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Abstract. In this paper we study reducibility of representations of split clasgiealic groups induced

from self-contragredient supercuspidal representations of general linear groups. For a supercuspidal
representation associated via Howe'’s construction to an admissible character, we show that in many
cases Shabhidi’s criterion for reducibility of the induced representation reduces to a simple condition
on the admissible character.
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1. Introduction

Let F' be ap-adic field of characteristic zero and odd residue characteristic. Sup-
pose thatG' = SO, (F), Sp,,(F'), or SQy,+1(F). ThenG' has a maximal par-
abolic subgroupPmax with Levi factor isomorphic taG = GL,,(F). Let = be
an irreducible unitary supercuspidal representatiodzofAssume thatr is self-
contragredient. In [Sh], Shahidi derives a criterion for reducibility of the represen-
tation I(7) induced from the representatio® 1 of Pnax. The criterion is expressed
in terms of the values of a particular twisted orbital integfadt functionsy in
C2° (@) which represent matrix coefficientsof If G' = SOq,, (F'), Spy,, (F), resp.
SOy, +1(F), then () is irreducible, resp. reducible, if and onlyZf f) is nonzero
for some such functioff.

Suppose that arises via the construction of Howe ([H2]) from an admissible
charactep of the multiplicative group of a tamely ramified degreeextension®
of F. Asr is unitary and self-contragredieftis unitary and satisfigso o = 61
for some involutive automorphismof £/ F'. In this paper, we prove that, for many
such, Shahidi’s criterion reduces to a simple conditionérif L is the fixed
field of o, then there are only two possibilities for the restrictiod b L *. If this
restriction is non-trivial, then it is the quadratic charactek 6fassociated t@& by
class field theory. In the case wheleis ramified overL andé | L* is trivial, we
show that the integral in Shahidi’s criterion is nonzero for a particular choice of
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function which represents a (sum of) matrix coefficient(sy off £ is unramified
over L, we get the same type of result under some additional assumptiafis on
sometimes the integral is nonzero whenL* is non-trivial. The contents of the
paper are described in more detail below.

Properties of the Howe factorization 6éfrelative to the automorphism are
discussed in Section 2.

The twisted orbital integrdl can be expressed as an integral over the fixed
points in G of a certain involutive anti-automorphism of glo,(£'). The third
section contains results describing the actiorpain filtrations of the parahoric
subalgebra attached to the extensigrand on related subgroups Gf

The representatior is induced from an irreducible representatierof an
open, compact-mod-centre subgrdiipn Section 4 we state Shahidi's reducibility
criterion and define a particular functidghwhich represents a finite sum of matrix
coefficients ofr. The functionF is chosen in such a way that the corresponding
twisted orbital integrall (F) reduces to an integral of the characterxobver a
certain set ofp-invariant points inH .

In Section 5, we establish some propertie¥ @ind . We prove that ifx is
one-dimensional andl| L* is trivial, thenZ(F) is non-zero (Proposition 5.3).

The inducing representationis a tensor product of finitely many representa-
tionsk;, i = 1,...,r, corresponding to the Howe factors @éfIn Section 6, we
show that if a Heisenberg representation is used in the constructigntben the
character ofk; is real-valued on the set gfinvariant points in/. Then Section 7
is devoted to computing the sign of the character on cegdnvariant points.

In Section 8, we state a particular case of a result of Digne and Michel ([DM])
which gives a character formula for Deligne—Lusztig characters of a non-connected
finite reductive group.

Next we consider the case when has level one; that is;, is an inflation
of an irreducible cuspidal representation of a general linear group over a finite
field. In the first part of Section 9, we determine the map whidhduces on the
finite general linear group. Certain sums of values of Deligne—Lusztig characters
of finite general linear groups occur in the intedfdlF). Using properties op
andx,., we express these sums in terms of values of a Deligne—Lusztig character
of a non-connected finite reductive group (whose identity component is a general
linear group). In the main result of Section 9 (Proposition 9.9), we determine the
signs of the sums using the character formula from Section 8.

In Section 10, assuming that has level one and; is one-dimensional for
1 < i < r <1, we derive an expression f@F) in terms of values of and the
sums considered in Section 9. Results of Section 9 are then applied to obtain our
main result (Theorem 10.7) in this case.

In Theorem 11.1, we show that under certain assumptiofi$ ort, the integral
Z(F) is nonzero (subject to the additional condition mentioned abowe Has
level one and- > 1). WhenE is ramified ovet, it suffices to assume théf L*
is trivial. When E' is unramified overL, there exists an intermediate extension
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F C Ey C E (appearing in the Howe factorization f such tha# | L* must be
assumed to be trivial, resp. non-trivial, whgix: E4] is odd, resp. even. Wheh
satisfies the conditions of Theorem 11.1, the non-vanishidg.# translates into
results concerning reducibility of the induced representatioh(Theorem 11.4).
Reducibility of the non-unitary representatiofr I® | det(-)|*), for « a nonzero
real number, is discussed in Corollary 11.5.

In the second part of Section 11, we formulate a conjecture giving necessary and
sufficient conditions for reducibility of(ir) in terms of the values of | L*. The
conjecture is based on our results and on the expected relations between properties
of # and the conjectural representation of the Weil group parametrizind.the
packet{r} of G. Shahidi ([Sh]) interpreted the reducibility gfd) in terms of the
conjectural theory of twisted endoscopy ([KS1], [KS2]). In particula#, satisfies
the conditions of Theorem 11.1, then thigacket{ 7 } of G should come via twisted
endoscopy from ati-packet of representations of $Q 1 (F'). Our conjecture can
be restated as a criterion which uggd.* to determine whethefr} comes via
twisted endoscopy from ah-packet of S@,1(F') or of a quasi-split S, (F').

Goldberg ([Go]) has expressed reducibility of certain induced representations
of unitary groups in terms of non-vanishing of sums of twisted orbital integrals
of matrix coefficients of supercuspidal representations of general linear groups.
In a forthcoming paper ([MR]), the results of this paper are adapted to obtain
reducibility results for unitary groups.

In an earlier version of this paper, in order to obtain some of our results in the
case where;, has level one, we evaluated particular sums of Green polynomials
of general linear groups. We have since found a more direct way to obtain these
results via a character formula of Digne and Michel.

2. Self-contragredient Supercuspidal Representations

Let F' be ap-adic field of characteristic zero and odd residue characteristic, and let
G = GL,,,(F). Let E be a tamely ramified extension 6fof degreemn, and letd
be an admissible character Bf* over F'.

The charactef has a Howe factorization (see [H2], [M02])

0= (xo NE/F)er(erfl o NE/E,_l) oo (020 NE/EZ)(el ° NE/El)' (2.1)
Here# uniquely determines the tower of fields= £y C Fy C --- C E, = Fand
X, 01,...,0, are quasi-characters &<, £, ..., E, respectively. Each quasi-
characte#; is generic oveE; ; ([H2]). The conductoral exponents are unigue and
satisfy

fE(Hlo NE/El) > > fE(Hr) > 0. (2.2)

For each, if fz,(6;) > 1, choose an elemeat € E; that ‘represents); in the
sense that

0i(1+ ) = P(trg, (i), for @ e piy/ D2 (2.3)
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wherey is a character of the additive grodpwith conductom »; we must have
G EPEfEi(ei)H \ pgifEi(ein (see [H2], [Mo2]). Note that the genericity of
implies thatc; generate€’; overFE;_;.

The construction of Howe ([H2], [M02]) associates to each equivalence class
of admissible charactefsan equivalence class of irreducible supercuspidal repre-
sentationsr of G. We will henceforth assume thé{and hence the corresponding
) is unitary (see Corollary 11.6 for some results in the non-unitary case).

Suppose that the supercuspidal representati@i G attached td is self-
contragredient (that isg is equivalent to its contragredient). Since the contragre-
dient of r is attached to the charactér(see [Mo2)), it follows that there is a
o € Aut(E/F) such that

Qoo =0=01 (2.4)

Here the notation A /F') denotes the automorphismsBffixing F' pointwise
(we are not assuming th&t/ F' is Galois). Using the admissibility df, it is not
hard to see that must have order two ([A]). In particularp, must be even.
Henceforth we will letm = 2n, and consideG = GLy,(F). Adler ([A]) has
shown that given any tamely ramified degreeextension® of F' such thatt/ L
is quadratic for some intermediate fidldthere exist unitary admissible characters
6 of E* satisfying (2.4) witho the non-trivial element of GaF/L); hence there
are self-contragredient supercuspidal representatiocisgEociated to every such
extension.

By comparing Howe factorizations 6éfandf o o, we also observe that E;) =
E; for eachi, although we shall see thatdoes not fixE; pointwise.

We claim thatfz(x o N/ ) < fe(f10 Ng/g,)- If not, then using (2.2), (2.4)
and the fact thak o Ny, is invariant under, we see thag o Ny, must be a
non-trivial real character on

(1 ppr PNy g g BN

Sincep is 0dd, this group has odd order, which is impossible, proving the claim.

Next, we replacé; with 61(x o Ng,x) and dropy from the notation. Note that
x © Np,/r is invariant under automorphisms Bf/ F', so any element representing
x © N,/ can be chosen to be an elementofBecause of the claim just proved,
this shows)1(x o Ng, /) is still a generic character df;.

