BULL. AUSTRAL. MATH. SOC. VOL. 23 (1981), 143-156.

RANDOMLY k-AXIAL GRAPHS

DAVID BURNS, GARY CHARTRAND, S.F. KAPOOR AND FARROKH SABA

A class of graphs called randomly k-axial graphs is introduced, which generalizes randomly traceable graphs. The problems of determining which bipartite graphs and which complete n-partite graphs are randomly k-axial are studied.

A graph G was defined to be $randomly\ traceable$ in [1] if, for each vertex v of G, every path with initial vertex v can be extended to a hamiltonian path with initial vertex v. Equivalently, a graph of order at least 3 is randomly traceable if every path of G is contained in some hamiltonian cycle of G. It was proved in [1] that a graph G of order p is randomly traceable if and only if G is isomorphic to K_p , C_p or $K(p/2,\,p/2)$, where in the last case p is even. In this paper we consider a generalization of randomly traceable graphs.

DEFINITION OF RANDOMLY k-AXIAL GRAPHS. Let G be a graph and k an integer such that $1 \le k \le \delta(G)$. Let v be an arbitrary vertex of G and let $v_{11}, v_{12}, \ldots, v_{1k}$ be any k distinct vertices adjacent to v. Define the set

$$L_{1,0} = \{v, v_{11}, v_{12}, \ldots, v_{1k}\}$$
.

If $L_{1,0} \neq V(G)$, let v_{21} be any vertex not in $L_{1,0}$ that is adjacent to v_{11} and define $L_{1,1} = L_{1,0} \cup \{v_{21}\}$. We now define sets $L_{m,n}$ (having

Received 14 October 1980. Dr Chartrand's research was supported in part by a Western Michigan University faculty research fellowship. The authors thank Carsten Thomassen for his valuable comments and suggestions which led to an improved paper.

144

cardinality 1+mk+n) inductively for certain positive integers m and nonnegative integers n for which $0 \le n \le k-1$. If a set $L_{m,n} \subseteq V(G)$ has been defined, where $0 \le n \le k-2$, and $L_{m,n} \ne V(G)$, let $v_{m+1,n+1}$ be any vertex adjacent to $v_{m,n+1}$ such that $v_{m+1,n+1} \notin L_{m,n}$ and define

$$L_{m,n+1} = L_{m,n} \cup \{v_{m+1,n+1}\}$$
.

If a set $L_{m,k-1}\subseteq V(G)$ has been defined and $L_{m,k-1}\neq V(G)$, let $v_{m+1,k}$ be any vertex adjacent to $v_{m,k}$ such that $v_{m+1,k}\notin L_{m,k-1}$ and define

$$L_{m+1,0} = L_{m,k-1} \cup \{v_{m+1,k}\}$$
.

If every such set $L_{m,n}$ is defined and every such sequence $L_{m,n}$ has V(G) as its final term, then we say that G is randomly k-axial. If r is a positive integer for which the vertices $v_{r1}, v_{r2}, \ldots, v_{rk}$ are defined, we denote the set $\{v_{r1}, v_{r2}, \ldots, v_{rk}\}$ by L_r and refer to it as a level set or, more simple, as a level.

A more intuitive definition of randomly k-axial graphs can be given with the aid of the following terms. A random extension of a path $P: v_1, v_2, \ldots, v_n$ in a graph is a path $P': v_1, v_2, \ldots, v_n, v_{n+1}$ where v_{n+1} is any vertex of the graph adjacent to v_n that does not belong to P. A collection of paths, each with initial vertex u, is called internally disjoint if every two paths in the collection have only the vertex u in common.

A graph G is then randomly k-axial $(1 \le k \le \delta(G))$ if for each vertex v of G, any ordered collection of k paths in G of length 1 having initial vertex v can be cyclically randomly extended to produce k internally disjoint paths whose lengths are as equal as possible and which contain all the vertices of G.

It thus follows that the randomly 1-axial graphs are precisely the randomly traceable graphs. Indeed, we also have the following.

PROPOSITION 1. A graph G with $\delta(G) \geq 2$ is randomly 2-axial if and only if G is randomly traceable.

Proof. If G is randomly traceable of order p, then G is isomorphic to one of the graphs K_p $(p \ge 3)$, C_p or K(p/2, p/2), where p is even and $p \ge 4$. It follows immediately that each of these graphs is randomly 2-axial.

