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RANDOMLY /(-AXIAL GRAPHS

DAVID BURNS, GARY CHARTRAND, S.F. KAPOOR

AND FARROKH SABA

A class of graphs called randomly fc-axial graphs is introduced,

which generalizes randomly traceable graphs. The problems of

determining which bipartite graphs and which complete n-partite

graphs are randomly fe-axial are studied.

A graph G was defined to be randomly traceable in [/] if, for each

vertex V of G , every path with initial vertex v can be extended to a

hamiltonian path with initial vertex V . Equivalently, a graph of order

at least 3 is randomly traceable if every path of G is contained in

some hamiltonian cycle of G . It was proved in [J] that a graph G of

order p is randomly traceable if and only if G is isomorphic to K , C

or K(p/2, p/2) , where in the last case p is even. In this paper we

consider a generalization of randomly traceable graphs.

DEFINITION OF RANDOMLY fe-AXIAL GRAPHS. Let G be a graph and k an

integer such that 1 5 k 2 6{G) . Let v be an arbitrary vertex of G

and let V , v , ..., v , be any k distinct vertices adjacent to v .
A. A. J.<_ A.K.

Define the set

Ll,0= {V' Ull' W12' •••' * W •

If L ? V(G) , let U be any vertex not in L that is adjacent to

v and define L = L, _ u {v } . We now define sets L (having
XX X )X X jU ^X 771 ̂ Yl
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cardinality 1 + rrik + n ) inductively for certain positive integers m and

nonnegative integers n for which 0 £ n £ k-1 . If a set L c V(G)

has been defined, where 0 < n £ k-2 , and L ± V(G) , let V ... ... be
771 ^Yt 771+x } W + 1

any vertex adjacent to v such that v ^ L and define

m,n+l m,n ' m+l,n+l'

If a set L , . c K(C) has been defined and L , . # F(G) , let U ,
m,fe-l — m,k-l 7n+l,k

be any vertex adjacent to u 7 such that v , , t L , and define
m « m+lfe r m,k-l

If every such set L is defined and every such sequence L has

V(G) as its final term, then we say that G is randomly k-axial. If r

is a positive integer for which the vertices V , V , ..., u , are

defined, we denote the set {url>
 v
 2> , f , } ty £ and refer to it as

a level set or, more simple, as a level.

A more intuitive definition of randomly fe-axial graphs can be given

with the aid of the following terms. A random extension of a path

P : V±, V2, ..., Vn in a graph is a path P' : V±, v&, ..., U^, Un

where U is any vertex of the graph adjacent to V that does not

belong to P . A collection of paths, each with initial vertex u , is

called internally disjoint if every two paths in the collection have only

the vertex u in common.

A graph G is then randomly fe-axial (l £ k £ 6((J)) if for each

vertex V of G , any ordered collection of k paths in G of length 1

having initial vertex v can be cyclically randomly extended to produce k

internally disjoint paths whose lengths are as equal as possible and which

contain all the vertices of G .

It thus follows that the randomly 1-axial graphs are precisely the

randomly traceable graphs. Indeed, we also have the following.

PROPOSITION 1. A graph G with 6(G) 2 2 is randomly 2-axial if

and only if G is randomly traceable.
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Proof. If G is randomly traceable of order p , then G is

isomorphic to one of the graphs K (p > 3) , C or K(p/2, p/2) , vhere

p is even and p 2 k . It follows immediately that each of these graphs

is randomly 2-axial.

Suppose that G is a randomly 2-axial graph, and let P be an

arbitrary path of G . Then P can be labelled as

P : Wrl' V l , l ' •••' Ull> "' ul2' U22' •••' Vr2

F '• VrV V l , l ' • • • ' U l l ' V' U 12 ' U 22 ' • • • • V l , 2 '

according t o whether P has even l eng th or odd l e n g t h , r e s p e c t i v e l y .