LEMMA 2.5. The characterg; and the elements can be chosen so that
() 6; is unitary,
(i) 0; o Ng/g, 00 = (0; 0 NE/Ei)_lv
(iii) o(ci) = ©c;, if fp(6;) > 1.
Proof (i) We know thatd is a character (i.e., is unitary). In particular, if we write
it as the product of a character 6f; and a power of - | g, then (2.4) shows that
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the power of| - |z must take values if+£1}. We can adjust the power ¢f |,
occurring inf; so that eacH; is unitary; this does not affect the genericityépf
(ii) From (2.4), we have thaty o Ny /s, 0 0 = (610 Ngg /)~ 0N

(1+ng(GZONE/EZ))/(l+p£‘E(910NE/E1)).

Since(1+pg)/(1+ pJ;E(gloNE/El)) is ap-group, it is possible to adjusi so that
010 Ngjp, 00 = (610 NE/El)—l on all of 1+ pg. Using the Chinese Remainder
Theorem, it can further be adjusted so that the same relation holds oncajj of
and therefore on all of/*. Then, by an inductive argument, we can assume that
for eachi, 0; o Np/p, 00 = (0; 0 NE/Ei)—l on E*. This proves (ii).

(iii) Note that for anyk,

p'ﬁ; NE; C pggicfl)/e(E/Ei)}+1,

)
fe(0io Ng/i,) =1+ e(E/E;)(fr,(6;) <1).

Let m; = [(fr(0; o Ng/g,) + 1)/2]. To finish the proof, we will need the
following technical result.

LEMMA 2.6. Supposd. < i < r; if i = r, then assumgg(6,) > L. If z € p},°,
then

= P(trg, r(citrp e, (2) = P(trg plciz)).
Proof. Note that

2 () B © plSE/ IR0 D/E/ B _ 100
— Ny, (14 2) € 1+trp i (2) + 902", for @ e pp.

Also

[(m;

trp, (z) € pg“ NE C plt i—1)/e(E/E;)]+1 c (fE,(0:)+1)/2]

bE

i 7

from which the result follows. O

Comparing with; o Ng /g, o0 = (0; o NE/Ei)*l, we see that (¢;) € <¢; +

(p5"™ T'NE;). Butc; is only defined up to addition ofelementso@f(fEi(ai)H)/Z]H.

By adding something imgi[(fEi(gi)H)/zHl, we can assume that thg's satisfy

O'(Ci) = <. O
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From now on we assume thgtandc; are as in Lemma 2.5.

3. Filtrations and the map ¢

Let the notation be as in Section 2. The representatisrof the formr = Ind%«
wherex is an irreducible representation of an open compact-mod-centre subgroup
H of G = GLy,(F'). We will define an anti-automorphisgof gl2, (F') so that the
integral we need to consider can be expressed as an integral over geirtaariant
points in the inducing subgroup. The fieldE will be embedded igi», (F') in such
a way that the action @b on F is given byo; up to conjugation by a fixed matrix,
the mapX — <p(X) is the Lie algebra analogue of inverse transpose. We will
also need to consider matrix algebras oyenvariant fields intermediate between
F andE. We will consider the action gp on such algebras, and in particular will
show that the standard filtrations and parahoric subgroups-areariant.

Let L be the fixed field ob. We choose a basig,...,¢,} of L/F, and let
{&,...,&; } be the dual basis with respect to the trace form.sis the matrix of
the identity transformation from the bagi§; } to the basig¢;}, i.e., the transition
matrix; note that is symmetric. Then for any € L,

s_ltns =1.

If E = L(7), with o(7) = <7, we form a basig¢s, ..., ¢,, 7é1,...,7&,} of

E/F, and use it to embe# in gl (F). If we let

B 0 s
Y= es o)
thenw has a similar property foy € E, namely

w My = a(y).

The relationship between left multiplication hy or w~! and the standard
basis above and its dual will be needed in Corollary 3.5 to show that the anti-
automorphisnp preserves certain lattices gy, (F').

LEMMA 3.1. Suppose € E. Write[y] for the coefficients of with respect to the
standard basis off/F' and [y]* for the coefficients of with respect to the dual
basis. Then

(i) wiy] = [&(o(y)/27)]"
(i) w™]* = [«2ro(y)].

Proof. We write [n]z, (resp.[n];) for the coefficients of) € L with respect to
the standard (resp. dual) basisbfF. In particular,s[n|;, = [n]}, forn € L.
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Note that the basis df'/ F' dual to the standard badi§i, . .. ,&,, 7¢1,...,7&, }is

{36, 4. /208, (1208}
For (i), we writey = 1 + 7y2, With 1,72 € L, SO

Then
o osbeRle o DRl (e .m) e
vl = <<:>5[71]L> B (d’h]’i) B {2 @ZT] B { 21 } '
This proves (i). Part (ii) is obtained by inverting (i). O

We define the map: glo, (F') — gl2, (F') as follows: ForX € gly, (F),
o(X) = w X w. (3.2)

If S C glop(F) ande = £1, thenS<? will denote thecp-invariant points inS.

Next we discuss how acts on matrices over different fields. We will want to
apply this idea in different contexts, especially to intermediate fiélds E; C
E, but also to the map induced lyy on matrices over residue fields. Consider
fieldsF' ¢ N' c E', F' ¢ L' C E', with [E": L'] = 2, ando the non-trivial
automorphismof’ /L'. The results will often be applied to the fielsC E; C FE,
F C L C E or the corresponding residue fields. Wenét= [L’: F']. Our goal is
to find a simple expression for the actiong@bn matrices oveN’.

LEMMA 3.3. Supposd” C N' C L' andm’ = [N': F']. Any anti-automorphism
of gl /e (N') that fixes the scalar@.e., theN'-scalarg can be written as the com-
position of the transpose i, /,,,, (N') with an inner automorphism ef,, /., (N').

Proof. Composition with the transpose gives an automorphisid,of,,, (N')
that fixes the scalars. Composing with an inner automorphism, we can assume it
preserves the diagonal matrices and fixes the scalars. Any such automorphism is
inner. O

Suppose’ € GL,, (F') is symmetric such that for anye L', s'~1%s' = 5, and
define

0 & -

LEMMA 3.4. (i) If N' C L', letm' = [N': F']. Then there exists a symmetric
matrixS € GL,,,» (N') such that

¢(X)=8S1XS, X €glym(N).
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Here TX means the transpose ovat .

(i) Let Y ¢ N' C E' be such thab(N') = N’ ando | N’ is non-trivial.
(We will often apply this withV' = E; for somei.) Let o be the non-trivial
automorphism o’ over L' and letry: be a generator ofV' over Ny = N' N L/
such thato(7y/) = <7ar; let m' = [N§: F']. Letoys be the action on a matrix
with entries inN' given by applyingr | N’ to each entry of the matrix. Then there
exists a symmetric matri& € GL,, /,, (Ng) such that

¢ (X +Y7n) =S5 (on (X +Y73))So, X +Y7n € gl jyu (N').

Proof. (i) SupposeV’ C L'. Consider the mag: g,/ (F') — gl, (F') defined
by ¢(X) = s'~1tXs'. Because of the form of', +/ | L' is the identity map. As
N' c L', it follows thate(gly,s jm: (N')) = @y /e (N'). In fact we can say more
than that: the restriction af is an anti-automorphism ef,,, ,,,,» (N') that fixes the
scalars (i.e., théV'-scalars). Using Lemma 3.3, we see that there exists a matrix
S € GL,y/py (N') such that

p(X) =8 XS, X € gly ) (N') C gl (F').

Sincey? is the identity map, we know th&t 1 7S is a scalar, i.e%S = ¢S, for some

c € N'. ButS =715 = ¢?S and we find thatS is symmetric or skew-symmetric.
Leta be a generator o’ over N'. Let Ay, ..., A/, be the eigenvalues of (in
some extensioi of N'). We know that these eigenvalues are distinct and nonzero
asa is regular ‘elliptic’. There exists € GL,, /,,, (K) such that

J?Oéﬂ?il =0 = diagAl, ey )\n//ml).

Froma = S~ 17uS it follows thats = A~16A4, whereA = S~ 17%z. Thus.A
must centralize). ThereforeA is diagonal. IfS were skew-symmetric, thed
would also be. Clearly this is impossible. Theref6res symmetric, proving (i).

(i) SupposeE’ = L'(r) for somer such thav(7) = <. With these choices
we havery: = wr for somew € L'*. If a matrix commutes with all ofV’, then it
commutes withVy and therefore has the form

A B
<C D), A,B,C’,DEgln//m/(Né).

The above matrix must also commute with

B 0 wr?
TN = w 0 )

so we haveyr2C = Bw andDw = wA. That is, the matrix has the form

wiXw (wYw)wr?
Yw X 7
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with X, Y € gl /v (Ng). We can easily check that mapping this matrixxfo+
Y 7n is a Lie algebra isomorphism between the centralize¥in gl,,/ (F') and

gln’/m’ (N,) = gl(znl)/(zm/) (NI)
A simple calculation gives

,(X Ly ) < SlfltXS/ <:>3/71t (wle272)3'>
4 TN') =

<:>8'_1t(Yw)8' s'_lt(w_lXu))s'

Now, applying part (i) to matrices oveéY;, we find there is a symmetri§ €
GL,y /v (INp) s0 that

cwS 1Y S wS X Sw1

STXS «w?r2S 1TySw?
(,0, (X + YTN/) = .