Suppose that G is a randomly 2-axial graph, and let P be an arbitrary path of G . Then P can be labelled as

$$P: v_{r1}, v_{r-1,1}, \ldots, v_{11}, v, v_{12}, v_{22}, \ldots, v_{r2}$$

or

$$P: v_{r1}, v_{r-1,1}, \ldots, v_{11}, v, v_{12}, v_{22}, \ldots, v_{r-1,2}$$

according to whether P has even length or odd length, respectively. Since G is randomly 2-axial, the vertices of G can be listed as

$$v_{m1}, v_{m-1,1}, \dots, v_{r1}, v_{r-1,1}, \dots, v_{11}, v, v_{12}, v_{22}, \dots, v_{r2}, \dots, v_{m2}$$

or

$$v_{m1}, v_{m-1,1}, \ldots, v_{r1}, v_{r-1,1}, \ldots, v_{11}, v, v_{12},$$

$$v_{22}, \ldots, v_{r2}, \ldots, v_{m-1,2}$$

where consecutive vertices are adjacent, producing a hamiltonian path Q of G in either case. Thus P is contained in Q and, consequently, every path of G is contained in a hamiltonian path of G. By a result of Thomassen [2], G belongs to a class of graphs containing the randomly traceable graphs as a proper subclass. Among all these graphs, however, only the randomly traceable graphs of order at least G are randomly G is randomly traceable.

It therefore follows that the only randomly 2-axial graphs are K_p $(p \ge 3)$, C_p and K(n,n), $n \ge 2$. It is obvious that K_p is randomly k-axial for every k with $1 \le k \le p-1$. We have already noted that the graph K(6,6) is both randomly 1-axial and randomly 2-axial. It is not difficult to verify that K(6,6) is also randomly 3-axial. However, K(6,6) is not randomly 4-axial; for consider the labelling of K(6,6) shown in Figure 1. Note that, as in the definition of randomly 4-axial graphs, $L_{2,2}$ is defined and $L_{2,2} \ne V(K(6,6))$; however, there is no

FIGURE 1

vertex $v_{33} \not \in L_{2,2}$ such that v_{33} is adjacent to v_{23} ; that is, $L_{2,3}$ is not defined. Thus, the sequence $\{L_{m,n}\}$ does not have V(K(6,6)) as its final term, thereby implying that K(6,6) is not randomly 4-axial. On the other hand, K(6,6) is both randomly 5-axial and randomly 6-axial. All these facts will become clear shortly as we begin our study of bipartite randomly k-axial graphs.

PROPOSITION 2. Let G be a bipartite graph with partite sets V_1 and V_2 such that $n_1 = |V_1| \le |V_2| = n_2$. If G is randomly k-axial, $3 \le k \le n_1$, then $n_1 = n_2$ where $n_1 \equiv 0 \pmod k$ or $n_1 \equiv 1 \pmod k$.

Proof. Assume, to the contrary, that $n_1 < n_2$. Then $n_2 = n_1 + u$, where $u \ge 1$. By the division algorithm, we can write $n_1 = ak + b$, where $a \ge 1$ and $0 \le b < k$.

Let $v \in V_2$ and apply the definition of randomly k-axial graphs to obtain a labelling of the vertices of G. For i = 1, 2, ..., a , define

$$U_i = \{v_{2i-1,1}, v_{2i-1,2}, \dots, v_{2i-1,k}\}$$

and

$$W_i = \{v_{2i,1}, v_{2i,2}, \dots, v_{2i,k}\}$$
.

Write

$$V_1 = V_1 \cup V_2 \cup \ldots \cup V_a \cup B$$

and

$$V_2 = \{v\} \cup W_1 \cup W_2 \cup \dots \cup W_a \cup A$$
,

where |A|=u+b-1 and |B|=b. Since |B|=b < k, we must have $A=\emptyset$; otherwise, $L_{2a,b}$ is the final term in the sequence $\{L_{m,n}\}$, but $L_{2a,b} \neq V(G)$, contradicting the fact that G is randomly k-axial. Thus u+b-1=0, implying that u=1 and b=0 since $u\geq 1$ and $b\geq 0$. Hence $n_2=n_1+1$.

