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RANDOMLY k-AXIAL GRAPHS

Davip Burns, GARY CHARTRAND, S.F. Kapoor
AND FARROKH SABA

A class of graphs called randomly Kk-axial graphs is introduced,
which generalizes randomly traceable graphs. The problems of
determining which bipartite graphs and which complete n-partite

graphs are randomly k-axial are studied.

A graph G was defined to be randomly traceable in [1] if, for each
vertex v of G , every path with initial vertex v can be extended to a
hamiltonian path with initial vertex v . Equivalently, a graph of order
at least 3 1is randomly traceable if every path of (G 1is contained in
some hamiltonian cycle of G . It was proved in [7] that a graph & of

order p 1is randomly traceable if and only if G is isomorphic to Kb, Cp

or X(p/2, p/2) , where in the last case p 1is even. In this paper we

consider a generalization of randomly traceable graphs.

DEFINITION OF RANDOMLY %k-AXIAL GRAPHS. Let G ©be a graph and k an
integer such that 1 <k < &8(G) . Let v be an arbitrary vertex of G

and let v > Uig be any k distinct vertices adjacent to v .

11° Y12
Define the set

L, ={v, v

1,0 110 V1o ees Ul

If LL 0 # V(G) , 1let v be any vertex not in [ that is adjacent to
:]

21

Y11 and define Ll,l = Ll’0 u {v

1,0

We now define sets [ (having
m,n

al -
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cardinality 1 + mk + n ) inductively for certain positive integers m and

nonnegative integers n for which 0 =#n < k-1 . If a set Lm n c v(G)
>
3 < < -
has been defined, where 0 <#n < k-2 , and Lm,n # V(G) , let vm+l,n+l be
any vertex adjacent to vm,n+l such that vm+l,n+l ¢ Lm,n and define

Lm,n+l = Lm,n v {vm+l,n+l}

If a set [ < V(G) has been defined and L # V(G) , let v
m - m, k=1

,k-1 m+l Kk

be any vertex adjacent to v X such that vm+1,k ¥ Lm,k-l and define

3

{vm+l,k} :

If every such set L is defined and every such sequence L has
myn m,n

V(G) as its final term, then we say that G is randomly k-axial. If r

is a positive integer for which the vertices vrl’ ”re’ e vrk gre
defined, we denote the set {vrl’ vrz’ ey vrk} by Lr and refer to it as
a level set or, more simple, as a level.

A more intuitive definition of randomly k-axial graphs can be given

with the aid of the following terms. A random extension of a path

P Vis Ugs s Uy in a graph is a path P' : Vis Vps vees Vs U0
where vn+l is any vertex of the graph adjacent to vn that does not
belong to P . A collection of paths, each with initial vertex u , is

called internally disjoint if every two paths in the collection have only

the vertex u# in common.

A graph G is then randomly k-axial (1 =k = G(G)) if for each
vertex v of G , any ordered collection of k paths in G of length 1
having initial vertex v can be cyclically randomly extended to produce Xk
internally disjoint paths whose lengths are as equal as possible and which

contain all the vertices of G .

It thus follows that the randomly 1l-axial graphs are precisely the

randomly traceable graphs. Indeed, we also have the following.

PROPOSITION 1. 4 graph ¢ with &(G) = 2 is randomly 2-axial if
and only if G 1is randomly traceable.
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Proof. If G is randomly traceable of order p , then (G 1is
isomorphic to one of the graphs Kb (p 23), Cp or KX(p/2, p/2) , where

p is even and p 2 L . It follows immediately that each of these graphs
is randomly 2-axial.

Suppose that G is a randomly 2-axial graph, and let P be an
arbitrary path of G . Then P can be labelled as

P:o,, vr_l’l, cees Vigs Vs Vs Upps sees Ups

or

P v

P P10 Ppiy,ac ottt Par Pe Pioe Yoo cier Vpg o0

according to whether P has even length or odd length, respectively.