UsingS—17wS = w, we see that
O (X +Yy) = (WS THXSw™) e(wS MY Sw Yy,
X, Y S gln//ml (N(l))

SetSy = SwL. ThenSyis symmetric. We have shown that there exists a symmetric
matrix So € GL,, /,,,» (Ng) such that for anyX' + Y7 € glyys jy (N'),

¢ (X +Yry) =S5 (on (X + V7)) So,
as required. O

Now we define various subalgebras and subgroups. The parahoric ‘subalgebra’
B C g <gla, (F) attached to the embeddidg— ¢ is defined by

B={X eg|Xpk cph, forallk}.
The parahoric subgroup C G = GLy,(F) is the units
P =B~
For any integeyj, we also define
Bj = {X eg| Xpl Cpit’, forallk}
and
Py =P, P;=1+B;, forj>1

We define a functiom on g by v(X) = j, wherej is the unique integer such
thatX € B;\B;,1. Note that ifX € £, thenv(X) = ordg (X).
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At times it will be necessary to consider one of the intermediate fiélds
occurring in the Howe factorization @f It is possible to embegl(z.x;)(£;) in
alon (F') as the set of all elements gk, (F) that centralizel); C E C glp, (F).
We will refer to this realization ofl (., (E;) asM;.

In this situation, we will define

Bj(i) = {X € M;| Xpk, Cplp?, forallk} = B;nM;,
Pj(i) = PN M;

and
B(i) = Bo(i),  P(i) = Po(i) = B(i) N G.

Lety be asin (3.2). Using Lemmas 3.1 and 3.4, we are now able to show that
the filtrations and parahoric subgroups defined above-angariant.

COROLLARY 3.5.

(i) »(B;j) = B;.
(i) (M, )=M
(iii) ©(B;(i) = Bj(i), j € Z.
(V) (P ()):P()ijO-

Proof. SupposeX € B;; this meansXpk, C p'ﬁf”, for all k.

If v € pk, we write it as a column vector as discussed at the beginning of this
section. Then by Lemma3.4y] = [<{o(y)/27)]*.

Now ‘X is the matrix ofX relative to the dual basis, $& [<(o(7)/27)]* =
[©X (o(y)/27)]*. We find that

o(X)[y] = w P Xwly] = w X {@%Z)r =w ! [@X Z(Z)r

Now <(a(y)/27) € (1/7)pk,; sinceX € Bj, <X (o(y)/2r) must beir(l/T)p’]f;’j.
So

-1 {@X%Z)r €w” {@Epkﬂ} - [p?—j]'

This means(X)(p%) C p’,f;“ which means(X) € B;, proving (i).

Part (ii) follows from Lemma 3.4, and part (iii) follows from parts (i) and (ii)
and the fact thaB; (i) = B; N M;. Part (iv) follows immediately from (iii). O

We finish this section with some technical results that will be used in the
Heisenberg construction of Section 6.

LEMMA 3.6. Let1l < i < randj > 1. Suppose thak(; is a subgroup ofP(i)
satisfying
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() Ki N P(i 1) = P;(i).
(i) K; normalizesP; (i <1).
(i) o(K;) = K;.
(iv) E* normalizesK;.
Then anyz € (E*K;P;(i <1))¥ can be written in the formx = yz, where
y € (EXK;)?, z € Pj(i <1).

Proof. Write z = uv, v € EXK; andv € P;(i <1). Note thatp(E* K;) =
E* K;. This follows from (iii) and (iv) andp(E*) = E*. Then, asZ* K; normal-
izesP;(i <1), we have

p(a) = p(v)p(u) = p(u)(p(u) p(v)e(u)) € p(u)P;(i & 1).
Therefore, using(z) = z, we get

o(u) tu € Pi(i 1) NGy mm(Ei) = P;(4).
Write v = ¢(u)(1+ X), X € B;(). By definition of X,

p(u)X = up(u).
Applying ¢ to this equality results in

Plp(w)X) = plu) Su = Su Sp()) = Sp(u)X. (37)
Now we writeu = wlak, a € O, k € K;. We have

p(u)X € uPj(i ©1)X € WROSKB;(i) = Byren(i), €= e(E/F).
SetBy (i)t = {Y € By(i) | ¢(Y) = £Y}, £ € Z. It is easy to see that

By(i) = Be(i)" @ Be(i) ™,
Y+oY) YY)

2 T2

Therefore, by (3.7) we may writg(u) X = ¢(X1) X1 forsomeX; € Bjem(?).
SetX, = v~ 1Xy. From (iii)

Yy =

X € ko o, B em(d) C KB, (1) = B;(i).
So we have

o(u) X = p(uXz) SuXoy,
which implies

u = @(u) + p(uX2) SuXy,
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or
uw(l4+ X72) = p(u(l+ X2)).

Sety = u(1+X2) andz = (1+ X,)~1v. Theny(y) = y and since ¥ X, € P;(i),
(i) impliesy € EXK;. O
Forl<i<r,writel; = [(fe(0; o Ng/g,))/2]- Set
H = E"Py,(r<l)-- Pp,(1)P,
K =Py (rel)--- P, (i), 0<i<rel; K, ={1},
Li=P,(i<l)--- Py, 1<i<r

COROLLARY 3.8.Letz € H?. Letl < i < r. Then there exisy € (E*K;)¥
andz € L; such thatr = yz.

Proof. If i = 1, apply Lemma 3.6. If > 1, assume that the corollary holds for
1< j <141 Thenwe can write = 3'z’, where

y' € E*K; 1= EXKZ'P@Z, (’l <:>1), 2 € L;_1, go(y') = y'.

The preceding lemma now can be applied'tto write /' = yz" withy € E* K;
such thatp(y) = y andz” € P, (i <1). Since

z=2"2 € P (i l)L;_1 = L,
the corollary follows. O

LEMMA3.9.LetO< i < r,j > 1,andr € (HNM;)?. Thenthe map — z7p(z)
from P; (i) to (7P;(¢))¥ is onta

Proof. Definey’(X) = p(rX171) = 77 1p(X)1, for X € glp,(F). Because
H N M; normalizes3; (i), it follows from Corollary 3.5(iii) thaty' (B; (i) = B;(3).
Letg € P;(i)¥'; setX = g <1. Because'(X) = X, there existd; € B;(i)
such thal; + ¢'(Y1) = X (for example, since is odd, we could tak&; = X/2).
Then

X <:>(Y1 + QDI(Yl) + Yltpl(Yl)) = <:>Y1<,0,(Y1)
is ¢'-invariant and, sincé; (i) B; (i) C B2;(i), lies inBa;(i).
Suppose thaty, Y, ..., Y, € B;(i) are such that
Y, oY1 € st (Z)a
X (Y +¢'(Ys) + Yo' (Ys)) € Bsgay;(i) is ¢'-invariant

ChooseW,;, 11 € B;,,41);(i) such that

Wm+1 + ‘P,(Werl) =X <:?’(Ym + ‘Pl(Ym) + Ym(pl(ym))'
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SetYm+1 == Ym + Wm+1. Then

X &(Yimg1+ ¢ (Ym+1) + Y19 (Y1)
= m‘Pl(Wm—‘rl) + Wm—l—l‘/’,(Ym) + Wm—&—l(P,(Wm—&-l)

is ¢'-invariant and belongs t8,,, ;1); (1) B;j (i) C B(m2);(i). The By, (i)’s form
a neighbourhood base of zero in En@E) and therefore thé&’,’s converge to
an element” such that” + ¢'(Y) + Y¢'(Y) = X. Note thatY” € B;(i) since
Y, € B;(3) forallm > 1. Thusy = 1+ Y satisfiesyy'(y) = g, and we have
shown that the map — y¢' (y) from P;(i) — P;(i)¢" is onto.

Letzy € (7P;(i))?. Thenp(r tz1) = 7(r tx1)7 L Thatis,r tx1 € P;(i)¥.
By the above, there exists € P; (i) suchthat1z1 = z2¢' (22) = 227 Yp(z2)7.
Setz = t2o7 1 thenp(r) = 7 implies thatz; = z7¢(z) andz € P;(i). O

4. Shahidi's Reducibility Criterion

In this section we set up a type of integral involving matrix coefficients of a
supercuspidal representation and state results of Shahidi relating these integrals to
the reducibility of induced representations.

LetG = GLy,(F). For f € C°(G), we set

Z(f) = flow Mgw)dg= [ flgple)) 6
G/Spy (F) G/Spy, (I)
wherew is the non-singular skew-symmetric matrix defined at the beginning of
Section 3.
The quotient7/Sp,, (F') can be identified with the set of non-singular skew-
symmetric matrices 7. Here, the identification is given by+— gw 'y, where

Sp,, (F) = {g|gw g =w '} = {g|'qwg = w}.

The Haar measure @r induces an invariant measure on the set of non-singular
skew-symmetric matrices; it is the canonical additive measure on the coordinates
above the diagonal divided etz|"~1/2. This measure is invariant under—
hath, foranyh € G.If z = gw™1g = gp(g)w™2, thenhz 'h = h(gp(g))e(h)wr.

So replacingio(g) by h(gp(g))e(h) in the integral has no effect.

Letn be an irreducible supercuspidal representatiai wfhose central charac-
terw has trivial square; lef, be a matrix coefficient of. A function f € C°(G)
is said torepresentf;; if

() fa(z) = 5 fzzx)w H(2)dz, x€G,
(i) The functionf defined by

Flx) :/Zf(zzw) dz, z€G,
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viewed as a function ofi¥/Z?, appears in a subspace @f°(G/Z?) which
is equivalent tar (viewed as a representation@fZ2). Here Z is the centre
of G.