Next let $v \in V_1$ and once again apply the definition of randomly k-axial graphs to obtain a labelling of the vertices of G. For $i = 1, 2, \ldots, a$, define

$$W_i = \{v_{2i-1,1}, v_{2i-1,2}, \dots, v_{2i-1,k}\}$$

and for i = 1, 2, ..., α -1, define

$$U_i = \{v_{2i,1}, v_{2i,2}, \dots, v_{2i,k}\}$$
.

Write

$$V_1 = \{v\} \cup U_1 \cup U_2 \cup \ldots \cup U_{\sigma-1} \cup B$$

and

$$V_2 = W_1 \cup W_2 \cup \ldots \cup W_a \cup A$$
,

where |B|=k-1 and |A|=1. The last term in the sequence $\{L_{m,n}\}$ is then $L_{2a-1,k-1}$; however, $L_{2a-1,k-1}\neq V(G)$, contradicting the fact that G is randomly k-axial. Hence we conclude that $n_1=n_2$.

We now show that $n_1 \equiv 0 \pmod k$ or $n_1 \equiv 1 \pmod k$. Recall that $n_1 = ak + b$, where $a \ge 0$ and $0 \le b < k$.

Let $v \in V_1$. Since G is randomly k-axial, a labelling of V(G) is produced. For i = 1, 2, ..., a , define

$$W_i = \{v_{2i-1,1}, v_{2i-1,2}, \dots, v_{2i-1,k}\}$$

and for $i = 1, 2, \ldots, a-1$, define

David Burns, Gary Chartrand, S.F. Kapoor and Farrokh Saba

$$U_{i} = \{v_{2i,1}, v_{2i,2}, \dots, v_{2i,k}\}$$

Write

148

$$V_1 = \{v\} \cup U_1 \cup U_2 \cup \ldots \cup U_{\alpha-1} \cup U_{\alpha} \cup B$$

and

$$V_2 = W_1 \cup W_2 \cup \ldots \cup W_q \cup A$$
,

where |A|=b . If b=0 , then $B=\emptyset$ and $|U_a|=k-1$; if $b\geq 1$, then |B|=b-1 and $|U_a|=k$.

Suppose $b \ge 1$. Then the final term of the sequence $\{L_{m,n}\}$ is $L_{2a,b}$. Since G is randomly k-axial, $L_{2a,b} = V(G)$; hence $B = \emptyset$ and b = 1.

Thus b = 0 or b = 1, completing the proof.

It therefore follows that the partite sets of a bipartite, randomly k-axial graph have the same cardinality. Further, this cardinality is either divisible by k or gives a remainder of 1 when divided by k. In the first of these cases we can say much more.

THEOREM 1. If G is a randomly k-axial graph $(k \ge 3)$ of order p , where $2k \mid p$, then either $G \cong K_p$ or $G \cong K(p/2, p/2)$.

Proof. Let m=p/k and let $v_0\in V(G)$. A-plying the definition of randomly k-axial graphs to G with $v=v_0$, we obtain a labelling of the vertices of G (as in the definition) and $L_{m-1,k-1}=V(G)$. This implies that G contains the edges indicated in Figure 2. The levels $L_1,\ L_2,\ \ldots,\ L_{m-1}$ are as indicated and define $L_m^*=\{v_{m1},\ v_{m2},\ \ldots,\ v_{m,k-1}\}$,

Let i be given, $1 \le i \le k-1$; we show that the vertex $v_{m-1,k}$ is adjacent to $v_{m,i}$. This is accomplished by a relabelling of V(G). Relabel v_{ak} $(1 \le a \le m-1)$ as $u_{a,k-1}$, relabel v_{bi} $(1 \le b \le m-1)$ as u_{bk} and relabel $v_{c,k-1}$ $(1 \le c \le m)$ as u_{ci} . Further, relabel v_0 as

FIGURE 2

u and any v_{rs} , except v_{mi} , not already relabelled as u_{rs} . We now apply the definition of randomly k-axial graphs to G (where v and v_{rs} in the definition are replaced by u and u_{rs}). It follows that the vertex v_{mi} must now receive the label $u_{m,k-1}$ and, therefore, $u_{m-1,k-1}$ is adjacent to $u_{m,k-1}$ or, equivalently, $v_{m-1,k}$ is adjacent to v_{mi} . Since i $(1 \le i \le k-1)$ is arbitrary, $v_{m-1,k}$ is adjacent to v_{mi} for every i, $1 \le i \le k$.