Since G 1is randomly 2-axial, the vertices of G can be listed as

Do1r V11 0t Uppe Vpe1,1e cter Y110 U0 P1as Paps ctos Upps tts Upo
or
U1 Pme1,10 cc Vpre Ppo1,1 0 Y10 Vo Pioo

Vpps ot Vpps ees Ypy oo

where consecutive vertices are adjacent, producing a hamiltonian path ¢
of G 1in either case. Thus P 1is contained in & and, consequently,
every path of G 1is contained in a hamiltonian path of G . By a result
of Thomassen [2], G belongs to a class of graphs containing the randomly
traceable graphs as a proper subclass. Among all these graphs, however,
only the randomly traceable graphs of order at least 3 are randomly
2-axial. Thus € is randomly traceable. a

It therefore follows that the only randomly 2-axial graphs are Kp
p =23, Cp and K(n, n) , n=>=2. It is obvious that Kp is randomly

k-axial for every k with 1 <k < p-1 . We have already noted that the
graph X(6, 6) is both randomly 1l-axial and randomly 2-axial. It is not
difficult to verify that X(6, 6) is also randomly 3-axial. However,
k(6, 6) 1is not randomly U-axial; for consider the labelling of X(6, 6)
shown in Figure 1. Note that, as in the definition of randomly L-axial

graphs, L, , is defined and L2 5 # v(k(6, 6)) 5 however, there is no
E] 2
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FIGURE 1

vertex vio f L2’2 such that v, is adjacent to D,

; that is, L2,3

is not defined. Thus, the sequence {Lm n} does not have V(X(6, 6)) as
3

its final term, thereby implying that X(6, 6) is not randomly U-axial.

On the other hand, X(6, 6) is both randomly 5-axial and randomly

6-axial. All these facts will become clear shortly as we begin our study

of bipartite randomly k-axial graphs.

PROPOSITION 2. Let G be a bipartite graph with

partite sets V1

and V, such that n = |Vl| = |V2| =n,. If G is randomly k-axial,
< < = = =
3=k = n o then n, = n, where n 20 (mod k) or n =1 (mod k) .
Proof. Assume, to the contrary, that n < n, . Then n, =n +u .,
where © = 1 . By the division algorithm, we can write nl =ak +b ,

where a>1 and 0 =Db < k.

Let v €V and apply the definition of randomly

.2
obtain a labelling of the vertices of G . For € =1,
U; = {v2i—1,1’ Yoi_1,2° ***» vei-l,k}
and
W= 1AV 10 Vpp v oo vai,k} .
Write
V1 = Ul u U2 Uu...u Ua v B
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and

v, = {v} v W UuW,u...u W, U4,

vhere |A| =u+b -1 and |B| =b . Since |B] =b < k , we must have

A =@ ; otherwise, Lza,b is the final term in the sequence {Lm,n} R
but L, , # V(G) , contradicting the fact that G is randomly k-axial.
k]

Thus u +b -1 =0, implying that u =1 and b =0 since u =21 and

b =20 . Hence n,=n, + 1.

Next let v € Vl and once again apply the definition of randomly

k-axial graphs to obtain a labelling of the vertices of G . For

1=1,2, ..., a , define

Wy = {v2i-l,l’ Yoio1,27 "t v2i—l,k} ’

and for ¢ =1, 2, ..., a-1 , define

Uy = {055 15 Vp00 =+o» Vg g} -
Write

Vl = (v} u Ul U 02 U ... U Ua-l uB

and

V2 = Wl ] Wé U...u Ka vid .,

where |B| =k -1 and [A| =1 . The last term in the sequence {Lm n}
b

is then L2 however, # V(G) , contradicting the fact

a-1,k-1 Loga1 k-1

that G is randomly k-axial. Hence we conclude that nl = n2 .

We now show that n = 0 (mod k) or n =1 (mod k) . Recall that

n, = ak +b , wvhere a=0 and 0 =b <k .

Let v € Vl . Since G 1is randomly k-axial, a labelling of V(G)

is produced. For ¢ =1, 2, ..., a , define

Wy = {”2i-1,1’ Yoi_1,07 **0 ”2i-1,k}

and for 7 =1, 2, ..., a-1 , define
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up = vy 15 Vor,00 treo Vs k) -
Write
Vl={v}uUluU2u...uUa_luUauB
and
V2 = Wl V] W2 U.eo U W& ud,

where |4] =b . If b=0, then B=¢ and IUaI =k-1; if b=1,

then |B] =b -1 and IUal =k .

Suppose b =2 1 . Then the final term of the sequence {Lm n} is
s

L2a b Since G is randomly k-axial, L =V(G) ; hence B=@ and

2a,b

Thus b =0 or b =1, completing the proof. a

It therefore follows that the partite sets of a bipartite, randomly
k-axial graph have the same cardinality. Further, this cardinality is
either divisible by k or gives a remainder of 1 when divided by k .