Let G’ be one of the split groups S F), SOy, +1(F), or Sp,,(F). Given a
maximal parabolic subgrouBax of G’ having Levi componentisomorphic &,
extendr trivially across the unipotent radical to obtain a representatienl of
Praxand set(r) = Ind%_ (7 ® 1).

Define a skew-symmetric matrix i@ by

=

wo =
<1

Forf € C°(@), setuo(f) = Jasp, (i f (9w5 " 'gwo) dg. Shahidi has proved
the following result. "

THEOREM 4.1 ([Sh], Theorem 5.3).et G’ = SOy, (F) or Sp,,(F). Letw be
an irreducible unitary self-contragredient supercuspidal representatia@n dthen
I(7) is irreducible if and only if there exists a functighe C2°(G) representing a
matrix coefficient ofr such thatZ,,,(f) # 0. MoreoverZ,,,(f) # 0implies that
w|F* =1.

REMARK. Becauser = zwyg 'z for somez € G, it follows thatZ,,,(f) = Z,(f’)
wheref'(g) = f(zg'z™1), g € G. Clearly f represents a matrix coefficient of
if and only if f does, s&@,,, can be replaced 1, in the above theorem.

The reducibility criterion for S@,.1(F) is dual to that for S@,(F) and

LEMMA 4.2 ([Sh], Theorem 1.2)If x is as in Theorem.1, thenl(~) is reducible
for G' = SQu,+1(F) if and only if I(7) is irreducible for G’ = SO, (F') (or

As in Sections 2 and 3, |€f be a tamely ramified degree Zxtension ofF’,
and take) to be a unitary character @ which is admissible oveF and satisfies
0~! = 0 o o for some involutions € Aut(E/F). Note thatd?| F* = 1. If 7 is
the irreducible supercuspidal representatioiassociated té, thenm = Ind%«
for some irreducible representatianof the open compact-mod-centre subgroup
H defined in Section 3.
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We consider the finite sum of matrix coefficientsroflefined as follows, where
Xx IS the character of

fole) = { xx(z), If z€H,

0, otherwise

Writing e= e(E/F), we let

2e—1 )
S=J wl(HnP).
i=0
Then we let

fx(x), for z €S,
0, otherwise

Flz) = {
There exists a nonzero constarstuch thatF representg; soZ,(F) # 0if and
only if Z,,(¢F) # 0.

Then we considef,(F) = Jq/sp, () 7 (9¢(9)) dg. In particular, we will
show that, under certain conditions &y, (F) is nonzero. Asv is fixed we drop
the subscript and pUi(F) = Z,, (F).

Note thatzy(x) is ¢-invariant, so the integral involves values gf at ¢-
invariant points. In later sections, we will study propertiesyQf on points in
H?.

5. Preliminary Results

Let the subgroupél, K;, L;, etc. be defined as in Section 3. Recall ([H2]) that
7 = Ind%x wheres is an irreducible representation &f. The representation

is a tensor product = k1 ® - - - ® Kk, Wherek; is defined using the characigt
The representatior; is first defined onE* K; 1 and then extended acrogs 1

by ¢ (tr(c;(- <1))) to get a representation on all 8f = E*K;_1L;_1.

If fz(6,) =1, thenx, is defined in terms of a certain cuspidal representation of
P(r <1)/Pi(r 1) parametrized by,. This case will be discussed in Sections 9
and 10.

We remind the reader that; = [(fg(0i o Ng/g,) + 1)/2] and?; = [(f(6; o
Ng/g;))/2], 1 < i < r. Letdet be the determinant ofé; = gl (E:). If i <
r&l, orifi = randfg(6,) > 1, define acharactesof E* K; P, (i<1)L;—1 C H
by

wi|EXKi:0iode'g, and
wj |Pm1 (’L <:>1)Li,1 = z/)(tr(c,»(- <=>1)))
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The condition 21; > fr(0; o N, g,) guarantees that the two definitions coincide
on the intersectio®* K; N Py, (i <1)L;—1 ((H2]).

The conductoral exponerfi; (0; o Ny, x,) is even if and only ifm; = /;. In
this case E*K; P, (i ©1) = EXK; andk; = w;. In particular, dims; = 1.
Otherwise,m; = ¢; + 1 and a Heisenberg construction is used to definen
E*K; (see Section 6) and dir) > 1.

LEMMA 5.1. Suppose thak is ramified overL. Thenfg(6,) > 1.

Proof. Suppose thatg(6,) = 1. Thend,|(1+ pg) = 1. Becaus& is ramified
overL, Oy C OF (1 +pg). Thust, (OF) C 6,(0;).

Because#? = 6;1, 0, | L has trivial square. Therefots (0}) C {£1} and
6, is not generic oveF, 1. This contradiction finishes the proof. O

Next we establish some notation that will help us work withRecall the function
v(-) defined in Section 3z(z) = j, wherez € B;\ B;1. If E is unramified over
Landz € H?, let

1, if v(z) iseven
pn(z) = :
wr, oOtherwise

Note thatif£ is unramified ovel. andz € yFPo, thenv(z) = v(y), sou(z) = p(y).
If £ is ramified overL, fix a root of unity{ € L that is not inNy, . (E). If
x € H?, then, by the above lemma and Corollary 3.8, with r, z € L* Pj. Let

1, |f $€NE/L(EX)P1,
pn(z) = :
¢, otherwise

LEMMA5.2. Suppose that € E* K; P, (i <1)L;_1 andp(z) = z. If f5(0,) =
1, make the additional assumption that E* P;.
Thenw;(z) = 0; o Ng /i, (1(z)).

REMARK. Inthe casgz(0,) = 1, the above result may not hold for certain points
in EX P (see Lemma 10.2).

Proof. A minor variant of Corollary 3.8 shows that it is possible to wiite- 4z,
with y € EXK; andz € Py, (i <1)L;_1, and such thap(y) = y. Sincez is also
o-fixed, a simple calculation shows thatz) = yzy .

Sincey(c;) = o(¢;) = <, we find that

plei(z ©1)) = p(z ©Dp(e) = (yzy * 1)(s0),
so becausey € M; commutes withe;, tr(ci(z 1)) = tro(c(z 1) =
atr(ci(z 1)), and tlc;(z 1)) = 0. This shows that; (z) = 0;(det(y)).

Sincey € E*K; and p(y) = y, we can assume that € L*K;. Write
y = tv, with ¢t € L* andv € K; C Pyi(i). Sincep(tv) = tv, we find that
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©(v) = tvt~1 andy(det(v)) = det(p(v)) = det(v). So det(v) € L. But since
v € Pi(i), we have dgtv) € 1+pg,nL. Since L+ pg;nr = Ng, /(p,nn) (1+pE,),
we find thatb;|1yp .., = 0i © Ng,/(mnr)l1+ps, = 1. S06; (det;( )) = 1 and
wi(z) = 0;(det(y)) = 0;(det(tv)) = 0;(det(¢ )) This reduces us to considering
xz e L*.
Whether or notZ is ramified overL, » € u(x)Ng,(E*). The result follows
from the observation tha@ o Ny, g, is trivial on N, (E*) by Lemma 2.5(ii).0

PROPOSITION 5.3If dimx = 1and if@| L* = 1, thenZ(F) > 0.

Proof. Since dims = 1, then for each, dimk; = 1 andm; = 4;. So
EXKZ'Pmi (Z <=>1) = E*K,;,_1 andk; = w;.

Now, with the functionF defined as in Section 4

I(F) - Flgugwdi= [ Flaple)) di.
G /Sp (1) G/Sp (F)

The support ofF is S = UZ ot wh(H N P) C H. Sincep(ge(g)) = gelg),
the above lemma applies with= g¢(g) and we find that whenevery(g) € S,

Flge(g) = fxlge(9) = xx(gely Hm 9¢(g

= ] 0i o Ng &, (1(g0(9))) = 0(1(ge(g)))-

=1

Sinceu(gp(g)) € L™, we see thal(11(ge(g))) = 1 and the integrand is positive.
Now for largej, the-fixed elements of?; have positive measure, so the integral
is positive. O

The following results allow us to identify certain cases wherexdim 1.

LEMMA 5.4. Suppose that' C Ny C N, C E, o(N,) = N, h = 1,2, but
o|Ny # 1. Assume thatV, is ramified overN, N L. ThenN; is ramified over
NinN L ande(Ny/N7) is odd

Proof. SupposéV; is unramified oveN; N L. By the uniqueness of unramified
extensionsf((N2 N L)/(N1 N L)) is odd. Butf(Ny/(N1 N L)) = 2f(N2/Nq)
andf(N2/(N1N L)) = f((N2nL)/(N1N L)), sinceN; is ramified oveN, N L.
Therefore,N; must be ramified ovei; N L.

Now suppose@Vy/N1) is even. LetV be the maximal unramified extension of
NiNLcontainedinV,N L. Then€N,NL /M) = e NoNL/N1NL) = €(N2/N1),
so €N, N L/M) is even.

We can writeNy = (N1 N L)(,/@n;nz) for some prime elementy,qy, in
N1N L. Since €M /N1 N L) = 1, we can assume thaty,; = wy, L.
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Since ¢L/M) is even andL is totally ramified overM, there must exist a
quadratic ramified extensioN of M contained inN; N L. Since,/@n,nL =
V@ ¢ L, we must haveV = M (y/exr/war) for some non-squakey € Oy

But since,/w,; and,/ex/war € N, we find that, /g5, € N». Since,/en; ¢
M, f(E/M) must be even. In particulgi( Ny /M) > 1.