Next, let j be given, $1 \le j \le k$ -1 . We show that $v_{m-1,j}$ is adjacent to v_{mi} for every i , $1 \le i \le k$. This is accomplished by

another relabelling of V(G). For $1 \leq a \leq m-1$, relabel v_{aj} as w_{ak} and v_{ak} as w_{aj} . Also, relabel v_0 as w and relabel any v_{rs} not already relabelled as w_{rs} . By the argument of the preceding paragraph, it follows that $w_{m-1,k}$ is adjacent to w_{mi} for every i, $1 \leq i \leq k-1$, or, equivalently, $v_{m-1,j}$ is adjacent to v_{mi} for every i, $1 \leq i \leq k-1$. Since j is arbitrary, we conclude that every vertex of L_{m-1} is adjacent to every vertex of L_m . In general, we now know that if v is any vertex of G with level L_{m-1} and set L_m^* as defined above, then every vertex of L_{m-1} is adjacent to every vertex of L_m^* . Therefore, G contains the edges indicated in Figure 3.

FIGURE 3

Our next step is to show that every vertex of L_1 is adjacent to every vertex of L_2 . Relabel $v_{m-1,k}$ as v' and for each j, $1 \le j \le k-1$, relabel $v_{m+1-i,j}$ as $v'_{i,j}$ for $1 \le i \le m$. Also, let $v'_{i,k} = v_{m-1-i,k}$ for $1 \le i \le m-2$ and let $v'_{m-1,k} = v_0$. Applying the definition of randomly k-axial graphs to G (with v and v_{rs} replaced by v' and v'_{rs}) we obtain the corresponding level set $L'_{m-1} = \{v_{21}, v_{22}, \ldots, v_{2,k-1}, v_0\}$ and set $(L'_m)^* = \{v_{11}, v_{12}, \ldots, v_{1,k-1}\}$. From above, we know that every vertex of L'_{m-1} is adjacent to every vertex of $(L'_m)^*$. By repeating this process twice more, say

- (1) by relabelling $v_{m-1,1}$ as v' and
- (2) by relabelling $v_{m-1,2}$ as v',

we conclude that every vertex of L_1 is adjacent to every vertex of L_2 . The graph G now contains the edges as indicated in Figure 4.

FIGURE 4

Next we show that every vertex of level L_1 is adjacent to every vertex of set L_m^* . This can be accomplished by relabelling $v_{m,k-1}$ as v''. It is possible to relabel other vertices of G so that the corresponding levels L_1'' , L_2'' , ..., L_{m-1}'' are produced, where

$$L_{i}'' = \{v_{m-i,1}, v_{m-i,2}, \dots, v_{m-i,k}\} = L_{m-i}$$

for $1 \le i \le m-1$. Further,

$$(L_m')^* = \{v_{m1}, v_{m2}, \ldots, v_{m,k-2}, v_0\}$$

From the argument given above, every vertex of L''_{m-1} is adjacent to every vertex of $(L''_m)^*$. If we now repeat this argument, where $v_{m,l}$ $(1 \le l \le k-2)$ is relabelled as v'' and levels $L''_1, L''_2, \ldots, L''_{m-1}$ are produced exactly as above, then we see that $v_{m,k-1}$ is also adjacent to every vertex of L''_{m-1} ; hence, every vertex of L_1 is adjacent to every vertex of L_m^* .

Our next step is to show that v_0 is adjacent to every vertex of L_{m-1} . Relabel $v_{m,k-1}$ as v'''. Other vertices of G can be relabelled so that corresponding levels L_1''' , L_2''' , ..., L_{m-1}''' are produced, where $L_i''' = L_i$ for $1 \le i \le m-1$. Moreover,

$$(E_m^{\prime\prime})^* = \{v_{m1}, v_{m2}, \dots, v_{m,k-2}, v_0\}$$
.

Since every vertex of L_{m-1}''' is adjacent to every vertex of $(L_m''')^*$, it follows that v_0 is adjacent to every vertex of L_{m-1} .

Define $L_m = L_m^* \cup \{v_0^{}\}$. We have shown that every vertex of L_m is adjacent to every vertex of L_{m-1} and to every vertex of L_1 . Applying the previous arguments and the definition of randomly k-axial graphs with v selected from L_1 , we see that every vertex of L_1 is adjacent to every vertex of L_m and to every vertex of L_2 . Continuing this procedure, it follows that every vertex of L_1 is adjacent to every vertex

of L_{i-1} and to every vertex of L_{i+1} (i = 1, 2, ..., m), where the subscripts are expressed modulo m.

