S^{\bullet}} (\partial(\lambda g)(a) \times {\lambda g(a)})$ is weak* closed then (12) is equivalent to

$$(GKT) (\exists \lambda \in S^*) \ 0 \in \partial f_0(a) + \partial (\lambda g)(a), \lambda g(a) = 0.$$

Let GKT(P) denote the set of $a \in E$ such that (GKT) holds for some λ .

THEOREM 8. Let $a \in GKT(P)$; at a, let f_0 be quasidifferentiable and let g be S_0^* -quasidifferentiable. For each $x \in E$, assume that the convex cone

$$J'_{x} = \bigcup_{r \in K_{0}^{*}} \left(\partial(rf)(a) \times \left\{ r(f(x) - f(a)) \right\} \right)$$

is weak* closed. Further assume that one of the following conditions is satisfied:

- (i) g is S-convex at a.
- (ii) $(\exists u \in X) g'(a, u) \in -aint S$.

Then f is K_0 -invex at a on E if and only if $f_0(x) + \lambda g(x) \ge f_0(a) + \lambda g(a)$, where λ is any Lagrange multiplier satisfying (GKT) at a, for all $x \in E$. Also f is K_0 -invex on X_0 at a if and only if the Lagrangean dual (D_2) reaches a maximum at (a, λ) with $\phi(\lambda) = f_0(a)$.

PROOF. Let $x \in E$, $x \neq a$. Then

f is K_0 -invex at a on E

$$\Leftrightarrow (\exists \eta \in X) f(x) - f(a) - f'(a, \eta) \in K_0$$

$$\Leftrightarrow (0, -1) \notin \overline{J}'_x = J'_x, \text{ by Theorem 7}$$

$$(\text{since } f \text{ is } K_0\text{-quasidifferentiable at } a \text{ it follows that}$$

$$f'(a, \cdot) \text{ is } K_0\text{-sublinear and } rf'(a, \cdot) \text{ is continuous } (r \in K_0^*))$$

$$(22) \Leftrightarrow [(0, \gamma) \in J'_x \Rightarrow \gamma \geqslant 0]$$

$$\Leftrightarrow [r \in K_0^*, r_0 > 0, 0 \in \partial(rf)(a) \Rightarrow rf(x) \geqslant rf(a)]$$

$$(\text{since (i) and (ii) will ensure that the case } r_0 = 0 \text{ is}$$

$$\text{satisfied as in the proof of Theorem 2})$$

$$\Leftrightarrow f_0(x) + \lambda g(x) \geqslant f_0(a) + \lambda g(a)$$

$$(\text{where } \lambda \text{ is any multiplier satisfying } (GKT) \text{ at } a.$$

Now since $a \in GKT(P)$, $\exists \lambda \in S_0^*$ with $0 \in \partial f_0(a) + \partial (\lambda g)(a)$. Also as $f_0'(a, \cdot)$ and $\lambda g'(a, \cdot)$ are continuous convex functions we have $\partial (f_0 + \lambda g)(a) = \partial f_0(a) + \partial (\lambda g)(a)$. Thus $0 \in \partial (rf)(a)$ where $r = (1, \lambda)$. The final result then follows as in Theorem 2.

REMARK 7. If we remove the closed cone assumption on J'_x then (22) becomes $[(0, \gamma) \in \bar{J}'_x \Rightarrow \gamma \geqslant 0]$ which is equivalent to

$$\left[(r_{\alpha}) \subset K_0^*, w_{\alpha} \in \partial(r_{\alpha}f)(a), w_{\alpha} \to 0, r_{\alpha}(f(x) - f(a)) \to \gamma \Rightarrow \gamma \geqslant 0 \right].$$

This is the analogue of the asymptotic conditions discussed following Theorem 2.

We can consider generalized Fritz John conditions (under suitable regularity and quasidifferentiability assumptions (see [7]) for problems (P) to attain a minimum at $a \in E$; namely

$$(GFJ)$$

$$(\exists \lambda \in S^*, \exists \tau \ge 0, (\tau, \lambda) \ne (0, 0)) \ 0 \in \tau \partial f_0(a) + \partial(\lambda g)(a), \qquad \lambda g(a) = 0.$$

Equivalently, since $f_0'(a, \cdot)$ and $\lambda g'(a, \cdot)$ are continuous, we have

$$(GFJ +) \qquad (\exists r \in K_0^*, r \neq 0) \ 0 \in \partial(rf)(a).$$

Thus, analogously to Remark 3, part (ii), f is K_0 -invex at a on E if and only if either (GFJ+) is not satisfied at $a \in E$, or, the corresponding Lagrangean function attains a minimum at a over E. This result follows easily from (22); we need only assume J_x' is weak* closed for each $x \in E$.