In the first of these cases we can say much more.

THEOREM 1. If G is a randomly k-axial graph (k = 3) of order
p , where 2k|p , then either G = Kp or G K(p/2, p/2) .

Proof. Let m = p/k and let v, € V(G) . A-plying the definition of

(o]

randomly Kk-axial graphs to G with v = vo , we obtain a labelling of the

vertices of G (as in the definition) and Lm-l,k-l = V(G) . This implies
that G contains the edges indicated in Figure 2. The levels

Ll, L2, ceey Lm_1 are as indicated and define ’

L= omys e o5 Vg )

let 7 be given, 1 =17 = k-1 ; we show that the vertex vm 1.k is
e ]

adjacent to Vit This is accomplished by a relabelling of V(G)
b4
< 7 < mo < b < m-
Relabel v, (1 =a=m1) as Uy kel relabel v, (1 =b=m1) as

(1 e =m) as u_. . Further, relabel v

-1 et 0 as

ubk and relabel vc,k
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1 ) ] 3

1,k-1

L v C ( ( C
2 2L Yor f Vog . f"z,k-l r”zk

L v
3 31 ”3i(lj UBJ(I) ?v3 k-1 (ﬁ"ak

L v
m-2 m-z’f# ”m-z,é# Vm-2,4 Vm-2,k-1 m-2,k

L C Q 0

m-1 m-1,1 f Um-1,1 f Um-1,j m-1,k-1  ‘m-1,k

L* v O O O

ml Vi vmj vm,k-l
FIGURE 2

u and any vrs , €xcept vmi , not already relabelled as urs . We now

apply the definition of randomly k-axial graphs to G (where v and vrs

in the definition are replaced by u and u It follows that the

rs )'

vertex vmi must now receive the label um,k-l and, therefore, uM-l,k-l

is adjacent to u is adjacent to vmi .

k=1 or, equivalently, v

m=1,k

3 i < . < - I3 3
Since 7 (1 =7 = k-1) is arbitrary, vm-l,k

is adjacent to v _. for
me
every 1, 1 =1 <k.

Next, let j be given, 1 = j =< k-1 . We show that Vo1 i is
=L

adjacent to Vi for every © , 1 =1 =k . This is accomplished by
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another relabelling of V(G) . For 1 <a < m-1 , relabel Vi 85 Uy

and vak as waj . Also, relabel vo

already relabelled as wrs . By the argument of the preceding paragraph,

as w and relabel any vrs not

it follows that wm—l,k 'is adjacent to wmi for every 7, 1l <1 < k-1,

or, equivalently, v is adjacent to vmi for every < ,

m-1,J
1=<Z=k-1. Since j. is arbitrary, we conclude that every vertex of
Lm-l is adjacent to every vertex of L; . In general, we now know that if

v 1is any vertex of (G with level Lm and set L; as defined above,

-1

then every vertex of Lm is adjacent to every vertex of L; .

1

Therefore, G contains the edges indicated in Figure 3.

v

0

FIGURE 3
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Our next step is to show that every vertex of L is adjacent to

1

every vertex of L2 . Relabel vm 1.k as v' and for each j ,
]

j -, . 1=1%= . A1 let
1 =4 =k-1, relabel vm+l-i,j as 1)1:”7 for 1 =m so, le

! = . for 1 <1 < m-2 and let v’ = v, . Applying the
vt,k vm-l-@,k r=n m=1,k 0 PpLying

definition of randomly k-axial graphs to G (with v and vrs replaced

by wv»! and v;s ) we obtain the corresponding level set

! = set
Ly = {5 vpos o5 U gy vy} end s
114 =
(Lm) {vll’ Vyps vees vl,k-l} . From above, we know that every vertex of
Lé 1 is adjacent to every vertex of [Lé)* . By repeating this process
twice more, say
3 1
(1) vy relabelling Vpo1,1 85 Y and
. . ,
(2) vy relabelling Vpe1,2 @5 Vs

we conclude that every vertex of L is adjacent to every vertex of L

1 2

The graph (G now contains the edges as indicated in Figure k.