Since G i s randomly 2 - a x i a l , t h e v e r t i c e s of G can be l i s t e d as

VmV V l , l ' • • • ' Ur l> V l , l ' • • • ' U l l ' U ' V 1 2 ' U 22 ' • " • Vr2> - " '

or

Vml' V l , l ' • • • ' U r l ' V l , l ' • • • ' U l l ' U ' U 1 2 '

' Vm-1,2 '

where consecutive vertices are adjacent, producing a hamiltonian path Q

of G in either case. Thus P is contained in Q and, consequently,

every path of G is contained in a hamiltonian path of G . By a result

of Thomassen [2], G belongs to a class of graphs containing the randomly

traceable graphs as a proper subclass. Among all these graphs, however,

only the randomly traceable graphs of order at least 3 are randomly

2-axial. Thus G is randomly traceable. D

It therefore follows that the only randomly 2-axial graphs are K

(p > 3) , C and K(n, n) , n 2 2 . It is obvious that K is randomly

?c-axial for every k with 1 < k 2 p-1 . We have already noted that the

graph K(6, 6) is both randomly 1-axial and randomly 2-axial. It is not

difficult to verify that K(6, 6) is also randomly 3-axial. However,

K(6, 6) is not randomly U-axial; for consider the labelling of K(6, 6)

shown in Figure 1. Note that, as in the definition of randomly l»-axial

graphs, L2 2 is defined and L t v(K{6, 6)) ; however, there is no
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11

vertex U._ 2
s u c h that

i s adjacent to v ; that i s , .

is not defined. Thus, the sequence \L } does not have V[K(6, 6)) as

its final term, thereby implying that K(6, 6) is not randomly It-axial.

On the other hand, K(6, 6) is both randomly 5-axial and randomly

6-axial. All these facts will become clear shortly as we begin our study

of bipartite randomly fe-axial graphs.

PROPOSITION 2. Let G be a bipartite graph with partite sets V

and V such that n = \v \ s \v | = n . If G is randomly k-axial,

3 S k £ n , then n = «„ where n = 0 (mod k) or n = 1 (mod k) .

Proof. Assume, to the contrary, that n < n . Then n = n + u ,

where M i l . By the division algorithm, we can write n = ak + b ,

where a > 1 and 0 5 & < fe .

Let u € f and apply the definition of randomly fe-axial graphs to

obtain a labelling of the vertices of G . For i = 1, 2, . . . , a , define

Ui=

and

Write

V2i-1,2'

2i,2' • '

1 1 2 a
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and

V = {«} u W u W u ... v W u A ,

where \A\ = u + b - 1 and \B\ = b . Since \B\ = b < k , ve must have

A = 0 ; otherwise, £ ? , is the final term in the sequence [L } ,

but L. •, f V(G) , contradicting the fact that G is randomly &-axial.

Thus u + b - 1 = 0 , implying that u = 1 and ZJ = 0 since M > 1 and

b 2 0 . Hence n = n + 1 .

Next let u € 7 and once again apply the definition of randomly

fe-axial graphs to obtain a labelling of the vertices of G . For

£ = 1, 2, ..., a , define

Wi= H>;-1,1> U2i-1,2' •••• V2i-l,k] '

and for £ = 1 , 2 , ..., a-X , define

Write

and

u U u U2 u ... u Ua ± u B

F2 = W1 u W2 u . .. u W u A ,

where |5| = k - 1 and \A\ = 1 . The last term in the sequence [L }

is then L , ; however, Lo , 1 + V(G) , contradicting the fact

that (7 is randomly fe-axial. Hence we conclude that n = n~ •

We now show that n = 0 (mod fe) or n = 1 (mod fe) . Recall that

n = ak + b , where a t 0 and 0 5 b < k .

