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Abstract
Customer preference modelling has been widely used to aid engineering design decisions on
the selection and configuration of design attributes. Recently, network analysis approaches,
such as the exponential random graph model (ERGM), have been increasingly used in this
field. While the ERGM-based approach has the new capability of modelling the effects of
interactions and interdependencies (e.g., social relationships among customers) on custom-
ers’ decisions via network structures (e.g., using triangles to model peer influence), existing
research can only model customers’ consideration decisions, and it cannot predict individ-
ual customer’s choices, as what the traditional utility-based discrete choice models (DCMs)
do. However, the ability to make choice predictions is essential to predicting market
demand, which forms the basis of decision-based design (DBD). This paper fills this gap
by developing a novel ERGM-based approach for choice prediction. This is the first time that
a network-basedmodel can explicitly compute the probability of an alternative being chosen
from a choice set. Using a large-scale customer-revealed choice database, this research
studies the customer preferences estimated from the ERGM-based choice models with and
without network structures and evaluates their predictive performance of market demand,
benchmarking the multinomial logit (MNL) model, a traditional DCM. The results show
that the proposed ERGM-based choice modelling achieves higher accuracy in predicting
both individual choice behaviours and market share ranking than the MNLmodel, which is
mathematically equivalent to ERGMwhen no network structures are included. The insights
obtained from this study further extend the DBD framework by allowing explicit modelling
of interactions among entities (i.e., customers and products) using network representations.

Keywords: customer preference modelling, exponential random graph model,
multinomial logit model, decision-based design

1. Introduction
As a vital link between market research and engineering design, discrete choice
models (DCMs) predict a customer’s choice probability through the constructionof a
utility function that quantitatively characterises the customer’s preferences for
product design attributes (Chen et al. 2018). Choice models have been used to
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support many aspects of engineering design and are the foundation of the decision-
based design (DBD) framework (Chen, Hoyle & Wassenaar 2012). The applica-
tions include conceptual design (Hoyle & Chen 2009), multidisciplinary design
(MacDonald, Gonzalez & Papalambros 2009), product configuration (Sha et al.
2017a), product innovation (Chang &Chen 2014; Chen, Khoo &Chen 2015) and
design accounting for spatiotemporal heterogeneities (Bi et al. 2018). In a design
ecosystem that includes multiple stakeholders (e.g., manufacturers and policy-
makers), understanding customer preferences is crucial in collaboration among
stakeholders with varied interests and allowing them to make strategic planning
(Kang et al. 2016; Chen et al. 2020).

Customer preference and choice modelling in many engineering design appli-
cations with large numbers of alternatives and decision-makers can be addressed
by network modelling. As shown in Figure 1, the customer–product relationship
can be represented by a bipartite network, where customers and products are
modelled as two types of nodes, and the considerations and choices of the
customers are modelled as different types of links. Therefore, decision analysis
in this context can be viewed as modelling the likelihood of links forming between
nodes. Taking the example of vehicle choice analysis, typically the large set of
available vehicles and their buyers can be represented as a network graph, and link
prediction represents the problem of estimating events (choices) connecting
customers to vehicle options by edges. Therefore, formulating the decision analysis
in a network context means that we are interested in understanding what factors
(either exogenous or endogenous) drive the formation of a link (choice/consider-
ation) between a pair of a customer node and a product node, and how significant a
role each factor plays in that link formation process.

Across network modelling approaches, there is a common theme of relational
analysis where decisions (events) connect nodes in a network. Logit models from
the discrete choice family naturally model such relational events as ‘choices’
(McFadden & Zarembka 1974; Luce 2012). In the past two decades, utility-based
choice modelling, such as DCMs (Train 1986), has been widely employed by the
engineering design research community (Frischknecht, Whitefoot & Papalambros
2010; Hoyle et al. 2010; He et al. 2014) for choice preference estimation and
demand prediction. Nevertheless, utility-based choice modelling is limited when
handling the dependency of alternatives (e.g., it is assumed that whether a customer
chooses one product is not influenced by adding or substituting another product in
the choice set, which is not realistic for applications with similar product offerings)
and the rationality of customer decisions (e.g., their decisions may be influenced by
each other due to social relationships). To overcome these limitations, recent
studies explored the capability of statistical network models in customer choice
analysis (Fu et al. 2017; Sha et al. 2018). Among the existing network-based
modelling techniques, the exponential random graph model (ERGM) is increas-
ingly recognised as one of the most powerful analytical techniques (Snijders et al.
2006). ERGMprovides a flexible statistical inference framework that canmodel the
influence of both exogenous effects (e.g., nodal attributes that include design
features or customer attributes) and endogenous effects (network structures/nodal
relations) on the probability of connections among nodes.

ERGM can handle three types of networks based on the complexity of the
customer–product network: unidimensional, bipartite and multidimensional net-
works, as shown in Table 1. In our previous work, ERGM has been used to analyse
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and predict product co-consideration relations (Sha et al. 2018; Wang et al. 2018;
Xie et al. 2020; Cui et al. 2022), forecast the impact of technological changes on
market competition (Wang et al. 2016b), model customers’ consideration-then-
choice behaviours (Fu et al. 2017) and understand how product associations and
customer social relationships affect customer decisions (Wang et al. 2016a).

In these studies, attempts were made to examine the predictive power of ERGM
approaches. For example, ERGM was used to predict product co-consideration
relations (implying competition relations) in the scenario of product designupgrades
and market changes (Wang et al. 2016b; Sha et al. 2018). Additionally, temporal
ERGM was adopted to predict market evolution based on historical data. However,

Figure 1. The customer–product bipartite choice network.

Table 1. Networks with different complexities

Network type Illustration Description Reference papers

Unidimensional A unidimensional network
with only product nodes can
describe the product
competition relationship
based on aggregated
customer preferences.

Wang et al. (2016b), Sha et al.
(2017b), Sha et al. (2018),
Wang et al. (2018), Xie et al.
(2020), Ahmed et al. (2021),
Cui et al. (2022)

Bipartite A bipartite network defines the
relation (consideration or
choices) between the
customer layer and the
product layer but not within
each individual layer.

Fu et al. (2017), Bi et al. (2018,
2021)

Multidimensional A multidimensional customer–
product network, where the
links within each layer and
between both layers are
considered in one network,
captures the influence of
customer social networks
and product association (e.g.,
product family) on market
competition.