6. Examples

(i)(
$$P_1$$
) Minimize $f_0(x, y) = x^3 + y^3$
subject to $g_1(x, y) = x^2 + y^2 - 4 \le 0$
 $g_2(x, y) = y - x + 2 \le 0$.

Let $a = (0, -2) \in E$. It is easily shown that a is a Kuhn-Tucker point for (P_1) with (unique) Lagrange multiplier $\lambda = (3, 0)$. Let $(x, y) \in E$, then it is easily shown that $y = \mu x - 2$, for some $\mu \in [0, 1]$; and $x \ge 0$. Thus,

$$f_0(x, y) + 3g_1(x, y) = x^2 + y^3 + 3x^2 + 3y^2 - 12$$
$$= (1 + \mu^3)x^3 + 3(1 - \mu^2)x^2 - 8$$
$$\ge -8 = f_0(0, -2) + 3g_1(0, -2).$$

Thus, since the constraints of (P_1) are convex, we have by Theorem 3 that $f = (f_0, g_1, g_2)$ is \mathbb{R}^3 -invex on E at a. Hence, by Theorem 1(a), a is a minimum of (P_1) .

We can actually define a suitable function η as follows:

Let
$$\eta(x, y) = (\eta_1(x, y), \eta_2(x, y))$$
, for $(x, y) \in E$, where

$$\eta_1(x, y) = \max\{-g_1(x, y)/4: (x, y) \in E\} - \min\{g_2(x, y): (x, y) \in E\},$$

$$\eta_2(x, y) = -g_1(x, y)/4.$$

We do not have duality between (P_1) and (D_1) in this case; we will show that if f is not \mathbb{R}^3_+ -invex on $W \cup E$. Let $\alpha > 0$ and consider the point $(0, -\alpha)$.

$$f_0'(0, -\alpha) + \lambda_1 g_1'(0, -\alpha) + \lambda_2 g_2'(0, -\alpha) = (-\lambda_2, 3\alpha^2 - 2\alpha\lambda_1 + \lambda_2) = 0$$

$$\Leftrightarrow \lambda_2 = 0, \lambda_1 = 3\alpha/2, \quad \text{(thus } (0, -\alpha) \in W, \forall \alpha > 0).$$

Now,

$$f_0(0, -\alpha) + (3\alpha/2)g_1(0, -\alpha) = -\alpha^3 + (3\alpha/2)(\alpha^2 - 4)$$

$$= \frac{1}{2}\alpha(\alpha^2 - 12)$$

$$> -8, \text{ for all } \alpha \in [0, 2)$$

$$= f_0(0, -2) + 3g_1(0, -2).$$

Thus a is not a maximum of (D_1) and f is not \mathbb{R}^3_+ -invex on $W \cup E$. It should be noted that f is not \mathbb{R}^3_+ -convex at a.

(ii) (Hanson and Mond [12])

(P₂) Minimize
$$f_0(x, y) = -2y^3 - 6x^2 + 3y^2 + 6x + 6y - 7$$

subject to $g_1(x, y) = -3x^4 + y^2 - 3x - 3y + 2 \le 0$
 $g_2(x, y) = 2x^4 + 2x^2 - y^2 + 1 \le 0$
 $g_3(x, y) = 2xy - 6x - 1 \le 0$.

In [12] it was shown that $f = (f_0, g_1, g_2, g_3)$ is K_0 -invex on E at a = (0, 1) by constructing a suitable function η . We shall apply Theorem 2. At the point a only g_1 and g_2 are binding constraints, thus $S = \mathbf{R}^3_+$, $S_0 = \mathbf{R}^2_+ \times \mathbf{R}$, $S_0^* = \mathbf{R}^2_+ \times \{0\}$ and $K_0 = \mathbf{R}^3_+ \times \mathbf{R}$. Theorem 2 is applicable since, for $g = (g_1, g_2, g_3)$ we have

$$g'(0,1)(1,1) = (-3,-2,-4) \in -int S.$$

Clearly a is a Kuhn-Tucker point with (unique) Lagrange multiplier $\lambda = (2, 3, 0)$. It is easily shown that $f_0(x, y) + 2g_1(x, y) + 3y_2(x, y) = -2$, for all $(x, y) \in E$. Thus f is K_0 -invex at a on E, and consequently a is a minimum of (P_2) .