But by the definition of\/, N, is ramified oveM, contradictingf (N2/M) > 1.
Therefore €N,/N1) cannot be even. O

LEMMA 5.5. Suppose/ L is ramified. Themimx = 1.

Proof. If dim k; = 1 for eachi, then dims = 1. But dims; = 1 is equivalent
to saying that there is no Heisenberg constructionspsince fz(6,) > 1, by
Lemmab.1.

Lemma 5.4 shows thal; is ramified overE; N L, for 1 < ¢ < 7, and that
e(E/E1) is odd.

Since ¢E;/E; N L) = 2 ando(¢;) = <c¢;, we see that; must generaté;
over E; N L. This meang; € PtEi \pgl for somet, which must be odd. But

¢ € P;;ifEi(eiHl \ p;;ifEi(ein. Thereforefy, (0;) <1 is odd.
Combining these facts, we see that

fE(bio Ng/g,) <1 =e(E/E;)(fr,(0;) <1) isodd

Thus fu(6; o Ng/g,) is even and a Heisenberg construction is not necessary for
K. O

COROLLARY 5.6.If a Heisenberg construction is required for one of thgs,
thenE is unramified over..

For future reference, we include the following result.

LEMMA5.7. If fg(0,) = 1ande(E,_1/(E,_1 N L)) = 2, thendimk; = 1 for
1<ig<rel.

Proof Let1<i < r<l.ByLemma5.4,€r;/(E;,NL)) =2and ¢E,_1/E;)
is odd. Becaus¢g(6,) = 1, E is unramified ovelE,_1. Therefore é£/E;) =
e(E,_1/E;) is odd. As shown above(£;/(E; N L)) = 2 implies thatfz, (6;) <1
is odd. Thusfz(0; o Ng/p,) <1is odd. O

6. The Heisenberg construction: part one

Fix 7 such that 1< ¢ < r. Suppose thafx(6; o Ng/g,) is odd and greater than
one. Then a Heisenberg construction is required for the representatiomthis
section and the next, we compute the sign of the character valggatfcertain
w-invariant elements in the inducing subgradpBy Lemma 5.1, we must assume
that £ is unramified oveL. In [Mo02], Moy assumes thatdoes not divide 2. The
results from [Mo2] which we use still hold under our assumptions; that is, when
is odd and does not divide the ramification degree& £/ F').
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Letthe subgroup#, K;, L;, etc., be as defined in Section 3. As we are assuming
that fg(0; o Ng/i,) is odd,

0;oNg/g)+1
mi:&-i-l:(fE( ° ZE/EZ) )

SetH; = F* (1 + pE)(Kini (Z <=>1) N Pl). Then

i =

F* (1 + pE)Kini (Z <=>1), if fE(GT) > 1,
FXPi(r s1)P,, (re2)...Puisl), i fu6,)=1

SetH] = F*(1+ pg)(K;Pp,(i &1) N P). Let w; be the character af* K;
P, (i ©1)L;_1 defined in Section5. As; does not extend to a character/&f
a Heisenberg construction is used to produce an irreducible representatbn
H. The technical difficulties occur in defining on E* K; 1 = E*K; Py, (i ©1).
After that, if i > 2, x; is extended byy(tr(c;(- <1))) on L;_1 to produce a
representation oH. Let x be ay-invariant element of{. By Corollary 3.8, we
may writez: = yz with y € E*K;_; such thatp(y) = y andz € L;_;. Arguing
as in the proof of Lemma 5.2, we see thdt) = yzy 1 implies t(c;(z 1)) = 0.
Therefore, denoting the characterfby y;, it follows thaty;(z) = x;(y). That
is, it suffices to computg; on p-invariant elements i * K;_,. In this section,
we deal with thep-invariant elements it£* H;. We remark that iffz(6,) > 1,
thenE* H; = E*K;_1. For the purposes of this paper, we do not require values
of x; when f(6,) = 1, but, as the proofs do not differ (for points B H;), in
this section and the next we do not place a restrictiorf 9, ).

We now discuss the construction ©f (see Sections 3.5-6 of [Mo2] for more
details). BothH; and H; are normal subgroups @&* K;_1. The quotientH;/H
can be made into a symplectic vector space @ydyy defining

(@) =wi(z ly tay), o',y € H;/H],

wherez andy are representatives for the cosetandy’, respectively. The conju-
gation action of£* H; preserves the symplectic forfn -). This is used to translate

to the setting of [H1]. The induced representationﬂhdi is a multiple of a single

irreducible representatios!, ((H1]). As indicated in [H1], the oscillator (Weil)
representation singles out a unique extensior,db E* H; parametrized by the
characterw; on E*H]. In particular, the extensior; has the property that if
xz € E*H], theny;(z) is equal totw;(z) times the square root of the order of the
subspace off;/ H] fixed by z (Proposition 2 of [H1]). In additiony; vanishes on
all elements of£* H; whose conjugacy class does not interdgé¢t, .

In the process of calculatingfactors, Moy computes certain of the values of
x;. In the simplest case, when= r = 1 andn is prime (see Section 3.5 of
[Mo2]), Moy shows that all but one of the extensions«)fto E* H; have the
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same multiplicity in the induced representationgﬁ@wi, and he computes the

character of the exceptional component. From the broperties of its character (see
remarks above), it follow that this component is actually

Moy handles the general case as follows (see [Mo2] (3.6.30), (3.6.31)). The
vector spacd/; = H;/H, decomposes into a direct sum of subspalcgsv),
whereN runs over all subfields of / E;_1 which do not contairk;

Vi = onVi(IV).

Let H;(N) be the inverse image df (N) in H;. For eachN, Moy constructs a
representatior’’ of E* H;(N). The charactey! of ¥ is computed via the same
type of argument as in the above mentioned caseydhsatisfies [Mo2] (3.6.51)

0 if 2 is not conjugate to an element &> H;,
i (@) = ¢ gp N wile), if ze N¥H],

sgn(N)wi(z), if ©€ EXH! &N*H!

Heregg,_, is the cardinality of the residue class field6f 1, D(IV) is a positive
integer, and sgiiV) = +1. The representatiot) | E* H; is a central tensor product
of the kV's as NV runs through those intermediate fields containifg, but not
containingE; [Mo2] (3.6.31).

LEMMA 6.1 (Mo2]). Letz € EXH;. Then

by x gy DN
(v 24 >( 11 sgr(m) o),

xi(z) = 4g;_,
{N[zgN>*H}
if 2 € EXH,

andy;(z) = 0if z is not conjugate to an element Bf H;.

Letz € (E* H;)¥.Ifz € E* HjthenbyLemmab.2y;(z) = 0;(Ng/p, (11(x))).
If z ¢ EXH! buty=tzy € EXH! for somey € EX H;, theny;(z) is a multiple of
wi(y~tzy). The elemeny~1zy is not necessarily-invariant. Our goal is to show
that x;(z) is real valued and to determine its sign. To do this, we must evaluate
wi(y~twy) and determine the Sid v |, 1,¢ v x nry SINN).

The next part of this section is devoted to computin@y~1zy). Recall that

M; = glig:g,)(E;), 0< i < r. Lettr; and detdenote the trace and determinant on
M;. Forlg i< r,set

M ={X € Mj 1|tr; 1(XY)=0VY € M;}.

LEMMA 6.2. Let1 < i < . Thenp(M') = M-,

)
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Proof. Note that it follows Lemma 3.4(ii) that;tr1(¢(Y)) = o(tr;—1(Y)) for
Y € M; ;.
The equality

tri_1(p(X)Y) = o(tri_1(p(Y) X))
and the fact thap(M;) = M; (Corollary 3.5(ii)) yield the desired result. O
COROLLARY 6.3.Let1 < i < 7. Thenp(B;(i 1) N M) = B;(i 1) N M.

LEMMA 6.4. Let1l < i < r. Assume thatn; = ¢; + 1. That is, a Heisenberg
construction is needed fay;. Letz € EX K; Py, (i <1) be such thap(z) = z and
y~lry € EXK; Py, (i 1) for somey € EXK; P, (i <1). Thenw;(y~lzy) =
0;(Ng/g, (1(2)))-

Proof Writey 12y = u(1+W),u € EXK;, W € By, (i<1). Because ([H2])

B(i 1) = (M; N B;(i &) ® (M;- N B;(i 1)), j €7,

we may writehV = Wi1+Wo, whereWy € M;NB,, (i<1), Wa € MANBy, (i<1).
As M is invariant under multiplication by elements df;, and (1 + W;) ! €
Py, (4), it follows that(1 + W1) =W, € Mt N By, (i <1). After replacingu by
u(1+W1) and 14+ W by 1+ (14 W1)~1W>, we assume without loss of generality
thatW € M. Thusw;(y~tzy) = 0; o det(u).

Next we observe thab;(y~1zy) = wi(p(y~tzy)) and use this to show that
O;(det(u)) = £1. ASE* K, P, (i 1) is ap-invariant set, we have

oy~ tzy) = p(y)zp(y) ™t € BXK; P, (i <1).

The characteay; is constant on the set of conjugatesafhich lie inE* K; Py, (i<
1). Thereforeyi(y—lzy) = wi(go(y)xgo(u)_l).
Observe that

ply~rzy) = p(u(l+ W) = p(u)(L+ p(u) " rp(W)p(u)).