Wang et al. (2015, 2016a)
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all existing predictive studies focus on unidimensional networks. To the best of our
knowledge, no studies were carried out to investigate the power of ERGM in
predicting individual customer’s choices in a bipartite network setting. This gap
exists because of the lack of a mathematical framework for ERGM to calculate the
probability of individual dyad links in a network. In ERGM, the random variable in
such a statistical inference framework is the network (see Section 2 for more details).
Therefore, one ERGM prediction corresponds to one entire network. To test the
model’s predictive performance on individual links, the current procedure is to
simulate the random process in network generation to predict many networks
sharing statistical similarities with the true network data, from which the correctly
predicted links can be counted. This limitation has led to two fundamental issues
when adoptingERGMinchoicemodelling. First, the concept of ‘choice set’ cannot be
applied. Second, the concept of ‘utility’ in traditional DCMs cannot be imported.
Without these two concepts, a formal choice analysis cannot be formulated. There-
fore, a correct interpretation of customer preferences could never be reached when
ERGM is applied for choice modelling, and the strength of ERGM to incorporate
network structures in choice prediction cannot be fully extended for engineering
design. To exploit the full potential of ERGM in choicemodelling and, therefore, the
design-based design, a new mathematical procedure for ERGM-based choice pre-
diction must be developed and a new approach that applies such a procedure in
support of engineering design must be created.

Motivated by filling the gap, we aim to answer two research questions in this
paper. One: What is the mathematical procedure that enables ERGM to compute
individual choice probabilities in a given choice set? Two: Given that ERGM can
successfully predict choices, do the prediction results differ from applying trad-
itional DCM (i.e., the baseline model) to the same decision scenario and dataset?
And, if the results are different, how can these differences be interpreted? The
answers to these questions will contribute to an improved understanding of
network-based approaches in modelling customer preferences for design.

The contributions of this paper can be summarised in three aspects: (1) The
development of a new mathematical procedure, enabling ERGM to compute the
probability of an individual link, and, therefore, an individual customer’s choices.
(2) A systematic approach of applying ERGM to conduct formal choice analysis
taking into account the concept of choice set. This helps ERGM to correctly predict
product demand, which is critical to implementing the DBD framework. (3) A
theoretical insight into the differences between the utility-based and network-
based approaches in discrete choice analysis that could lead to valuable guidance in
choosing an appropriate model for customer preference modelling and
co-developing the two frameworks in support of engineering design and beyond.

The remainder of the paper is structured as follows. In Section 2, the back-
ground knowledge about ERGMand its threemajor categories of network statistics
are reviewed. The proposed ERGM-based analytical framework of single dyad link
prediction is introduced in Section 3. The corresponding model settings and the
evaluation methods for predictive power are also presented in this section.
Section 4 presents the case study using a vehicle market system as an example,
including the introduction of the data source, the choice scenarios and the
discussion on the model estimation and prediction results. Section 5 discusses
the implications of the new ERGM-based choicemodel and how it can support and
extend the DBD framework, which is followed by a comparison of DCMs and
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ERGMs in a design application. The paper is concluded in Section 6 with a
presentation of the limitations of this study and future work.

2. Exponential random graph model
The ERGMs are a family of statistical inference models for network data analysis
(Harris 2013). The ERGMdefines a probability model of an observed network y, as
one specific realisation from a set of possible random networks Y , following the
distribution in the following equation:

PrðY¼ yÞ¼ expðθ0gðyÞÞ
κðθÞ , (1)

where θ is a vector of model parameters, gðyÞ is a vector of the network statistics
defining various network structures that can incorporate either nodal attributes or
edge attributes and κðθÞ is a normalising quantity to ensure that Eq. (1) is a proper
probability distribution. Eq. (1) suggests that the probability mass function on the
network space is proportional to the exponential of a linear combination of
network statistics. The formulation also indicates that the network with statistic
in g yð Þ is more likely to occur if the corresponding θ is positive.

The strength of ERGM is its capability of modelling endogenous interdepend-
encies (i.e., relations) among entities (e.g., products) with various forms of network
statistics, that is, gðyÞ, in addition to exogenous attributes pertaining to nodes
and/or edges. Typically, the network statistics can be categorised into three main
categories, that is, nodal attribute effects, relational attribute effects and network
structural effects (Morris, Handcock & Hunter 2008), as shown in Table 2. Nodal
attribute effects refer to the main effects of the nodes, which can be either
continuous covariates or discrete (e.g., categorical) variables. In a customer–vehicle
network, nodal attributes could be car features (e.g., price and engine size) and
customer-related attributes (e.g., income and education level). Relational attribute
effects measure the effects of dyads’ (i.e., a group of two nodes) and edges’
attributes. Examples of relational attributes include the similarity of dyad attributes
and edge covariates. Moreover, network structural effects measure the different
levels of complexity of network structures, including the basic terms that control
the overall probability of a link (such as the number of edges and density of a
network), degree and star attributes which capture the distribution of node-based
edge counts, and triangles and higher-order cycles that measure the effect of more
complex local network structures.

3. Methodology
In this section, we first present a stepwise ERGM-based choicemodelling approach
(see Figure 2) that guides choice analysis, estimation, prediction and evaluation.
The approach consists of five steps. In the first step, the revealed product choices
are identified, and the choice set is defined along with the alternative-specific
attributes obtained from a large-scale product database. Then, the customer–
product bipartite networks are constructed and the choice scenarios are defined.
Step 2 is about ERGMmodelling that includes identifying critical network statistics
and utilising additional settings and constraints (see Section 3.2) to ensure that the
ERGM-based choice models accurately capture the given choice scenarios. Based

5/28

https://doi.org/10.1017/dsj.2023.4 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2023.4


Table 2. Three major categories of network statistics in exponential random graph models in a
customer–product network

Category Examples Interpreted effects

Nodal attributes effects Car attributes (price and fuel consumption)

Customer attributes (income and education level)

Relational attributes effects Customer considers similar products

Peer influence among customers

Network structural effects Density

Star effects and product popularity

Note: The blue square represents the product, and the red circle represents the customer. The solid shape refers to the node of interest in modelling
instead of the dyad relation.

Criterion selection for choice probability predicting approach evaluation

ERGM-based customer choice probability predicting approach

Survey data about customers' considered alternatives and their choices

Define customer-product bipartite network and choice scenarios

Network statistics identification

Step 1

Step 2

Step 3

Step 4

ERGM settings and constrains

ERGM modeling

Step 5

ERGM estimation and parameter interpretation

Figure 2. Overview of the exponential random graph model-based choice modelling research approach.
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on the models established in Step 2, Step 3 estimates the model parameters and
compares the results of the models with different configurations (see Section 4.2).
This step is critical because, by analysing similarity and differences, we build a
knowledge base to understand consistency and interpretability of distinct ERGMs
when applied to the same choice problem. In Step 4, the proposed ERGM-based
choice prediction method is implemented. The mathematical procedure and the
derivation are presented in Section 3.1. Step 5 is to select appropriate criteria to
evaluate the predictive performance of the ERGM-based choice models. The
criteria adopted in this study are based on two metrics: the Top-N probability
(see Section 3.3.1) and the market share ranking (see Section 3.3.2). It should be
noted that Steps 4 and 5 are essential to help draw valuable insights on the
distinctions and connections between traditional utility-based and network-based
approaches in choice modelling.