FIGURE 4
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Next we show that every vertex of level Ll is adjacent to every

vertex of set E; . This can be accomplished by relabelling v as

m, k-1
v"” . It is possible to relabel other vertices of G so that the

corresponding levels L{, Lg, cens L;—l are produced, where
n - = )
L = {vm-i,l’ vm-i,2’ cree vm-i,k} O
for 1 =7 =m-1 . Further,
frmys -
L)t = {0 Vs <o Uy ko’ vol -
From the argument given above, every vertex of L#—l is adjacent to every
vertex of (Lg)* . If we now repeat this argument, where U 7
>
(1 =1 =k-2) is relabelled as v" and levels Lf, Lg, ...,-L; , are

produced exactly as above, then we see that vm k-1

hence, every vertex of Ll is adjacent to every

is also adjacent to
n .
every vertex of Lm-l H

vertex of L?* .
m

Our next step is to show that UO is adjacent to every vertex of

Lm = Relabel v, , 8s v . Other vertices of G can be relabelled
- Jk-

so that corresponding levels Lfﬁ Lgﬁ vees L;:l are produced, where

L£'= Li for 1 =1 <m-1 . Moreover,

Lq;)* = {vm s Vs ot U g vo} .

Since every vertex of L;' is adjacent to every vertex of (q;)* , it

1
follows that vo is adjacent to every vertex of Lm-l .
Define Lm = L; U {vo} . We have shown that every vertex of Lm is

adjacent to every vertex of Lm and to every vertex of Ll . Applying

-1
the previous arguments and the definition of randomly k-axial graphs with

v selected from Ll , we see that every vertex of Ll is adjacent to

every vertex of Lm and to every vertex of L Continuing this

5+

procedure, it follows that every vertex of Li is adjacent to every vertex
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of Li—l and to every vertex of Li+1 (=1, 2, ..., m) , where the

subscripts are expressed modulo m .

We now show that G contains K{(p/2, p/2) as a subgraph. If m= 2
or m= L4 | this already follows. Thus we assume that m 26 . We show

that every vertex of Li (1 =% =m) is adjacent to every vertex of

L , where the subscripts are expressed modulo m . For convenience, let

i+3
X denote any vertex of L2 (see Figure 5). Applying the definition of

randomly K-axial graphs, we can obtain the labelling of the vertices of G

shown in Figure 5. Note that a vertex of G (in L2 ) has not yet been

labelled. Since G 1is randomly k-axial, this vertex must be labelled

Since xm,k-l must be adjacent to xm and

Cn k=1 * -1,k-1

x € L_ , it follows, because of symmetry, that for each 7
m=1,k-1 S

(1 =% =m) , every vertex of L, is adjacent to every vertex of Li+3 s
where, as always, the subscripts are expressed modulo m .

If m=6 or m=8, then G contains K(p/2, p/2) as a subgraph.
If m= 10 , we use the known edges of G and the fact that G is
randomly k-axial to produce yet another labelling of the vertices of G .
and vertex

Relabel vertex & as y , vertex z, as

-1,k-1 Ym-3,k-1

as Every other vertex z,. 1is relabelled Ypg

Yme1,k-1 -

Since G is randomly Xk-axial, the unlabelled vertex in L2 must be

Tn-3,k-1

ym k-1 and is adjacent to y By symmetry, we conclude that every
Jk=

m=-1,k-1 °

vertex of Li is adjacent to every vertex of Li+5 .
If m=10 or m= 12 , we have now shown that G contains

k(p/2, p/2) as a subgraph. If m = 14 , we again use the known edges of

G and the fact that G is randomly k-axial to obtain a new labelling of

174 .
(6) Relabel y as =z , vertex Ym1 k-1 25 Zpmos gy 204 Ymes k-1
as zm 1.k-1 " By the same reasoning as above, one can now show that
-1, k-
every vertex of Li is adjacent to every vertex of Li+7 for all 7 .