Let V ( V. Since G is randomly fc-axial, a labelling of V(G)

is produced. For i = 1, 2, ..., a , define

and for i = 1, 2, ..., a-1 , define
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Write

and

Ui=

V. = {y} u H u w u ... u U n u £/ u B1 1 2 a-l a

7 = W u W u ... u W u A ,

where |d1 = b . If b = 0 , then B = 0 and |yj = fe - 1 ; if £ » 1 ,

then \B\ = b - 1 and |i/a| = k .

Suppose b 2 1 . Then the final term of the sequence {L } is

L , . Since G is randomly fe-axial, £„ , = K(ff) ; hence B = 0 and

6 = 1 .

Thus b = 0 or £> = 1 , completing the proof. d

It therefore follows that the partite sets of a bipartite, randomly

fc-axial graph have the same cardinality. Further, this cardinality is

either divisible by k or gives a remainder of 1 when divided by k .

In the first of these cases we can say much more.

THEOREM 1. If G is a randomly k-axial graph (k > 3) of order

p j where 2k\p , then either G s K or G S K(p/2, pi2) .

Proof. Let m = p/k and let v € V(G) . A-plying the definition of

randomly fe-axial graphs to G with V = v , we obtain a labelling of the

vertices of G (as in the definition) and L , n = V(G) . This implies

that G contains the edges indicated in Figure 2. The levels

L , L , ..., L are as indicated and define

Lm= Ha* V ' •••' Vm,k-J -
Let i be given, 1 5 t S k-1 ; we show that the vertex v , is

ffl—1 ,/c

adjacent to V . . This is accomplished by a relabelling of V(G) .

Relabel v , (l < a £ m-l) as w , , relabel u, . (l 5 £> 5 m-l) as

Mj, and relabel v, T, n ( l S e S m ) as M . . Further, relabel u_ as
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V2i

-3*?

0 0
2k

"m-2 ,i

,0 0

O

m-2, j

m-1, j
0

0

FIGURE 2

m-2,k~l m-2,k

m,k-l

m-l,k

u and any v , except V . , not already relabelled as u . W e now

apply the definition of randomly k-axial graphs to G (where v and v

in the definition are replaced by u and u ) . I t follows that the

vertex V . must now receive the label u , , and, therefore, u ,m m,k-l m-l,k-

i s adjacent to u , or , equivalently, v . , is adjacent to v . .
Til 9 /C~*J. 77I~A. ) K. Tfltr

Since i (l £ i * k-l) is arbitrary, V , is adjacent to v . for

every i , 1 £ £ £ k .

Next, let j be given, 1 £ j £ fc-1 . We show that y . is

adjacent to v . for every i , 1 £ £ £ fc . This is accomplished by

rs
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another relabelling of V(G) . For 1 < a < m-1 , relabel V • as w «

and v , as w . . Also, relabel v as w and relabel any v not

already relabelled as w - B y the argument of the preceding paragraph,

it follows that W , is adjacent to W . for every i, , 1 < t < fe-1 ,
TTl— 1 , fC OTZ-

or, equivalently, u . is adjacent to v . for every i ,

1 5 •£ S k-1 . Since j is arbitrary, we conclude that every vertex of

L is adjacent to every vertex of L* . In general, we now know that if
m—L Tfl

V is any vertex of G with level L , and set L* as defined above,
m-1 m

then every vertex of L is adjacent to every vertex of L* .

Therefore, G contains the edges indicated in Figure 3.

v.

21

D3 V3

6
,k-l

Q
'2k

3k

m,k-l

m-l,k

FIGURE 3
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Our next step is to show that every vertex of L. is adjacent to

every vertex of Lo • Relabel v , , as v' and for each j ,

« 7 * fe-1 , relabel y , . . as v'. . for 1 5 i 5 m . Also, let

I 5 I

v'. , = V , . , for 1 5 i £ m-2 and let v' , = V. . Applying the

definition of randomly fe-axial graphs to G (with v and u replaced

by v ' and v' ] we obtain the corresponding level set

Lm-1 = K l ' U22' •••' U2,fe-1' Uol an* Set

(i'j* = {f,, , V.p, .. . , u j, -i } • From above, we know that every vertex of

i* is adjacent to every vertex of (•£')* • ^v repea-^ing this process

twice more, say

(1) by relabelling u , , as v' and
m—1,1

(2) by relabelling v , „ as u' ,

we conclude that every vertex of L, is adjacent to every vertex of L. .