3.1 A new mathematical procedure for computing the predicted
choice probability using ERGM

In this section, we propose a novel method for calculating the choice probability
(i.e., the linking probability in the network context) based onERGM.To predict the
existence of a particular link, an important concept, called change statistics, must be
introduced. Change statistics emerge when considering the probability of a single
dyad having a link given the rest of the network. The vector of change statistics of a
link is defined as follows (Hunter et al. 2008):

ΔijgðyÞ� gðyþ
ij Þ�gðy�

ij Þ, (2)

where yþ
ij is the network y with edge ði, jÞ added if absent (and unchanged if

present), and y�
ij is the network y with edge ði, jÞ removed if present (and

unchanged if absent). Then, based on Eq. (1), the probabilities of both networks
yþ
ij and y�

ij can be expressed as follows:

Prθ;gðY¼yþ
ij Þ¼

expðθ0gðyþ
ij ÞÞ

κðθÞ , (3)

Prθ;gðY¼ y�
ij Þ¼

expðθ0gðy�
ij ÞÞ

κðθÞ , (4)

By dividing those two formulas, we obtain

Prθ;gðY¼ yþ
ij Þ

Prθ;gðY¼ y�
ij Þ

¼ expðθ0gðyþ
ij Þ�gðy�

ij ÞÞ¼ expðθ �ΔijgðyÞÞ: (5)

We can further write the formulas of conditional probabilities:

Prθ;gðYij ¼ 1jycÞ
Prθ;gðYij ¼ 0jycÞ ¼

Prθ;gðY¼ yþ
ij Þ=Prθ;gðYc ¼ ycÞ

Prθ;gðY¼ y�
ij Þ=Prθ;gðYc ¼ ycÞ

¼ expðθ �ΔijgðyÞÞ, (6)
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Given the fact that Prθ;gðYij ¼ 1jycÞþPrθ;gðYij ¼ 0jycÞ¼ 1, we can rewrite the
equation as follows:

Prθ;gðYij ¼ 1jycÞ¼ logit�1ðθ �ΔijgðyÞÞ, (7)

where yc is the remaining network structure without the edge ði, jÞ, and
Prθ;gðYij ¼ 1jycÞ denotes how likely the link Yi,j is to exist given the remaining
network structure. Eq. (7) presents the mathematical foundation of the network
link prediction (i.e., the choice prediction) based on the ERGM formula together
with the change statistics.

In the multinominal choice scenario, where each customer can have only one
choice among multiple alternatives, the formula of link prediction in a bipartite
customer–product network can be developed. Without loss of generality, we
assume that each customer has three products (e.g., cars) in a choice set, and a
customer n is allowed to make a single purchase decision among the three car
models, i, j and k (as illustrated in Figure 3).

Based on the assumption that a customer chooses only one among the three
alternatives, the following relation of the link probability holds:

Prθ;gðYni ¼ 1,Ynj ¼ 0,Ynk ¼ 0jycÞþ
Prθ;gðYni ¼ 0,Ynj ¼ 1,Ynk ¼ 0jycÞþ
Prθ;gðYni ¼ 0,Ynj ¼ 0,Ynk ¼ 1jycÞ¼ 1,

(8)

where Yni,Ynj,Ynk denote the link between customer n and each car model,
respectively, and yc denote the remaining network structure.

The conditional probability of link existence between node pairs n, ið Þ, n, jð Þ and
n,kð Þ can be expressed as follows:

Prθ;gðYni ¼ 1,Ynj ¼ 0,Ynk ¼ 0jycÞ¼Prθ;gðYni ¼ 1,Ynj ¼ 0,Ynk ¼ 0,Yc ¼ycÞ
Prθ;gðYc ¼ ycÞ ,

(9)

Prθ;gðYni ¼ 0,Ynj ¼ 1,Ynk ¼ 0jycÞ¼Prθ;gðYni ¼ 0,Ynj ¼ 1,Ynk ¼ 0,Yc ¼ycÞ
Prθ;gðYc ¼ ycÞ ,

(10)

Figure 3. Illustration of the choice situation where a customer makes a choice among three alternatives. A
customer n is allowed tomake a purchase decision among the three carmodels, car i, car j and car k. The figure
illustrates the three choice scenarios.
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Prθ;gðYni ¼ 0,Ynj ¼ 0,Ynk ¼ 1jycÞ¼Prθ;gðYni ¼ 0,Ynj ¼ 0,Ynk ¼ 1,Yc ¼ ycÞ
Prθ;gðYc ¼ ycÞ :

(11)

Further, the marginal probability of numerators in Eqs. (9)–(11) can be
represented by the ERGM in Eq. (1). Thus, we can rewrite Eqs. (9)–(11) as follows:

Prθ;gðYni ¼ 1,Ynj ¼ 0,Ynk ¼ 0jycÞ¼
expðθ �gðyniþ ,nj� ,nk�ÞÞ
κðθ,yÞ �Prθ;gðYc ¼ ycÞ , (12)

Prθ;gðYni ¼ 0,Ynj ¼ 1,Ynk ¼ 0jycÞ¼
expðθ �gðyni� ,njþ ,nk�ÞÞ
κðθ,yÞ �Prθ;gðYc ¼ ycÞ , (13)

Prθ;gðYni ¼ 0,Ynj ¼ 0,Ynk ¼ 1jycÞ¼
expðθ �gðyni� ,nj� ,nkþÞÞ
κðθ,yÞ �Prθ;gðYc ¼ ycÞ , (14)

where yniþ ,nj� ,nk� denotes the network y with link Yn,i present and links Yn,j and
Yn,k absent, yni� ,njþ ,nk� denotes the network y with link Yn,j present and links Yn,i

and Yn,k absent, yni� ,nj� ,nkþ denotes the network y with link Yn,k present and links
Yn,i and Yn,j absent.

By taking the division of Eqs. (12) and (13),

Prθ;gðYni ¼ 1,Ynj ¼ 0,Ynk ¼ 0jycÞ
Prθ;gðYni ¼ 0,Ynj ¼ 1,Ynk ¼ 0jycÞ¼ exp½θ � ðgðyniþ ,nj� ,nk�Þ�gðyni� ,njþ ,nk�ÞÞ�:

(15)

By taking the division of Eqs. (12) and (14),

Prθ;gðYni ¼ 1,Ynj ¼ 0,Ynk ¼ 0jycÞ
Prθ;gðYni ¼ 0,Ynj ¼ 0,Ynk ¼ 1jycÞ¼ exp½θ � ðgðyniþ ,nj� ,nk�Þ�gðyni� ,nj� ,nkþÞÞ�:

(16)

Given a linear system of three equations of (8), (15) and (16), we can further
solve for three unknown conditional probabilities as

Prθ;gðYni ¼ 1,Ynj ¼ 0,Ynk ¼ 0jycÞ¼
expðθ �gðyniþ ,nj� ,nk�ÞÞ

expðθ �gðyniþ ,nj� ,nk�ÞÞþexpðθ �gðyni� ,njþ ,nk�ÞÞþexpðθ �gðyni� ,nj� ,nkþÞÞ :