(iii) (Craven [5])

(P₃) Minimize
$$f_0(x, y) = \frac{1}{3}x^3 - y^2$$

subject to $g_1(x, y) = \frac{1}{2}x^2 + y^2 - 1 \le 0$
 $g_2(x, y) = x^2 + (y - 1)^2 - \rho^2 \le 0$

(for $\rho > 0$ (to be specified) sufficiently small). For this problem the point a = (0,1) is a Kuhn-Tucker point with (unique) Lagrange multiplier $\lambda = (1,0)$. Now, $f_0(x, y) + g_1(x, y) = \frac{1}{3}x^3 + \frac{1}{2}x^2 - 1 \ge -1 = f_0(0,1) + g_1(0,1)$, for all $(x, y) \in \mathbb{R}^2$ with $x \ge -3/2$, (this determines ρ so that $(x, y) \in E \Rightarrow x \ge -3/2$). Thus $f = (f_0, g_1, g_2)$ is $\mathbb{R}^2_+ \times \mathbb{R}$ -invex at a on E and consequently a is a minimum of (P_3) . Note that $g = (g_1, g_2)$ is \mathbb{R}^2_+ -convex so that Theorem 3 is applicable.

(iv) In [11] Hanson and Mond defined the following class of generalized convex functions, to extend the concept of invexity. Let $\psi \colon X \to \mathbf{R}$ be a differentiable function. Then ψ is in this class over a set $C \subset X$ if, for each $x, a \in C$, there is a sublinear functional $F_{x,a} \colon X' \to \mathbf{R}$ such that

(23)
$$\psi(x) - \psi(a) \geqslant F_{x,a}(\psi'(a)).$$

They claimed this extended the idea of invexity to a wider class of function. We shall show that if ψ satisfies (23) then ψ is actually invex on C. The proof follows immediately from part (i) of Remark 3. For if $\psi'(a) = 0$ for some $a \in C$, then $F_{x,a}(\psi'(a)) = 0$ (by sublinearity) for all $x \in C$, thus $\psi(x) \geqslant \psi(a)$, and consequently every stationary point of ψ in C is a minimum. Hence ψ is invex on C.

Now suppose $\psi = \psi_i$ satisfies (23) for i = 1, ..., n. Let $\beta_i \ge 0$ ($\forall i$) and $\beta = (\beta_1, ..., \beta_n)$ define $\Phi(\beta, \cdot) = \sum \beta_i \psi_i(\cdot)$. Thus

$$F_{x,a}(\Phi'(\beta, a)) = F_{x,a}(\sum \beta_i \psi_i'(a))$$

$$\leq \sum \beta_i(\psi_i(x) - \psi_i(a))$$

$$= \Phi(\beta, x) - \Phi(\beta, a), \text{ for all } x \in C, \beta \in \mathbf{R}_+^n.$$

Hence if $\Phi'(\beta, a) = 0$ then $\Phi(\beta, x) \ge \Phi(\beta, a)$, for all $x \in C$. Thus, by (9) and part (ii) in Remark 3, $\Psi = (\psi_1, \dots, \psi_n)$ is \mathbb{R}^n_+ -invex on C. Thus $F_{x,a}$ can be assumed linear and (23) is equivalent to invexity.

Hanson and Mond [11] also defined another class of generalized invex functions from (23) (in a manner analogous to the definition of pseudoconvex functions from convex functions); namely a differentiable function ψ is in this new class over $C \subseteq X$ if, for each $x, a \in C$, there is a sublinear functional $F_{x,a}$: $X' \to \mathbb{R}$ such that

$$[F_{x,a}(\psi'(a)) \geqslant 0 \Rightarrow \psi(x) \geqslant \psi(a)].$$

It now follows immediately, as above, that if ψ satisfies (24) then ψ is invex on C, since every stationary point is a (global) minimum.

Example 4 in Section 3 shows that these invex concepts are also applicable in infinite dimensions.