We now show that G contains K(p/2, p/2) as a subgraph. If m=2 or m=4, this already follows. Thus we assume that $m\geq 6$. We show that every vertex of L_i ($1\leq i\leq m$) is adjacent to every vertex of L_{i+3} , where the subscripts are expressed modulo m. For convenience, let x denote any vertex of L_2 (see Figure 5). Applying the definition of randomly k-axial graphs, we can obtain the labelling of the vertices of G shown in Figure 5. Note that a vertex of G (in L_2) has not yet been labelled. Since G is randomly k-axial, this vertex must be labelled $x_{m,k-1}$. Since $x_{m,k-1}$ must be adjacent to $x_{m-1,k-1}$ and $x_{m-1,k-1}\in L_5$, it follows, because of symmetry, that for each i ($1\leq i\leq m$), every vertex of L_i is adjacent to every vertex of L_{i+3} , where, as always, the subscripts are expressed modulo m.

If m=6 or m=8, then G contains $K(p/2,\,p/2)$ as a subgraph. If $m\geq 10$, we use the known edges of G and the fact that G is randomly k-axial to produce yet another labelling of the vertices of G. Relabel vertex x as y, vertex $x_{m-1},k-1$ as $y_{m-3},k-1$ and vertex $x_{m-3},k-1$ as $y_{m-1},k-1$. Every other vertex x_{rs} is relabelled y_{rs} . Since G is randomly k-axial, the unlabelled vertex in L_2 must be $y_{m,k-1}$ and is adjacent to $y_{m-1},k-1$. By symmetry, we conclude that every vertex of L_i is adjacent to every vertex of L_{i+5} .

If m=10 or m=12, we have now shown that G contains $K(p/2,\,p/2)$ as a subgraph. If $m\geq 14$, we again use the known edges of G and the fact that G is randomly k-axial to obtain a new labelling of V(G). Relabel g as g, vertex $g_{m-1},k-1$ as $g_{m-5},k-1$ and $g_{m-5},k-1$ as $g_{m-1},k-1$. By the same reasoning as above, one can now show that every vertex of g is adjacent to every vertex of g is adjacent every

L_1	^x 11 O	^x ₁₂ O	•••	<i>x</i> _{1,<i>k</i>-3}	<i>x</i> _{1,<i>k</i>} 0	^x 3,k O	x _{1,k-1} O
L ₂	^x 21 O	^x 22 O	•••	<i>x</i> 2, <i>k</i> -3	^x 2k O	<i>x</i> O	0
<i>L</i> ₃	<i>x</i> 31 O	*32 O	•••	x _{3,k-3}	x _{3,k-2}	<i>x</i> _{1,<i>k</i>-2} O	^x 5,k-2 O
$L_{rac{1}{4}}$	<i>x</i> ₄₁ O	<i>х</i> ₄₂ О	•••	<i>x</i> ₄ , <i>k</i> -3	<i>x</i> ₄ , <i>k</i> -2 O	^x 6,k-2 O	<i>x</i> 2, <i>k</i> -2 O
L ₅	<i>x</i> 51 O	*52 O	• • •	^x 5,k-3 O	$x_{m-1,k}$	^x 7,k-2 O	<i>x</i> _{m-1,k-1} O
^L 6	<i>x</i> 61 O	^x 62 O	•••	^x 6,k-3 O	$x_{m-2,k}$	^x 8,k-2 O	<i>x</i> _{m-2,k-1}
^L 7 ⋮	^x 71 O :	* ₇₂ O		^x 7,k-3 O :	<i>x</i> _{m-3,k} O	x _{9,k-2} O	$x_{m-3,k-1}$ O :
L _{m-2}	<i>x</i> _{m-2,1} O	<i>x</i> _{m-2,2} O		<i>x</i> _{m-2,k-3} O	*6k O	<i>x</i> _{m,k-2} O	^x 6,k-1 O
$^L_{\it m-1}$	<i>x</i> _{m-1,1}	<i>x</i> _{m-1,2} O		$x_{m-1,k-3}$	^x 5k O	x3,k-1 O	x _{5,k-1} O
L_{m}	x_{m1}	^ж т2 О	•••	<i>x</i> _{m,k-3} O	<i>х</i> _{4<i>k</i> О}	^x 2,k-1 O	<i>x</i> ₄ , <i>k</i> -1

FIGURE 5

parity. Hence G contains K(p/2, p/2) as a subgraph.