The graph G now contains the edges as indicated in Figure U.

m,k-l

m-l,k

FIGURE 4
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Next we show that every vertex of level L is adjacent to every

vertex of set L* . This can be accomplished by relabelling V , , as

v" . It is possible to relabel other vertices of G so that the

corresponding levels L" L", , L" are produced, where

L'i = {Vm-i,l> Vm-i,2' ••" vm-i,*} = Lm-i

for 1 £ i 5 m-1 . Further,

(L$*B Kl>Vm2> •••' Um,fe-2' V '

From the argument given above, every vertex of L" is adjacent to every

vertex of [!•")* . If we now repeat this argument, where V -.

(1 £ I < fc-2) is relabelled as v" and levels L£, L£, ...,-L^ are

produced exactly as above, then we see that V , is also adjacent to

every vertex of L" ; hence, every vertex of L is adjacent to every

vertex of L* .

m

Our next step is to show that v is adjacent to every vertex of

L , . Eelabel V , , as v'" . Other vertices of G can be relabelled
m-1 m,k-l

so that corresponding levels L'" L'" ..., L'" are produced, where

L'V = L^ for 1 < i < m-1 . Moreover,

&Z)*B Kl> V ' •"• ym,k-2' %} •

Since every vertex of £'" is adjacent to every vertex of [S")* , it

follows that V is adjacent to every vertex of L .

Define L = L* u lu.} . We have shown that every vertex of L is
m m l 0 m

adjacent to every vertex of L and to every vertex of L . Applying

the previous arguments and the definition of randomly fe-axial graphs with

V selected from L , we see that every vertex of L is adjacent to

every vertex of L and to every vertex of L . Continuing this

procedure, it follows that every vertex of L. is adjacent to every vertex
1
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of L. and to every vertex of L. (i = 1, 2, ..., m) , where the

subscripts are expressed modulo m .

We now show that G contains K(p/2, p/2) as a subgraph. If m = 2

or m = k , this already follows. Thus we assume that m > 6 . We show

that every vertex of L. (l £ i £ m) \s adjacent to every vertex of

£^+ , where the subscripts are expressed modulo m . For convenience, let

x denote any vertex of L (see Figure 5). Applying the definition of

randomly fe-axial graphs, we can obtain the labelling of the vertices of G

shown in Figure 5. Note that a vertex of G (in L J has not yet been

labelled. Since G is randomly fe-axial, this vertex must be labelled

x , . Since x , must be adjacent to a; -.•,-. and
m,k-l m,k-l m-l,k-l

x
m -\ v -\ ^ ̂ c » it follows, because of symmetry, that for each i
m—X,K—X p

(l £ i - m) , every vertex of L. is adjacent to every vertex of L. _ ,

where, as always, the subscripts are expressed modulo m .

If m = 6 or m = 8 , then G contains K(p/2, p/2) as a subgraph.

If m > 10 , we use the known edges of G and the fact that G is

randomly fe-axial to produce yet another labelling of the vertices of G .

Relabel vertex a; as y , vertex x , as y ,,,, and vertex

xm-3,k-l a s ym-l,k-l • ^ery o t h e r v e r t e x xrs i s r e l a b e l l e d yr8 •

Since G is randomly fe-axial, the unlabelled vertex in £„ must be

y . . and is adjacent to y , . By symmetry, we conclude that every
/<i,/C~X TTl—X )K— x

vertex of L. is adjacent to every vertex of L.