(17)

This is exactly the probability that the link Yni exists given the rest of network
structures, that is, the customer n chooses car model i given the rest of customer
choices. Similarly, the probability that a customer chooses the other two products, j
and k, can be expressed in the following equations:
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Prθ;gðYni ¼ 0,Ynj ¼ 1,Ynk ¼ 0jycÞ¼
expðθ �gðyni� ,njþ ,nk�ÞÞ

expðθ �gðyniþ ,nj� ,nk�ÞÞþexpðθ �gðyni� ,njþ ,nk�ÞÞþexpðθ �gðyni� ,nj� ,nkþÞÞ :

(18)

Prθ;gðYni ¼ 0,Ynj ¼ 0,Ynk ¼ 1jycÞ¼
expðθ �gðyni� ,nj� ,nkþÞÞ

expðθ �gðyniþ ,nj� ,nk�ÞÞþexpðθ �gðyni� ,njþ ,nk�ÞÞþexpðθ �gðyni� ,nj� ,nkþÞÞ :

(19)

Eqs. (17)–(19) are the mathematical foundations of predicting customer
choices based on the ERGM formula.

Based on the format of the probability distribution of link Yni,Ynj,Ynk, we note
that if our network model only has exogenous effects (i.e., car attributes and
customer attributes) as input to the model, the vector of the network statistic
gðyÞ will be a linear combination of only car attributes and customer attributes.
Then, the probability distribution in Eqs. (17)–(19) will be equivalent to that of the
ordinal multinomial logit (MNL) model (McFadden et al. 1973) under the
assumptions aforementioned. In other words, when the ERGM only considers
the nodal attributes but not the network statistics, the choice prediction using the
ERGM can degenerate to an ordinary MNLmodel if certain model constraints are
properly included. See the following subsection for details. However, if endogenous
effects (i.e., network statistics) are considered, changes in network structure will
have an impact on the predicted linking probability. In this case, the choice
prediction based on ERGM will be different from that of DCM. In this study, we
specifically investigated how the inclusion of network statistics in the choice
prediction process influences the predictive accuracy of ERGM-based choice
models.

3.2 ERGM settings and constraints

Traditional DCA is centred on decision analysis and makes model assumptions
that chosen variables and choice sets remain stable throughout the modelling of a
given decision scenario. These assumptions, however, do not hold in ERGM. For
example, by default, there is no choice set defined in ERGM. The application of
ERGM for different scenarios is often realised by means of different model
configurations, that is, different combinations of edge and node settings and
constraints. To enable the ERGM to model a general purchase decision scenario,
two network statistics (b2factor (Morris et al. 2008) and b2cov (Handcock &
Hunter 2018)) and two ERGM constraints (offset (Hunter et al. 2008) and
b1degrees (Handcock & Hunter 2018)) are adopted.

(i) b2cov and b2factor: The main effect of a covariate and factor attribute effect
for the secondmode in a bipartite network (Handcock &Hunter 2018). These
two terms are used to carry quantitative and categorical nodal attributes
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corresponding to the product features that can influence customer prefer-
ences and then as input variables gðyÞ for ERGM in Eq. (1).

(ii) offset: A vector of coefficients for the offset terms (Handcock &Hunter 2018).
In the customer–product bipartite network, this constraint is used to control
how many product nodes are considered to form the links. This represents
how many products can be linked to (i.e., considered by) each customer.
Without this constraint, the default setting of ERGM will assume that each
customer could link with all listed products.

(iii) constraints¼ b1degrees: Together with the model terms in the formula and
the reference measure, the constraints define the distribution of the networks
being modelled (Handcock & Hunter 2018). The constraint of b1degrees
adopted in this study is used to limit the assumption that each customer
node only links to one product node. This means that we assume that each
customer can only make one choice from the choice set.

3.3 Evaluation criteria for prediction accuracy

Given that there is no established framework to evaluate ERGM predictions, we
adopt two criteria that go beyond the evaluation of just the chosen alternative to
consider the overall ranking. The first criterion evaluates the accuracy of the
predicted customers’ Top-N choices, and the second one evaluates the predicted
market share based on the predicted choice probability. These two criteria are
introduced in the following two subsections.

Criterion 1: Top-N choice probability
Suppose that there are L customers and M products, and every customer has a
choice set, including h products. The probability that the ith (i¼ 1,2,…,L) cus-
tomer buys the jth (j¼ 1,2,…,h) product is represented as Pij. With the predicted
choice probabilities of the top N (N ¼ 1,2,…,h) alternatives in a choice set, we
compare it against a customer’s final choice. If the predicted choice falls in the
Top-N alternative set, then this is counted as one accurate prediction instance
(Cremonesi, Koren & Turrin 2010; Mottini et al. 2018). For example, in the case of
N ¼ 2, if the actual choice is one of the two alternatives with the highest predicted
probability, it is counted as a correct prediction. The advantage of the Top-N
metric is that it does not only capture customers’ final choices (i.e., the Top
1 choice), but also evaluates the model’s performance in capturing a customer’s
consideration behaviour. This metric provides a comprehensive evaluation of the
model’s predictive power over the entire choice set. Based on this definition, the
predictive accuracy can be defined as

AcctopN ¼ Lpredict
L

, (20)

where Lpredict is the number of customers whose choices are correctly predicted to
fall into the Top-N alternatives. With different configurations of the N value, a
trend curve can be obtained to delineate how the predictive accuracy would be
influenced by the change of N .
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Criterion 2: market share ranking
While the Top-N choice probability criterion captures a choice model’s perform-
ance in predicting individual customers’ choices, the predictive power of models at
the aggregate level, that is, themarket level, is typicallymore relevant to enterprises.
This approach reflects both the positioning and the specific market share of a
product, thereby providing an indication of a product’s market competitiveness.
The prediction-basedmarket share can be divided into two steps. The first step is to
predict the product that the ith customer purchased based on the maximum choice
probability in the choice set (maxPij, i¼ 1,2,…,L;0≤ j≤ h). In the second step, we
count the number of customers who purchase each unique product to derive each
product’s market share reflecting all L customers’ purchase behaviour.

After obtaining the predicted market shares of the products of interest, we can
rank them based on their market shares and compare this ranking to the (real)
reference market share. To quantify the predictive accuracy, two metrics are used.
The first metric is focused on the ranking, and the Spearman’s rank correlation
coefficient (Schober, Boer & Schwarte 2018) is adopted to verify how well the rank
of the most popular products (e.g., the top-K products ranked by themarket share)
predicted by the model matches the real data. The second metric compares the
exact market share percentages, and computes the root mean square error (RMSE)
(Chai & Draxler 2014) from comparing the predicted market shares to the actual
one, and is calculated based on the following equation:

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K

XK
k¼1

Real_MarketSharek�Predict_MarketSharekð Þ2
vuut : (21)

There are several motivations for adopting these validation measures based on
market share. First, the rank correlation coefficient of the market share reflects the
models’ ability to forecast the popularity of the products in the overall market.
Second, the RMSE value measures the accuracy of the market share predicted by
the models compared to the actual market shares. Lastly, since both the market
share ranking and its exact percentages are critical indicators to help enterprises
assess a product’s market performance, the combination of the rank correlation
coefficient and RMSE draws amore complete picture of the overall performance of
the models.