Frome(u) € EXK; C M;, W € B, (i <1) N M- and Corollary 6.3, it follows

that p(u) ~2o(W)ep(u) € By, (i 1) N M;*. Thus, using Lemma 3.4 and the
properties of; (Lemma 2.5), we get

wiip(ytwy)) = 0; o det(p(u)) = 0; 0 o(det(u)) = 6;(det(u)) .
Equality ofw; aty~tzy andy(y)ze(y) ! yieldso;(det(u)) = 6;(det (u)) L.
We want to show tha#;(det(u)) must equab;(Ng, g, (u(r))). Using Lem-

ma 3.6, writex = vz, v € EXK; such thatp(v) = v, andz € Py, (i ©1).
Now y~lzy = (y~tvy)(y~lzy) € v'P,(i & 1) for some conjugate’ of v in
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E*K;. Observe thap(v) = v implies that de(v') = det(v) € E; N L. We have
u(l+ W) € v' Py, (i <1). Henceu € v' Py, (i). Therefore

det(u) € det(v) det (P, (i) C det(v)(1+ pg,).

From def(v) € E; N L and the fact that the square &f| (£; N L) is trivial, it
follows that6; (det(v)) = +1. We have shown above thatdet(u)) = +1. Thus

0i(det(u)) € 0:(Ng/p, (1(v))(0: (1 + pg;) N { £1}).

As 6; is trivial on 1+ p{EEii(gi) and(l+pEi)/(1+p2’fi(0i)) is ap-group, oddness of
p does not allows; to take the value=1 on 1+ pg,. Therefored;(det(u)) =
0i(Ng/E;(1(v))). Observe thafu(z) = p(v). Thus wi(y~tay) = 0;(NE/E,
(u(z))). O

Set
Si={N|Ei_1CN,E; ¢ N}.

Supposethat € E* H;<E* H! is suchthay lzy € E* H! for somey € EX H;.
We want to compute the quantity

II Sgr(N).

{NES; | y—la:ygéNXHlf}

Suppose that” ¢ N C E. Let {5y denote the set of roots of unity ifv
of order prime top. We assume that a uniformizery € N is chosen so that

w,eéN/F) € w(p, Wherew is a uniformizer inF'. Let C'y be the subgroup oV *
generated byoy and(y.

LEMMA 6.5. Letz andy be as above. Assume thatr) = z. Then there exists a
uniquecr, () € Cr suchthat: € cr,(z)(H;NPy). Furthermore, given any subfield
N of E containingF,

y~lzy e NH! < cy(z) € N*.

Proof. By Lemma 3.6, there existsc L* such that: € u(H; N P1). By [H2],
p. 438, there exists a uniqug(z) € C, the ‘'standard representative’ ©f such
thatu € cr(z)(1+ pr). Since 1+ p;, C H; N P1, we have

T € CL((II)(l—i- PL)(Hz N P]_) = CL((II)(HZ N Pl)
Setz = cr(z)"1z. Let N be an intermediate extension. Then

y~tzy = cp(z) (e (2) Tty tay) = e (@) (cn(x) "ty ren(@)y) (v Lzy)

https://doi.org/10.1023/A:1000504704324 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000504704324

REDUCIBILITY OF SOME INDUCED REPRESENTATIONS OF CLASSICAR-ADIC GROUPS 285

ander,(z) "ty tep(x)y, y 12y € H; N Py. Together withy 1zy € E*H!, this
implies thater, (z) ~1(y~1zy) € H! N Py. Therefore

y tzy € NH! <= cp(z) € N*(HINP)NEX = N*(1+pg).

The standard representative of an elemewf N*(1 + pg) in E* is just the
standard representativeMof anyv’ € N* suchthab € v’ (1+pg). By uniqueness
of standard representative, it follows that(z) € N*(1 + pg) if and only if
cr(x)eCy C N*. O

By the above lemma, we must determine
sgr{a) & II sgn(N), «a € Cy.
{NES; |ag¢g N>}

This will be done in the next section.

7. The Heisenberg construction: part two — computing signs

Let the notation be as in the previous section. We continue to assume that
¢; +1,andfg(0,) > 1if i = r. In this section we compute sgn) for o € Cy.
In Proposition 7.12, we give a formula for the charagteon -fixed elements in
E*H;.

We begin with a brief summary of definitions and results from [Mo2] which
will be used later. We remark that results in [Mo2] are stated for the casé,
thatis,E; 1 = F. To apply them, we must repladeby E; 1. Recall that

Vi= Hy/H, = Py,(i 1)/ Py, (i) Py 1a(i 1)
~ By, (i 1)/ (By, (i) + By 4ai 1)),

Given a subfieldV of E/E;_1, let R(N) be the residue class field of, let ij
be the set of matrices ii; which commute withV. Note thatE;_; C N implies
thatBY C B;(i ©1). Set

Qu(N) = (BY + By1a(i ©1))/Bysali 1) ~ BY [BY 1.

The set);(N) is anR(NN)-vector space and&; = E*/E ;(1+ pg)-module.
For future reference, we note that

dimp(v) Q:(N) = &(E/N)f(E/N)? = f(E/N)[E: N]. (7.1)
The set;(V) is defined to be th&;-complement if2;(N) of the R(N)U;-module

Qi(M).
(M| NCMCE)}
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Define A(N) = dimgy) (Vi(N))/2. If N C S;, then by [Mo2] (3.6.45)V;(N)
can be identified with a subspace gf The following result [Mo2] (3.6.43) is
useful for computing dimensions

Qi(N) =Vi(N) P &b Vi(M). (7.2)

{M|NCMCE,N#M}

LEMMA 7.3 ([Mo2] Proposition 3.6.55, 3.6.60).et N € S,.
(i) If f(E/N) > 2,thensgnN) = 1.
(i) If f(E/N) = 2, thensgn( V) = (<1)4W),
(i) If f(E/N)=1andf(E/E;_1) is even, thesgnN) = 1.
(iv) If f(E/N)=1andf(E/E;_1) isodd, then
(a) If [E': N]is divisible by two distinct odd primes, or Byand an odd prime,
thensgn'N) = 1.
(b) If [E: N] = ¢ or 2¢" for some odd primé, thensgn V) is the Legendre
symbol(%).
() If [E:N] = 2", thenm > 2and

1 if m>2,
SgNN) = 1 if m=2andgqg,_,=1mod4
&l if m=2 and gg, , = <1 mod4

REMARK. In general, sgfiV) depends on. Therefore, so does s@gn), o € Cf,.

Recall thatE? must be unramified ovdr by Lemma 5.1. Let be the nontrivial
element of G4lE/L). The notationL,, will be used to denote the unramified
extension off’ of degreef (E/F)/2. Choose € (1, such that is not a square
iN Lyy. ThenE = L( /). Letw;, be a uniformizer in.

LEMMA 7.4. LetN € S; be such thajf(E/N) = 1. ThensgnN) = 1.

Proof. If i = 1, thenf(E/E;_1) = f(E/F) is even, so by Lemma 7.3(iii),
sgnN) = 1. Similarly ifi > 1 andf(£/E;_1) is even.

Assume that > 1 andf(E/E;_1) is odd. Thenf(E/(E;_1 N L)) = 2 f(L/
(Ei—1NL)) = f(E/Ei_1) f(E;i—1/(E;—1NL)) implies that;_1 is unramified over
E; 1N L. Thusgg, , = (qu_lmL)2 andgg,_, = 1 mod4. Apply Lemma 7.3(iv)
to complete the proof. O

LEMMA7.5. Assumetha(E/F)isevenand” C N C E.LetL' = Ly, (wr¢).
() If[E:N]= f(E/N)=2ando(N) = N, thenN € {L,L'}.
(i) f o(N) = NandN ¢ L,thenN C L'if and only ife(E/N) is odd andN
is ramified overN N L.

Proof. Let N be as in (i). Ifo | N = 1 then, sincd. = E°, N C L. Because
[E:L] = [E:N] = 2, we must haveV = L. Suppose that | N # 1. Then
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N° = NNnLand[N:N N L] = 2. Because (E/N) = 2, we haveL,,, C N.
ButL,, C L.ThusL,, C NNL.Fromf(E/F) =2f(N/(NNL))f(L/F), it
follows thatV is a ramified quadratic extension dfN L.

Note thatL,,, (? ) is a totally ramified extension df,,, of degree é£/F) /2 =
&(L/Lun)/2. Since(w,\/€)? = w?e is a uniformizer inLy,, (w?), L' = Ly, (wy,
V) is a ramified quadratic extension bf,,(w? ) which is not contained i and
is fixed byo. Note thaf E: L' = f(E/L') = 2.

BecauséeV N L is a totally ramified extension df,,,, of degree éL/L,,,)/2, we
musthaveV N L = Ly, (w?). As there are only two ramified quadratic extensions
of Lun(w%), that is,L andL’, the conditioro | N # 1 forcesN = L'.

(i) Assume thatV ¢ L but N C L'. By Lemma 5.4, sincé/ is ramified over
L'N N, N is ramified ovetN N L and €L'/N) = e(E/N) is odd.