Continuing this procedure, we see that every vertex of Li is adjacent to

every vertex of Lj (L=%,4=m), vhere i and j are of opposite
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%1y T f1,k-3 "1,k 3k F1,k-1
L o o 0 0 o 0
Toy Too To k-3 Tox z
L2 @) ) 0 O (@) 0]
%31 T30 T3,k-3 T3k-2 Trk-2  Tsk-2
L3 O @] (0] O 0 0]
Nl %o “uk-3 Tuk-2 Te,k-2  To k-2
L, 0 0 0 0 O O
Ts1 Teo Ts k-3 Tm-1,k  T7,k-2 Fm-1,k-1
L5 O O O @] O @]
T61 Z62 T6,k-3  Tm2,k  T8,k-2 Tm-2,k-1
Lg 0 ¢! 0 o o 0
ol o Tr k=3 Tm-3,k  T9,k-2 Tm-3,k-1
L7 O O 0 O @] 0
Tme2,1 Tm-2,2 Tn-2,k-3  T6k Cnk-2  T6,k-1
L, 0 0 o 0 0 0
Tm-1,1 Tm-1,2 Tn-1,k-3 sk T3,k-1 Ts k-1
L., 0 o 0 o o 0
i
Zm1 T2 nk-3 Tk To k-1 Fu,ka1
L o e} 0 0 o} 0
FIGURE S

parity. Hence G contains X(p/2, p/2) as a subgraph.

If G contains only the edges of the subgraph X(p/2, p/2) , then, of
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course, G = K(p/2, p/2) . Suppose then that G contains an edge ¢ not

belonging to the subgraph X(p/2, p/2) . We show that G = Kp .

Let Vl and V2 denote the partite sets of the subgraph

X(p/2, p/2) , where, say, Y € V1 . Thus
m/2 m/2
v, = U L,. and V, = U L_.. .
1 i=1 27 2 i=1 27-1
Without loss of generality, we may assume that e = gb , where a = vm—2 k
bl
and b =v (see Figure 2). Let e, d € V, . The proof will be
m,k-1 2
complete once it is shown that ed € E(G) . Again, without loss of
generality, we may assume that ¢ = vm-l,k-l and d = vm—l,k . We relabel
G as follows. Since ab € E(G) , we can relabel b as ;% 1k Yy 8
=L
v, and all other v except vm-l,k (=d) as v,, - Since G is
randomly k-axial, d must be labelled vm,k-l ;3 however, vm-l,k-l must
be adjacent to d , but v =c . O

m=1,k-1
Combining the previous two results, we have an immediate corollary.

COROLLARY. Let G be a bipartite, randomly k-arial graph (k = 3)
whose partite sets have cardinality n . If n = 0 (mod k) , then
Gz=K(n, n) .

The graph K(n, n) , where n =1 (mod k) and k = 3 , is readily
seen to be randomly k-axial. Thus, the complete bipartite, randomly

k-axial graphs are completely determined.
PROPOSITION 3. The complete bipartite graph K(nl, n2] i8 randomly

k-axial (k = 3) <if and only if n, =n, and n, 20,1 (mod k) .

We conjecture that every bipartite, randomly k-axial graph (k = 3)
is complete bipartite.

CONJECTURE 1. Let G be a bipartite, randomly k-axial graph
(k 2 3) whose partite sets have cardinality »n , where 7 = 1 (mod k)
Then G = K(n, n) .

In the case of complete tripartite graphs we have the following
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result. The proof, which we omit, proceeds by case study.
PROPOSITION 4. For k = 2, the graph K(nl, n,s n3) 18 randomly

k-axial if and only if n, =n

1 p N3 = k/2 .

It is not difficult to verify that one of the implications of
Proposition 4 can be extended, namely, for ¢t = 3 , the complete t-partite
graph X(d, d, ..., d) is randomly k-axial for all d =21 and

k = (t-1)d . We conjecture that the converse is also true.

CONJECTURE 2. For k=2 and t = 3, the graph K(nl, Moy vees nt)

is randomly Kk-axial if and only if n ny,=...=n, = k/(t-1)

1 2

Finally, we conjecture that every randomly Xk-axial graph (k = 3) is
a regular complete multipartite graph.

References

[7] Gary Chartrand and Hudson V. Kronk, "Randomly traceable graphs”, SIAM
J. Appl. Math. 16 (1968), 696-T00.

{2] Carsten Thomassen, "Graphs in which every path is contained in a

Hamilton path", J. reine angew. Math. 268/269 (197L4), 271-282.

Professor D. Burns,
Department of Mathematics,
School of General Education,

Ferris State Col lege,

Big Rapids,
Michigan 49307,
USA;

Professor G. Chartrand, Professor S.F. Kapoor and Mr F. Saba,
Department of Mathematics,

Western Michigan University,

Ka lamazoo,

Michigan 49008,

USA.

https://doi.org/10.1017/50004972700006961 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700006961