4. Case study

4.1 Data preprocessing and scheme of test scenarios

Data source
The dataset used in this study is drawn from a large-scale revealed choice new car
buyer survey conducted in the Chinese vehicle market in 2013. This dataset
includes about 50,000 respondents and nearly 400 unique vehicle models. From
this survey, various customer-related and car-related attributes are recorded, such
as respondents’ gender and age, and vehicles’ price, power and brand. The database
also records the stated consideration of vehicle models, in addition to the recorded
final purchase. A more detailed summary of this dataset can be found in our
previous paper (Sha et al. 2019). In line with our previous work, we narrow down
the analysis to a single type of vehicle model. By focusing on the compact sedan
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standard vehicle segment, we seek to simplify the modelling and remove some
sources of heterogeneity in decisions and choice sets. The analysis subset includes
18,054 compact sedan buyers, covering 84 unique compact sedan car models. Note
that the stated considerations of alternatives are not limited to the compact sedan
segment, although the final purchase was restricted to compact sedan purchases,
making the total number of different carmodels covered in the analysis 281. Lastly,
to improve the computational efficiency, 5000 customers are randomly sampled
from the 18,054 compact sedan buyers to form the models’ training dataset3. To
test the sensitivity of results to the sampled data, we created three additional testing
datasets of 5000 random customers (not overlapped with the training dataset) for
analysis and prediction.

The treatment of choice sets
In this case study, two treatments of the choice set are considered. In the first
treatment, we rely on stated information from customers to define a choice set of
variable composition but identically sized (i.e., including the same number of
alternatives). In the second treatment, it is assumed that each customer has the
same fixed universal choice set consisting of all vehicle choice alternatives available
on the market. Based on these assumptions, the two choice sets are defined as
follows:

(i) ChoiceSet6: The first approach pursues behavioural realism by including stated
consideration alternatives in a limited-size choice set. For every N customer,
we include information from the original survey data where they list between
one to three ‘considered vehicle types’. While it is tempting to run models
exclusively on this declared choice set, we note that the high degree of feature
correlation inherent in enumerating close ‘runner-up’ options, leads to sin-
gularity and non-convergence issues in the DCA model. Therefore, we use
insight from the literature (Hauser & Wernerfelt 1990) that customers typic-
ally consider three to six different car models in the buying process to build a
more diverse choice set. In practice, we build a synthetic ChoiceSet6 where we
append randomly selected car models from the complete set of 281 to each
customer’s original stated consideration.

(ii) ChoiceSetAll: The second approach is less behavioural but more comprehen-
sive. We assume that theN customers each have the same universal choice set
consisting of 281 car models.

The scheme of model test
Based on the two choice set scenarios, ChoiceSet6 or ChoiceSetAll, our case
study includes two test cases, as summarised in Table 3: Test Case 1 and Test
Case 2. Because each customer can only make one choice in either choice
scenario, constraints¼ b1degrees needs to be applied in both test cases to
constrain the number of links formed between a customer and his/her choice
set to one. In addition, the offset needs to be used in Test Case 1 to make sure the
link is formed between the customer and his/her own choice set of six

3The validation of whether the sampled training dataset effectively represents the original dataset can
be found in appendix A
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alternatives. Otherwise, the ERGM by default treats all available car nodes as
being able to be connected.

We select a few representative yet significant explanatory variables based on
our prior work (Fu et al. 2017). These explanatory vehicle attributes are: Price, Fuel
Consumption, Power and Brand Origin. For all 281 car models in the 2013 Chinese
market, the descriptive statistics of these four attributes are listed in Table 4.
Additionally, given the large variation exhibited in each attribute and their skewed
distributions, the log transformation (base 2) is applied to the price and engine
power variables to offset the effect of large outliers, and z-score normalisation is
applied to address the unit influence of those continuous variables.

4.2 ERGM estimation results

The estimated parameters of the ERGMs in the two cases are shown in Tables 5 and
6, respectively. Table 5 summarises the results of the ChoiceSet6 test case. For
comparative purposes, we specify the same set of exogenous variables (i.e., car
attributes) for all the ERGMs. Since the ERGM is uniquely positioned to handle
endogenous factors (e.g., different network structures), we investigated two net-
work effects, the degree effect and the star effect. The degree effect quantifies the
influence of the number of a node’s connections on the formation of new links to
that node. Hence, the degree effect reflects the popularity of a node. The star effect

Table 3. The scheme of comparison

Test Case 1 Test Case 2

Customer number 5000 5000

Choice set ChoiceSet6 ChoiceSetAll

ERGM setting and constraints offset, b2cov, constraints¼ b1degree b2cov, constraints¼ b1degree
Considered car attributes Price, Fuel Consumption, Power, Brand Origin

Abbreviation: ERGM, exponential random graph model base choice.

Table 4. Descriptive statistics of the 281 sedan car attributes

Continuous variables

Average Price 218,163 RMB (31,617 USD)

Average Fuel Consumption 9.56 litre per 100 km

Average Power 147.29 brake horsepower (BHP)

Categorical variables: Brand Origin

China 86

The US 29

Europe 88

Japan 56

Korea 22
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is a star-like structure with multiple edges connected to the central node. For
example, 2-star represents the structure where there is one node connecting two
links, that is, one vehicle model is purchased by two customers in our case. Please
note that a specific star structure could be embedded. For example, for a node with
three links, it has a degree of 3, three 2-stars and one 3-star. So, both effects capture
the distribution of node-based edge counts and reflect the degree distribution
information. However, the star effect could amplify the popularity of a node
because the number of stars (s) that could be obtained from a node with n degrees

Table 5. Estimated results of ChoiceSet6 test case with the comparison of different exponential random
graph model base choices

Explanatory variables ERGMNull ERGMDegree ERGMStar ERGMBoth

Price �3.21305*** �3.22619*** �3.05046*** �3.02861***

Fuel consumption �0.49992*** �0.49958*** �0.03704 �0.03438

Power 2.02397*** 2.02632*** 1.59739*** 1.59093***

Brand origin (the US) 1.85477*** 1.85549*** 1.23290*** 1.22953***

Brand origin (Europe) 2.96869*** 2.97428*** 2.21507*** 2.20565***

Brand origin (Japan) 1.27489*** 1.27974*** 1.22087*** 1.21286***

Brand origin (Korea) 1.25118*** 1.27480*** 1.18760*** 1.16191***

Network degree (25þ) �1.09881** 1.20514**

Network 2-star 0.00578*** 0.00583***

Running time 31 minutes 85 minutes 88 minutes 165 minutes

Note: (1) The code *** indicates the 0.001 level of significance and ** indicates the 0.005 level of significance.
(2) Network degree (25þ) represents the number of product nodes that have more than 25 connections to customer nodes.
(3) Network 2-star represents the number of star-like structure with two edges connected to the central products node.