Now assume thaw is ramified ovetN N L and €E£/N) is odd. Observe that
f(E/N) = f(E/(NNL)) =2f(L/(Nn L)) guarantees that(£/N) is even.
Let N’ be an unramified extension &f of degreef (E/N)/2. Fromo(N) = N
and uniqueness of unramified extensions, it follows th@’) = N’. Note that
e(E/N) = e(E/N'). As a consequence ¢{ E/N’) = 2, we havelL,,, C N'NL
and thereforef (E/(N N L')) = 2 = f(E/N'). ThusN’ is a ramified quadratic
extension ofN' N L. BecauseN C N’ and N’ satisfies the hypotheses, there
is no loss of generality in replaciny by N'. Therefore we may assume that
f(E/N) = 2,s0Ly, C Nn L. Note that ¢L/(N N L)) = 2¢E/N). Set
m = e(E/N). Both Ly, (w?™) and N N L are totally ramified extensions of
Ly, of degree €L/L,,)/(2m) contained inL. ThereforeN N L = Ly, (w?™).
The field L, (w}") = (N N L)(w}") is a ramified quadratic extension 8f N L
contained inL.. The other ramified quadratic extensionof L is L, (w}’/c) =
(NN L)(wf'ye). ThuSN = Ly, (w}"\/e). Asm = e(E/N) is odd, we have
(wp /)™ = (@wy/e)e™=D/2, which implies thatw’*\/e € Lyn(wryeE) =
L. ]

PROPOSITION 7.6Assume thalv € S; and f(E/N) = 2.
(i) If [E: N] =2, thensgnN) = <1.
(i) If [E:N]>2ando(N) = N, thensgn(N) = 1.
Proof. By definition, 2;(E) = Vi(E) ~ p% /piit. Sincef(E/N) = 2, we
have ding v (Vi(E)) = 2.
Assume thafE : N] = 2. By (7.1) and (7.2),
dimg(y) (Vi(IV)) = dimpgy) ((N)) <dimgy) (Vi(E)) =4<2=2.

ThusA(N) = 1 and therefore by Lemma 7.3(ii), Sgvl) = <1.
Assume thatV is as in (ii). By Lemma 7.3(ii), we must show that dim;)
(Vi(N)) = 0mod 4. We will prove a slightly more general result

Ei 1CNCE, [E:N]>2, f(E/N)=2, o(N)=N
— dimg(y) (V;(NV)) = 0mod 4 (7.7)
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Even thoughV may not belong t&; (N might containE;), V;(N) is still defined
becauses; 1 C N. By (7.1), dimk(y) (€2:(IV)) = 0mod 4. Therefore, by (7.2), it
suffices to show that

{M|NCMCE,N#M}

Supposethak; 1 C M C Eandfg(E/M) = 1. By Lemma 3.6.58 of [M02],
dimgan (Vi(M)) = ¢(e(E/M)),
where¢ denotes the Euleg-function. If in addition,M D N, thenf(E/N) =2
implies[R(M): R(N)] = 2, so
dimp(y) (Vi(M)) = 2¢(e(E/M)).

If e(E/E;_1) is even, letNy denote the unique extension Bf 1 in E such that
f(E/No) = 1 and ¢E£/Ng) = 2. In this case)N C Ny is equivalent to &2/N)
being even. By the above remarks

M DN, f(E/M)=1, dimgy (V;(M)) =2mod4

= Mec { {E, No}, if e(E;N) is even

{E}, if e(E/N) isodd
If M O N ando(M) # M, theno(M) D o(N) = N. Itis not difficult to see

that dimg ) (Vi(M)) = dimg(ary) (Vi(a(M))). If in addition, f(E/M) = 2,
then dimg(yp) (Vi(M)) is even ([Mo2]). AlsoR(M) ~ R(o(M)) = R(N). Thus

dimpy (Vi(M) @ Vi(o(M))) = 0mod 4
o(M) £ M, f(E/M)=2, M>N.

We may now conclude that what we need to show is

> dimgny (Vi(M))

{M|NCMCE,N#M,f(E/M)=2,0(M)=M}
=2¢(E/N)mod 4 (7.8)

Suppose that(@ /N) = £ is prime. LetM be as in (7.8). If such an/ exists,
then[E: M| = f(E/M) = 2,and as we saw in the proof of (i), dimy (Vi(M)) =
dimg (Vi(M)) = 2.

Suppose/ = 2. Then we may apply Lemma 7.5(i)) to conclude tidt €
{L,L'}.If N ¢ L, thenM # L. However, since @/N) = 2, Lemma 7.5(ii)
implies N ¢ L'. Therefore there are nd/ as in (7.8) when @ /N) = 2 and
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N ¢ L. Hence (7.8) must hold. If(&/N) = 2 andN C L, then it is easy to see
thatN = L,,(w?) C L'. Hence the left side of (7.8) equals

dimg(yy (Vi(L)) + dimgyy (Vi(L')) = 4= 2€&E/N).

Assume that isodd. If N ¢ L, thenf(E/N) = 2 implies thatV is ramified
overLNN.Thus€E/F)is evenand Lemma 7.5 applies. By Lemma N5 L'
and hencéd/ = L'. The left side of (7.8) equals 2, and 2 2 & E/N) = 2 mod 4,
so (7.8) (hence (7.7)) holds. ¥ C L, and €E/F)) is even, then Lemma 7.5(i)
applies, and € {L, L'}. However ¢E/N) odd andN C L imply thatN ¢ L'.
ThusM = L, and (7.8) holds. Finally, if @/ F') is odd, therl is the onlyo-stable
subfield of E of which F is a quadratic unramified extension. Thus= L, and
again (7.8) holds.

We have shown that (7.7) holds for &l O E;_; such that é£/N) is prime,
f(E/N)=2,ando(N) = N.

Now by induction, we assume th@.7) holds for allM as in (7.8) such that
1 < e(E/M) < e(E/N). Then the left side of (7.8) is congruent modulo 4 to
twice the quantity

#{M|NCMCE, f(E/M)=[E:M]=2, o(M)=M?},

where # denotes cardinality. To complete the proof, it suffices to show that this
cardinality has the same parity ag@' N ).

If e(E/F) is odd, then, as we saw in the cag&¢N ) prime, N C L and the
only M as above id..

Ife(E/F)isevenand@/N) is odd, thenitis easy to check thiitbelongs to
precisely one of. andL’. Similarly, if e E/F) is even and @ /N) is even, then
by Lemma 7.5(ii),V belongs taL if and only if N belongs taL’. O

LEMMA 7.9.

(i) If Eqis unramified ove1 N L, thene(E1/F) must be odd
(i) If E; is unramified ovef; N L for somej < r <1, thenf(£/E;) is odd and
E}, is unramified ovel, N Lforj < h < r.
Proof. (i) Let ¢} = cg,(c1) € Cg, be the standard representative:pfChoose
e € (gnz WhichisnotasquareiB1NL. ThenEy = (E1NL)(ve)ando | E1 # 1
imply o(v/e) = <»/e. Becauser(c1) = <c1, and standard representatives are
unique, it follows thatr(¢}) = <¢}. Choose a uniformizevg, in E1 which is also
a uniformizer inE1 N L. Then we have

/I m
Cl - wEln\/g?

for somen € (r,nr, and some integemn.
fEl(Hl)fl

Sincec] € c1(1+ pp,), it follows thatc represent$; on 1+ py, and
hence genericity of; implies thate} generated’; over F.
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Suppose that(&,/F') is even. Therf, ,r(61) <1 = <m must be prime to
e(E1/F) (otherwiser] wouldn’t generate’; overF’), som must be odd. Because
E1 is unramified oveF1 N L, we can apply Lemma 7.5 with, L andw;, replaced
by E1, E1N L, andwg,, respectively. Lef.; be the unramified extension &f of
degreef (£1/F)/2. Then as we saw in the proof of Lemma 7.5(li)(w \/¢) is
a subfield of the proper subfielth (w g, /) of Eq. But this is impossible because
E = F(C&) = F(wglx/gn) andn € CElﬂL = CLl |mpI|eS thatt); = Ll(wg}l\/g).

(i) From f(E/E;) = f(E/(E; N L))/2 = f(L/(E; N L)), it follows that if
f(E/E;)were even, then there would be a quadratic unramified extensioyraf
contained inL. By uniqueness of unramified extensions, this is impossiblg;as
is a quadratic unramified extension Bf N L which is not contained id.. Thus
f(E/E;)isodd. Supposethat< h < r. Thenf(E/(E,NL)) = 2f(L/(E,NL))
andf(E/E) odd forcesf(E,/(E, N L)) = 2. O

We are now ready to compute g for a € Cp.. If o(N) # N, then fromo () =
a, it follows thata ¢ N if and only ifa ¢ o(N). As sgri{N) = sgn(c(N)),

sgr(a) = II sgn(N).

{NeSi|agN,o(N)=N}

PROPOSITION 7.10Leta € Cy. If & E/F) is even, definé’ as in Lemm& .5.
() If e(E/F) is odd, thersgna) = 1.
(i) If e(E/F)isevenand. ¢ S;, thensgn«) = 1.
(iii) If e(E/F)is evenand./ € S;, thensgna) = (<1)(®),
Proof. By Lemma 7.4 and Proposition 7.6,

Sgr(Oé) — (@1)#{]\/651' ‘f(E/N):[EZN]:Z,(T(N):N,QQN}‘

If e(E/F) is odd, then the only field such thg{E£/N) = 2 = [E:N] and
o(N)=NisN = L. Sincea € N, sgra) = 1.

If e(E/F) is even, then by Lemma 7.5(i), there are two possibilities/Nor
namelyL andL’'. Note thate € L' if and only if v(«) is even. Sincex € L, (ii)
and (i) now follow. O

COROLLARY 7.11.