If m = 10 or m = 12 , we have now shown that G contains

K(p/2, p/2) as a subgraph. If m > lU , we again use the known edges of

G and the fact that G is randomly fe-axial to obtain a new labelling of

V(G) . Relabel y as z , vertex y ^ ^ as V5,fc-1
 a n d V 5 , * - l

as 3 l fe l ' B y t h e s a m e reasoning as above, one can now show that

every vertex of L. is adjacent to every vertex of L. for all i .

Continuing this procedure, we see that every vertex of L. is adjacent to

every vertex of L. (l £ •£, j £ m) , where i and j are of opposite
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xl,k X3,k
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"31 32
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^ 0 0
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0 O O O

"51 52
L5 0 0 O
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0 O 0
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H ° °
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O

"72
0 O

Xm-3,k X9,k-2 Xm-3,k-l
0 0 0

m-2

Xm-2,1 Xm-2,2
O O O 0

xm,k-2 X6,k-1
O O

m-1

X

O
m-1,2

O 0 O

X3,k-1 X5,k-1
O 0

ml
O

m2
O

xm,k-3 Xhk X2,k-1 Xh,k-1
O

FIGURE 5

O O O

par i ty . Hence G contains K(p/2, p/2) as a subgraph.

If G contains only the edges of the subgraph K(p/2, p/2) , then, of
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course, G = K(p/2, pi2) . Suppose then that G contains an edge e not

belonging to the subgraph K(p/2, pi2) . We show that G S K .

Let V. and V denote the pa r t i t e sets of the subgraph

K(p/2, p/2) , where, say, VQ € V± . Thus

m/2 m/2
V = U £ . and V = U L .
1 2 t 2 21

Without loss of generality, we may assume that e = ab , where a = v, o i.

and £> = U , (see Figure 2). Let e, <i € 7 . The proof will be

complete once it is shown that ad € E(G) . Again, without loss of

generality, we may assume that a = v . , ., and d = V -.-,,• We relabel

G as follows. Since a£> € £(£) , we can relabel b as v , , v as

U. and all other V except V , (= d) as U . Since G is

randomly k-axial, d must be labelled V , ; however, V , , , must

be adjacent to d , but V . = c . Q

Combining the previous two results, we have an immediate corollary.

COROLLARY. Let G be a bipartite, randomly k-axial graph (k 2; 3)

whose partite sets have cardinality n . If n = 0 (mod k) , then

G S K(n, n) .

The graph K{n, n) , where n = 1 (mod k) and & 2 3 , is readily

seen to be randomly fe-axial. Thus, the complete bipartite, randomly

fe-axial graphs are completely determined.

PROPOSITION 3. The complete bipartite graph K[n , n ) is randomly

k-axial (k > 3) if and only if n = n and n = 0, 1 (mod k) .

We conjecture that every bipartite, randomly k-axial graph (fc > 3)

is complete bipartite.

CONJECTURE 1. Let G be a bipartite, randomly k-axial graph

(.k 2 3) whose partite sets have cardinality n , where n i l (mod k) .

Then G S K(n, n) .

In the case of complete tripartite graphs we have the following
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r e s u l t . The proof, which we omit, proceeds toy case study.

PROPOSITION 4. For k > 2 , the graph K[n±, n^, n ) is randomly

k-axial if and only if n = «„ = n = fc/2 .

It is not difficult to verify that one of the implications of

Proposition h can be extended, namely, for t 2 3 , the complete i-partite

graph K{d, d, ..., d) is randomly k-axial for all d > 1 and

k = {t-l)d . We conjecture that the converse is also true.

CONJECTURE 2. For k 2 2 and t > 3 , the graph K[n^ , no, . . . , wj

is randomly k-axial if and only if n = n = . . . = n, = k/(£-l) .

Finally, we conjecture that every randomly k-axial graph (k > 3) is

a regular complete multipartite graph.
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