Table 6. Estimated results of ChoiceSetAll test case with the comparison of different exponential
random graph model base choices

Input variables ERGMNull ERGMStar

Price �3.14765*** �0.34672***

Fuel consumption �0.70885*** �0.00457***

Power 2.17598*** 0.18375***

Brand origin (the US) 2.39916*** 0.49637***

Brand origin (Europe) 3.30098*** 0.38671

Brand origin (Japan) 1.21206*** 0.23710

Brand origin (Korea) 1.40266*** 0.33653***

Network 2-star 0.05227****

Network 3-star �0.00037***

Running time 7 seconds 18 seconds

Note: The code *** indicates the 0.001 level of significance.
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is Cs
d . Please note that C

s
d ≥ d and the increase of one more degree will make the

number of stars (nþ 1) times greater. Therefore, there are four ERGMs to be tested.
ERGMNull only considers exogenous factors and does not include any network
effects. Besides those exogenous factors, the ERGMDegree model includes the
network statistics of network degree (25þ) and ERGMStar includes the network
statistics of network 2-star. Finally, ERGMBoth includes both network degree (25þ)
and network 2-star in the model.

Estimates for the ERGMs are shown in Table 5. When comparing the ERGMs
including different network effects (i.e., ERGMDegree, ERGMStar and ERGMBoth)
to ERGMNull, we note that the signs remain the same, whereas the magnitudes of
the car attributes vary marginally. The changes are likely due to the correlation
introduced by the newly added network structure variables. As for the estimated
coefficients of the network structure, the negative sign of the network degree
(25þ)1 implies that in this particular sedan market, it is less likely for any specific
car model to have more than 25 customers. The positive coefficient of network
2-star in ERGM indicates a higher probability of graphs with more 2-stars. Since
more 2-stars come from nodes of a higher degree, the positive coefficient of this
effect implies a higher degree of dispersion, so that there is a subset of car models
that are highly popular among customers, compared with others. The running
time of different models in R programming with Statnet package are reported
based on an Intel i7-11700K CPU with a maximum frequency of 3.6 GHz.

Table 6 shows the estimated results for the ChoiceSetAll test case. This corres-
ponds to the choice situation where every customer considers all carmodels, which
is equivalent to knowing themarket-level information. In theERGMStar model, we
have included network 2-star and network 3-star effects. The choice of the network
statistics in Test Case 2 is different due to the features of the network under study as
well as the convergence issues experienced with the ERGMs (Butts et al. 2014). For
example, we found that the inclusion of network degree (25þ) prevented ERGM
convergence, and as a result, a different network structure, network 3-star, was
adopted (see Section 6 for a detailed discussion on the model limitations). It is also
observed that the magnitudes of the estimates changed primarily due to the
inclusion of network effects. But, the signs of nodal variables are unaffected. This
implies that while maintaining the same interpretation of the vehicle features in
customer preferences, network effects are important in the formation of the
consumer choice network. The predictive performance of these models will be
evaluated in Section 4.3. The estimated positive 2-star and negative 3-star coeffi-
cients indicate some centralisation through high-degree nodes (i.e., popular cars
are more likely to be purchased) but with a cap on the level of that centralisation
indicated by the negative 3-star coefficient.

On balance, the sign, significance and interpretation for most car attributes are
consistent across the choice set treatments. Broadly, consumers are more likely to
choose a car that is more affordable, powerful and with a European brand. In
addition, network-basedmodels canmodel features related to themarket structure
and thereby provide more information and opportunity for interpretation. Next,
we further compare the structures based on predictive performance.

1The choice of car degree (25þ) is based on the number of total customers in the sample and is also
determined by trial and error for model convergence.
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4.3 Evaluating the ERGM-based choice prediction

The probabilities of customer choices are calculated based on the method intro-
duced in Section 3.1, fromwhich wemake the choice prediction. The Top-N choice
probability and the market share ranking, corresponding to the individual choice
prediction and market-level prediction, served as the two evaluation criteria for
gauging the predictive power of all the models.

Test case 1: ChoiceSet6
Evaluating the Top-N choice probability. Figure 4 shows the average prediction
accuracy with error bar of three different test datasets corresponding to the Top-N
probability. InChoiceSet6,N is set from 1 to 6. A higher Top-N accuracy indicates a
better prediction of the overall trends of customers’ preferences over the entire
consideration set, not merely for the final choice. For example, the average top
3 accuracy of the ERGMNull model is 0.795, which indicates that the model
correctly predicts 3975 customer (i.e., 79.5% of 5000) choices within the model’s
top 3 predicted choices.We also calculated the area under the Top-N curve for each
model in Figure 4 in order to assess the overall predictive performance. The
baseline ERGMNull model yields an area under curve of 3.92, whereas the
ERGMboth has the largest area under curve of 4.34, representing a 10.74%
improvement over ERGMNull.

The inclusion of network structures (i.e., the degree and star effects) in the
ERGMs significantly enhances the model prediction, particularly the ERGMStar
andERGMBoth models in the top 1 and top 2 predictions. The findings indicate that
more detailed network structures could capture latent information in customers’
purchase decisions, thereby leading to a better market forecast. As a broader
insight, this result implies, in addition to vehicle attributes, that the embedded
relations (e.g., competition or popularity) with other car models may also play an
essential role in customers’ decision-making process. For example, the ‘star effect’
frequently occurs in the vehicle purchase network, so adding this structure helps
explain the network formation process. The ERGMDegree model does not produce

Figure 4. Top-N predictions results for three different test datasets (with mean and
error bar) by different models in ChoiceSet6 test case.
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significant improvement, indicating that the inclusion of the statistics of network
degree (25þ) is not as effective as the star effect in improving themodel’s predictive
performance.

Evaluating the market share prediction. The predicted market share ranking
of each car model is calculated, in which the predicted car model purchases are
obtained from the predicted choice probabilities calculated by different ERGMs.
Based on the predicted market share, the rank of each car model is obtained, and
the resulting rank correlation and RMSEs are simply obtained by comparing it with
the market share of the original compact sedan buyer dataset that covers all
84 unique car models. Figure 5 demonstrates the rank correlation coefficients
from comparing the original sedan car buying dataset to each of the estimated
models, and Table 7 shows the RMSE values.