Acknowledgement

The authors thank two referees for their comments, which have improved the presentation of the paper.

References

- [1] J. M. Borwein, 'Fractional programming without differentiability', *Math. Programming* 11 (1976), 283-290.
- [2] F. H. Clarke, 'Generalized gradients of Lipschitz functionals', Adv. in Math. 40 (1981), 52-67.
- [3] B. D. Craven, Mathematical programming and control theory (Chapman and Hall, London, 1978).
- [4] B. D. Craven, 'Duality for generalized convex fractional programs', Generalized concavity in optimization and economics, edited by S. Schaible and W. T. Ziemba, pp. 473-490 (Academic Press, New York), 1981.
- [5] B. D. Craven, 'Invex functions and constrained local minima', Bull. Austral. Math. Soc. 24 (1981), 357-366.
- [6] B. D. Craven and B. Mond, 'Lagrangean conditions for quasidifferentiable optimization', Survey of mathematical programming, Volume 1, Akadémiai Kiadó, Budapest, 1979, edited by A. Prékopa, pp. 177-192, (proceedings of the 9th International Programming Symposium, Budapest, 1976).

- [7] B. M. Glover, 'A generalized Farkas lemma with applications to quasidifferentiable programming', Z. Oper. Res. 26 (1982), 125-141.
- [8] B. M. Glover, 'Differentiable programming in Banach spaces', Math. Operationsforsch. Statist. Ser. Optimization 14 (1983), 499-508.
- [9] M. A. Goberna, M. A. Lopez, J. Pastor and E. Vercher, 'An approach to semi-infinite programming via consequence relations', Conference paper, Intern. Symposium Semi-infinite Programming and Applications, University of Texas, Austin, September, 1981.
- [10] M. A. Hanson, 'On sufficiency of the Kuhn-Tucker conditions', J. Math. Anal. Appl. 80 (1981), 545-550.
- [11] M. A. Hanson and B. Mond, 'Further generalizations of convexity in mathematical programming', J. Inform. Optim. Sci. 3 (1982), 25-32.
- [12] M. A. Hanson and B. Mond, Necessary and sufficient conditions for global optimality in constrained optimization, FSU Statistics Report M-600, Florida State University, Tallahassee, November, 1981.
- [13] R. B. Holmes, Geometric functional analysis and its applications (Springer-Verlag, New York, 1975).
- [14] O. L. Mangasarian, Nonlinear programming (McGraw-Hill, New York, 1969).
- [15] J. W. Nieuwenhus, 'Another application of Guignard's generalized Kuhn-Tucker conditions', J. Optim. Theory Appl. 30 (1980), 117-125.
- [16] B. N. Pshenichnyi, Necessary conditions for an extremum (Marcel Dekker, New York, 1971).
- [17] R. T. Rockafellar, *Conjugate duality and optimization* (SIAM Regional Conference Series in Applied Mathematics 16, Philadelphia, 1974).
- [18] L. I. Trudzik, 'Asymptotic Kuhn-Tucker conditions in abstract spaces', Numer. Funct. Anal. Optim. 4 (1982), 355–369.
- [19] E. Vercher, Teoremas de alternativa para sistemas infinitos aplicación a la programación y juegos semi-infinitos (Tesis Doctoral, Universidad de Valencia, Spain, 1981).
- [20] C. Zalinescu, 'A generalization of the Farkas lemma and applications to convex programming', J. Math. Analy. Appl. 66 (1978), 651-678.
- [21] C. Zalinescu, 'On an abstract control problem', Numer. Funct. Anal. Appl. 2 (1980), 531-542.
- [22] I. Zang and M. Avriel, 'On functions whose local minima are global', J. Optim. Theory Appl. 16 (1975), 183-190.
- [23] I. Zang, E. U. Choo and M. Avriel, A note on functions whose local minima are global, J. Optim. Theory Appl. 18 (1976), 555-559.
- [24] I. Zang, E. U. Choo and M. Avriel, 'On functions whose stationary points are global minima', J. Optim. Theory Appl. 22 (1977), 195-207.
- [25] S. Zlobec, 'Extensions of asymptotic Kuhn-Tucker conditions in mathematical programming', SIAM J. Appl. Math. 21 (1971), 448-460.

Department of Mathematics University of Melbourne Parkville, Victoria 3052 Australia