If G contains only the edges of the subgraph K(p/2, p/2) , then, of

course, $G\cong K(p/2,\,p/2)$. Suppose then that G contains an edge e not belonging to the subgraph $K(p/2,\,p/2)$. We show that $G\cong K_p$.

Let V_1 and V_2 denote the partite sets of the subgraph $K(p/2,\;p/2)$, where, say, $v_0\in V_1$. Thus

$$V_1 = \begin{matrix} m/2 \\ U \\ i=1 \end{matrix} \quad V_2 = \begin{matrix} m/2 \\ U \\ i=1 \end{matrix} \quad V_2 = \begin{matrix} m/2 \\ U \\ i=1 \end{matrix} \quad V_{2i-1} .$$

Without loss of generality, we may assume that e=ab, where $a=v_{m-2,k}$ and $b=v_{m,k-1}$ (see Figure 2). Let c, $d\in V_2$. The proof will be complete once it is shown that $cd\in E(G)$. Again, without loss of generality, we may assume that $c=v_{m-1,k-1}$ and $d=v_{m-1,k}$. We relabel G as follows. Since $ab\in E(G)$, we can relabel b as $\overline{v}_{m-1,k}$, v_0 as \overline{v}_0 and all other v_{rs} except $v_{m-1,k}$ (= d) as \overline{v}_{rs} . Since G is randomly k-axial, d must be labelled $\overline{v}_{m,k-1}$; however, $\overline{v}_{m-1,k-1}$ must be adjacent to d, but $\overline{v}_{m-1,k-1}=c$.

Combining the previous two results, we have an immediate corollary.

COROLLARY. Let G be a bipartite, randomly k-axial graph $(k \ge 3)$ whose partite sets have cardinality n . If $n \equiv 0 \pmod k$, then $G \cong K(n, n)$.

The graph K(n, n), where $n \equiv 1 \pmod k$ and $k \geq 3$, is readily seen to be randomly k-axial. Thus, the complete bipartite, randomly k-axial graphs are completely determined.

PROPOSITION 3. The complete bipartite graph $K(n_1, n_2)$ is randomly k-axial $(k \ge 3)$ if and only if $n_1 = n_2$ and $n_1 \equiv 0, 1 \pmod k$.

We conjecture that every bipartite, randomly k-axial graph $(k \ge 3)$ is complete bipartite.

CONJECTURE 1. Let G be a bipartite, randomly k-axial graph $(k \ge 3)$ whose partite sets have cardinality n, where $n \equiv 1 \pmod k$. Then $G \cong K(n, n)$.

In the case of complete tripartite graphs we have the following

result. The proof, which we omit, proceeds by case study.

PROPOSITION 4. For $k \ge 2$, the graph $K(n_1, n_2, n_3)$ is randomly k-axial if and only if $n_1 = n_2 = n_3 = k/2$.

It is not difficult to verify that one of the implications of Proposition 4 can be extended, namely, for $t \ge 3$, the complete t-partite graph $K(d, d, \ldots, d)$ is randomly k-axial for all $d \ge 1$ and k = (t-1)d. We conjecture that the converse is also true.

CONJECTURE 2. For $k\geq 2$ and $t\geq 3$, the graph $K(n_1,\ n_2,\ \ldots,\ n_t)$ is randomly k-axial if and only if $n_1=n_2=\ldots=n_t=k/(t-1)$.

Finally, we conjecture that every randomly k-axial graph $(k \ge 3)$ is a regular complete multipartite graph.

References

- [1] Gary Chartrand and Hudson V. Kronk, "Randomly traceable graphs", SIAM

 J. Appl. Math. 16 (1968), 696-700.
- [2] Carsten Thomassen, "Graphs in which every path is contained in a Hamilton path", J. reine angew. Math. 268/269 (1974), 271-282.

Professor D. Burns,
Department of Mathematics,
School of General Education,
Ferris State College,
Big Rapids,
Michigan 49307,
USA;
Professor G. Chartrand, Professor S.F. Kapoor and Mr F. Saba,
Department of Mathematics,
Western Michigan University,
Kalamazoo,
Michigan 49008,

USA.