In Figure 5, the rank correlation coefficient indicates to what extent the
predicted popularity of the different models is consistent with that of the original
compact sedan buyer dataset. A higher coefficient value means a better prediction
of themarket share ranking. It is observed that after introducing the 2-star network
structure into the ERGM, an improvement of 0.15 in the rank correlation is
achieved in both the ERGMStar and ERGMBoth models. However, we observe no
significant improvement in the ERGMNull and ERGMDegree models. These results

Figure 5. Rank correlation comparison between different models and the baseline value from the original
compact sedan buyer dataset.

Table 7. Root mean square errors (RMSEs) between the market share of the original compact sedan
buyer dataset and the predicted market share of exponential random graph model base choices

RMSE

Original compact sedan buyer dataset V.S. ERGMNull 0.0104

Original compact sedan buyer dataset V.S. ERGMDegree 0.0122

Original compact sedan buyer dataset V.S. ERGMStar 0.0118

Original compact sedan buyer dataset V.S. ERGMBoth 0.0118
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are in accordance with the ones observed from the Top-N prediction. Specifically,
the inclusion of both network structures, that is, the star and degree effects, does
not help to further improve the prediction. Instead, the ERGMwith only star effect
included performs the best among allmodels. This indicates that accounting for the
broader network structures is not universally improvingmodels, and that choosing
suitable network structures is critical to constructing well-performing ERGMs.
Based on our experience, an in-depth understanding of both the market context
and the network structure is needed to help identify a list of potential network
structure variables for initial comparison and testing.

For the RMSE evaluation shown in Table 7, the smaller the RMSE value (the
closer to zero), the better the prediction. All in all, the models achieve a decent
predictionwith RMSEs close to 0.01. No superiority of any ERGM is observed. This
means that ERGMs, with the inclusion of specified network structures, perform
better than ERGMNull in predicting the overall market share ranking but achieves
comparable, or slightly worse prediction for the market share percentages.

Test case 2: ChoiceSetAll
In theChoiceSetAll treatment,2 every individual customerwill have the same choice
set that consists of the same number of alternatives, that is, 281 vehicles, from the
entire (simulated) market. Figure 6 shows that ERGMNull yields a better overall
prediction accuracy with an area under curve of 214:30, whereas ERGMStar shows

Figure 6. Top-N predictions results for three different test datasets (with mean and
error bar) by different models in ChoiceSetAll test case.

2Since no network structure characteristics are included in the ERGMNull model and every customer
has the same universal choice set, the prediction yields identical choice prediction results. Therefore, the
criterion of market share is not applicable here.
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a lower accuracy measured by area under curve of 180:37. This implies that when
modelling the scenario in which each customer faces all the car alternatives, adding
the star-network effect does not help to improve the model performance. It could
be the reason that in such a ChoiceSetAll scenario, each customer has already had
access to the market-level information from the choice set. So, adding additional
network structures does not further improve the predictive power of the model.
This calls for caution when including network structures in the model for predic-
tion purposes, as the types of network structures, the potential correlations
between network effects and nodal attributes, the assumptions on choice scenarios,
the size of choice set and the size of the test data could all influence the model
performance. An evaluation of the model’s prediction accuracy benchmarked on
the null model is always recommended before the final adoption of a model with
network structures included.

5. Implications for engineering design
In this section, we present an improved DBD framework that integrates the
ERGM-based choice model. The utility of the ERGM-based DBD framework is
demonstrated in Section 5.2 by comparing the results of the MNL choice model
(a traditional DCM commonly used in the DCA literature) with the ERGM-based
choice model.

5.1. ERGM-based choice analysis for design

Based on the classic DBD framework (Chen et al. 2012), an improved DBD
framework that integrates the ERGM-based choice model is proposed in
Figure 7. In this framework, the grey boxes indicate the entities and events that
belong to the original DBD framework. For example, the expected utility, in the
ERGM-based framework, is still the key entity to merge the marketing and
engineering domains into a single enterprise-driven decision-making framework.

Design
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Design

Attributes E
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Desired Product

Attributes A

Demand

Q(A,S,P,g(y),t)
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Figure 7.Decision-based design framework enhanced by networkmodels. The grey boxes are the entities and
events from the referred decision-based design framework; the coloured boxes belong to the proposed
ERGM-based choice analysis.

20/28

https://doi.org/10.1017/dsj.2023.4 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2023.4


The coloured boxes indicate the place where the traditional discrete choice analysis
is replaced by the ERGM-based choice analysis. As shown in the figure, the ERGM-
based choice analysis considers not only the effect of product attributes on
customer choices but can also the effect of network statistics g(y). These network
statistics can be used to model the influence of social effects, product relations and
any market effects that capture the interactions between customers and products
on customers’ choice behaviour. With the inclusion of these network features, it is
expected that a higher prediction accuracy of the choices and, therefore, the
demand (Q) can be achieved. This hypothesis will be validated in the next
section via a comparative study. The design implication of choice modelling is
embodied through the successful prediction of market demand that can be used to
construct the expected utility function (E(U)). From there, an optimisation prob-
lem can be formulated to find the optimal design options X and the price P that
maximise E(U) subject to constraints, such as cost. Since the formulation of such a
design problem has been extensively studied (Wassenaar & Chen 2003; Wang,
Kannan & Azarm 2011; Shin & Ferguson 2017; Yip, Michalek &Whitefoot 2019),
we do not demonstrate it again in this paper. Instead, wewill focus on validating the
power of the ERGM-based choice model in predicting choices and demand, using
the classical MNL choice model as the benchmark. It should be noted that, because
of the introduction of network effects in this new DBD framework, it is now
possible to test how different social relations, product associations and market
effects would influence the design of product attribute.

5.2 Comparing the multinomial logit DCM and ERGM-based
choice model

In this comparative study, we choose the commonly used MNL choice model as a
representativeDCManduse it as the baseline to compare against themodelERGMBoth.
We compare their model estimates as well as their prediction accuracy of choices.

Table 8. Estimated results of ChoiceSet6 test case with the comparison between ERGMBoth and DCM

Explanatory variables DCMMNL ERGMBoth

Price �5.113551*** �3.02861***

Fuel consumption 0.416578*** �0.03438

Power 2.230066*** 1.59093***

Brand origin (the US) 3.893254*** 1.22953***

Brand origin (Europe) 5.822052*** 2.20565***

Brand origin (Japan) 4.184239*** 1.21286***

Brand origin (Korea) 3.542386*** 1.16191***

Network degree (25þ) 1.20514**

Network 2-star 0.00583***

Note: The code *** indicates the 0.001 level of significance and ** indicates the 0.005 level of significance.
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Comparing the model estimates
The estimated parameters of the DCM and ERGMBoth in ChoiceSet6 test case are
shown in Table 8. For a fair comparison, we specify the same set of exogenous
variables (i.e., car attributes) for both DCM and ERGM. The first observation is
that the magnitudes of the estimates differ notably between the DCM and
ERGMBoth. But, the signs of the estimates of these two models are mostly similar,
except for fuel consumption. The sign coefficient for fuel consumption is expected
to be negative, indicating that a car with lower fuel consumption is more desirable.
The results show that the estimate of fuel consumption in ERGMBoth is more
interpretable. The counter-intuitive coefficient of fuel consumption in the MNL
model could be caused by the collinearity between input model terms (e.g., high
fuel-consumption cars usually also have higher power). Also, we noticed that in the
MNL model, car models with brands from Japan are more favourable than those
from theUnited States, which is the opposite case in ERGM, where carmodels with
brands from the United States are slightly more preferred. We argue that the
interpretation of the ERGM model is more reasonable since it takes into account
the overall network structure (i.e., market-level information).

Comparing the predictive performance
Still taking ChoiceSet6 as an example, as shown in Figure 8, it is observed that the
Top-N prediction accuracy of ERGMboth is higher than that of DCM, indicating
that ERGM outperforms MNL when predicting the overall trends of customers’
preferences over the entire consideration set. Regarding the prediction of market
share ranking, the rank correlation coefficient for ERGMboth is 0.76, which is
higher thanDCM (0.607), indicating the superiority ofERGMboth in predicting the
popularity of products in the overall market. In terms of the prediction of market
share percentages, both ERGMboth (0.0118) and DCM (0.0104) achieve about
equal prediction with RMSEs close to 0.01, but no superiority of ERGMboth is
observed.

In short, the results reveal that, in addition to having better interpretability,
ERGM with network structures (ERGMboth) also outperforms DCM in predictive
powers of both the individual choice behaviours and the overall market shares,
measured by the Top-N choice prediction accuracy, rank correlation of the market

Figure 8. Top-N predictions for DCM and ERGMBoth model in ChoiceSet6 test case.
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share as well as the market percentage RMSE. This outperformance further
validates the rationality of integrating ERGM analysis into DBD framework as
shown in Figure 7.

5.3 Discussion on theoretical foundation of DCM and ERGM-
based choice model

As stated in Section 1, the basic forms of DCMs have restrictions due to their
assumptions on the independencies between alternatives and the rationality of
customers, and the network-based approach addresses these limitations by treating
the choice prediction as a link prediction problem so that specific network models,
that is, ERGM in this study, can help relax those assumptions. This is because in
contrast to the usual general linear model, which assumes that customers’ consid-
erations are independent (Figure 9a), networkmodels assume that the formation of
links is dependent on other links in the network. For example, the link formed
between Customer 1 and Product A may be because Customers 1 and 2 both
considered Product B, and meanwhile Customer 2 also considered Product A (the
case shown in Figure 9b), or may be because both Customers 2 and 3 considered
Product A (the case shown in Figure 9c). In ERGM, different network configur-
ations, such as the ‘shared-partner’ structures (e.g., cars being considered by
common customers), as shown in Figure 9b, and ‘star effects’ (e.g., the cars being
considered by many customers), as shown in Figure 9c, can model those inter-
dependent effects.

The differences between the two models’ estimates and outperformed predic-
tion ability of ERGM are primarily caused by the distinction between the calcu-
lation of choice probabilities in DCM and ERGM and their resulting maximum
likelihood estimation processes. In DCM, the choice probability is calculated
within the given choice set. However, in ERGM, the calculation takes into account
the entire network structure because of the inclusion of network statistics. This
sheds light on the interpretation of the decision-making assumptions underlying
the two models. In DCM, the model estimation assumes that each customer
evaluates their own choice set and makes a final choice by picking the alternative
with the maximum utility. That is, any comparison of utilities is done within the
choice set, and customers do not refer to the alternatives outside that set. However,
in ERGM, the linking probability between two nodes is calculated based on the
information from the entire network, that is, the market. So, ERGM assumes that
customers are aware of market-level information and while they are making a

Figure 9. The interdependency assumption underlying the network-based models.
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choice decision, such information will consciously or unconsciously affect their
choice behaviours. This is what Shocker et al. (1991) mentioned the awareness set,
which can provide additional cue information in memory to customers when they
make decisions. Arguably, the configurations in network models represent a more
realistic decision process where consumers are likely to be aware of all the car
models in the entire set, and ERGMs can provide an avenue to examine that
awareness effect on choice while also improving their own predictive abilities.

6. Conclusion
In this paper, we develop a novel ERGM-based choice prediction approachwith the
ability to compute individual choice probabilities in a given choice set. This
approach, on the one hand, explore the customer choice prediction power of
ERGM in a bipartite network setting, that is, the incorporation of network
structures to improve the choice prediction accuracy. On the other hand, this
approach is a key bridge between ERGM-based choice analysis and the concept of
‘utility’ in traditional DCMs when extending the classic DBD framework (Chen
et al. 2012) to the DBD framework enhanced by networkmodels. The utility of this
approach is validated by using a vehiclemarket system as a case study. According to
the results, we observe that the inclusion of network structures in ERGM yields a
significant improvement in predicting individual choices as quantified by the
Top-N choice prediction as well as the market share rank correlation validation.
An important caveat to note for each model structure is that the predictive
performance of ERGM is related to the selection of specific network structures.
Therefore, an in-depth understanding of the market structure (i.e., network for-
mation) will be key to identifying the set of most suitable and effective network
structures for ERGM modelling. Relatedly, this choice will likely vary with the
decision context and sample analysed.

Based on this study, our future work unfolds in two directions. First, a
multidimensional choice network is under investigation, where more complex
relations at each layer of nodes, for example, product associations at the product
node layer and social interactions at the customer layer, are allowed, so that it
provides a framework for researchers to study how the interdependencies of
multiple layers of nodes can influence customers’ choice behaviours, and thus
helps to forecast the market share. Second, the authors see the need of developing a
feature engineering approach for automatic network structure identification and
selection in support of constructing ERGMs with network structural effects.
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Appendix. Validating the representativeness of the
training datasets
To check if the market share of the sampled training dataset (i.e., the dataset
consists of 5000 car buyers) effectively represents the market share of the compact
sedan in the original compact sedan buyer dataset (i.e., the dataset including all
18,054 car buyers), the market shares from both datasets are compared. After
obtaining and ranking the market share of every compact sedan from the original
dataset, the top 10 most popular compact sedan car models are identified (see the
blue bars in Figure A1). In the same figure, the orange bars represent the market
share and the ranks of those top 10 car models obtained from the training dataset.
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As shown in Figure A1, the rank of the market share of the top 10 compact
sedans from the training dataset has a high rank correlation (0.96) with the original
data, indicating that the training dataset is a good representation of the original
compact sedan buyer dataset. This conclusion is confirmed by the low RMSE value
of 0.002. To further evaluate the market share correlation and variation between
the training dataset and the original compact sedan buyer dataset, the rank
correlation and market share RMSE of the total set of 84 unique compact sedan
car models are calculated. The results are 0.94 and 0.0027, respectively. Therefore,
the representativeness of the training datasets is confirmed.

Figure A1. Market share comparison of the original compact sedan purchased dataset and the training
dataset.
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