(i) Suppose that one of the following holds
(a) E/F)is even; = 1, and E1 is unramified ovelr; N L,
(b) i = 1, E is ramified overEy, N L, ande(E/ E1) is even
()i > 1, E/E;_1) is odd, E;_1 is ramified overE;_1 N L, and E; is
unramified ovei; N L.
Thenm; = ¢; + Landsgn(a) = (&1)", a € Cf.
(i) If none of the three conditior{a)—(c)holds, butn; = ¢; 4+ 1, thensgna) = 1
Ya € Cf,.
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Proof. If (a) holds, then by Lemma 7.9(i){£1/F) must be odd. Henceg &/
Es) is even. If (b) holds, then(&// E1) is even by assumption. Thus if (a) or (b)
holds, we have

fe(010 Ng/g,) = e(E/E1)(fE,(61) ©1) +1

isodd. Thatismg = ¢1 + 1.
If (c) holds, then it suffices to show th#;, (6;) is odd, because that implies

fe(0ic Ng/;) = &(B/E)(f,(6;) 1) +1

is odd.

The argument is similar to that in the proof of Lemma 7.9(i). Let,, be the
maximal unramified extension &f; 1N L contained in&; N L. Choose € ¢y, ,,,
such that is nota square ix; N L. ThenE; = (E; N L)(y/¢) ando(y/e) = <v/e.
Let w; be a prime element id; N L. Let ¢, = c¢g,(c;) € Cg, be the standard
representative of;. Theno(c;) = <, andE;_1(c}) = E;. Write ¢, = wl\/en,
whereh = <fg,(0;) + L andy € (g;nr = (L, ., LEUL] = Li yn(w@iv/e).

Assume that is odd. Then(w;/€)" = (wl\/)e!"~Y/2 andy € L; ., imply
that wi\/e € L. Also,n € L;u, C L. Thereforec, € L. We can apply
Lemma 7.5 withE, L, F', L,,, andL’ replaced byE;, E; N L, E;_1 N L, L; yy,
and L}, respectively. By Lemma 7.5(i), sinc¢fg/(E;,_1 N L)) = 2&E/E;), it
follows thatf(E;/L}) = [E; : L] = 2. Also, sinceE;_1 is ramified ovetE;_1 N L
and €E;/E;_1) is odd,E;_1 C L'. ThusE; = E;_1(c;) C L. Contradiction.
Thereforeh = <fg,(0;) + 1 must be even if (c) holds.

For the remainder of the proof, we may supposerthyat /; + 1. As we already
know that sg() equals 1 if £/ F) is odd (Proposition 7.10(i)), we assume that
e(E/F) is even.

If i =1,thenE;,_1 = F C L'. ThereforeL’ € §; ifand only if E1 ¢ L'. By
Lemma 7.5(ii),E1 ¢ L' if and only if E; is unramified oveZ, N L, or  E/E;)
is even andF; is ramified overE1 N L. ThusL' € Sj if and only if one of (a) and
(b) holds.

Suppose that > 1. By Lemma 7.5(ii),L' € S; if and only if E;_1 is ram-
ified overE; 1N L, & E/E;_1) is odd, andE; is unramified ovetE; N L. By
Proposition 7.10(ii) and (iii), sgia) = (<1)¥(@) if and only if (c) holds. O

PROPOSITION 7.12Assume thatw; = ¢; + 1, and f(6,,) > 1if i = r. Suppose
thatz € (£ H;)?. There exists a positive integés such that
(i) If i = 1lande(E/E1) iseven, orifi > 1,e(E/E;_41) is odd, andf (E;/(E; N
L)) =e(Ei—1/(E;—1N L)) = 2, then

g5, (€)@ 6;(Npgy s, (1)),
xi(z) = if 2 is conjugate to an element & H,
0, otherwise
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(ii) In all other cases

Q%f-,l 0i(Ng /e, (1(2))),
xi(z) = if 2 is conjugate to an element & H_,
0, otherwise

Proof. By Lemma 6.1, ifz is not conjugate to an element & H/, then
xi(z) = 0.

Otherwise, choosg € E*H; such thaty lzy € E*H!. Next, setd, =
2 (N |y-tayeN¥ H!} D(N). By Lemmas 6.1, 6.4 and 6.5 and the definition of
sgn(cr(z)), we have

Xi(®) = g sgn(ce(@)) 0:(Ng; g, (u(x))).

Suppose that = 1. By Lemma 7.9(i), ifE1 is unramified ovelz; N L, then
e(E1/F) is even. Thusin this case( 8/ F) is even if and only if é£/ E;) is even.
From this it follows that, ifi = 1, then one of (a) and (b) of Corollary 7.11(i) holds
if and only if £/ E1) is even.

Therefore the conditions of (i) are precisely the conditions (a)—(c) of Corol-
lary 7.11(i), and the proposition is a consequence of Corollary 7.1 and=
v(cep(x)). O

There is a simple way to determine exactly when the type of behaviour in Propo-
sition 7.12(i) can occur for some.

LEMMA 7.13. Suppose tha¥ is unramified overL. If E,. ; is ramified over
E. 1N L,assumethafp(6,) > 1.

(i) If [E: Eq] is even, then there exists exactly an& < 7 < r, such that one of
the conditions of Propositiod.12(i) holds. Furthermore, for thig, m; must
equall; + 1.

(i) If [E: E4] is odd, then neither of the conditions of Propositibf2(i) hold for
anys, 1< <.

Proof. Suppose that(é/E,) is even. By Lemma 7.9(ii), iZ1 is unramified
overEj1NL, thenEy, is unramified oveF, N L for2 < h < r. By Corollary 7.11(i),
m1 = {1 + 1. Then (i) follows by Proposition 7.12(j).

Assume that €/ FE1) is even andE; is ramified overE; N L. By Corol-
lary 7.11(i), m1 = ¢1 + 1. By Lemmas 5.4 and 7.9(ii), there exists a unique
J,» 2 < j < r,such thatf; is unramified overZ; N L and E;_1 is ramified over
E;_1N L. Furthermore, by Lemma5.4,B;_1/E1) is odd. This forces@ /E;_1)
to be even. Thus the conditions of Proposition 7.12(i) apply only ferl.

Assume that €/ E1) is odd. Then the conditions of Proposition 7.12(i) do
not apply fori = 1. If f(E/E1) is even, then by Lemma 7.9(ii}); cannot be
unramified overE1 N L. Thus there exists a uniqye 2 < j < r, as above. By
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assumption, @/ F;_1) is odd and therefore the conditions of Proposition 7.12(i)
apply fori = j. By Corollary 7.11(i);m; = ¢; + 1.

Assume thaiE : E1] is odd. Then the conditions of Proposition 7.12(i) cannot
apply fori = 1. Fromf (E/E1) f(E1/(E1NL)) = 2 f(L/(E1NL)) and; (E/Ex)
odd, it follows thatE; must be unramified ovet; N L. By Lemma 7.9(ii),E; is
unramified over®; N L for 1 < 7 < r. Thus the conditions of Proposition 7.12(i)
cannot apply foi > 1. O

8. Deligne—Lusztig characters

Digne and Michel ([DM]) have developed a Deligne—Lusztig theory for complex
characters of non-connected reductive groups over finite fields. Below we state a
particular case of a character formula of theirs which will be applied in the case
fe(6;) = 1in Sections 9 and 10.

Fix an integerd > 2. Forg a positive integral power of the odd prime let
G° = GL4(F,), whereF, is the finite field of ordeq. Suppose is an automorphism
of G° of order two. Selg = G° x (n). Given ann-stable maximal toru§™ in
G°, T = T° % (n) is a maximal torus ing (cf. Definition 1.2, [DM]). Fix an
n-stable charactet of 7° and an extensiofito 7 (note:0(n) = +1). Let R%(0)
denote the corresponding Deligne—Lusztig (virtual) charac@uoefined by Digne
and Michel (Definition 2.2, [DM]).

The following notation is needed for the character formulaﬂgr(é). If 77 is
the group off, -rational points of a maximal torus of a connected reductive group
overF, with F,-rational pointsg’, let 7' andG’® be theF,-rational points of
their identity components. Denote the Green function attachgd°tandg’® by
Q%: Ugo — C, whereldy, is the unipotent subset ¢f°. Given a semisimple
elements € G’, let G'* be the centralizer of in G’. Forz € G', *T' denotes
zT'z~L. If x is a character off”’, let ?x be the character of7’ defined by
2x(s) = x(z " tsz), for s € *T".

PROPOSITION 8.1 ([DM], Proposition 2.6(i)l.etg € G have Jordan decompo-
sitiong = su. Then

REO) (o) = [TITHG) 1™ > Qe (w)0(s).
{zeg|se=T}

REMARK. It follows immediately from a comparison of the Deligne—Lusztig
character formula for connected groups ([DL], Theorem 4.2) and the restriction of
the above formula tg° that

R%(é)\go — RY.(0),

Wherel’%%f> (9) is the Deligne—Lusztig (virtual) character f corresponding to
the restriction of) to 7°.
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9. The casd(f;) =1: partone

In this section and the next, we consider the cAs@,) = 1. After stating the
definition of x,, we discuss properties of the map inducedygopn P(r < 1)/
Py(r &1). Then we prove some results concerning certain types of elements in
general linear groups over finite fields. At the end of the section, these results are
applied to compute the signs of certain sums of values of the chasgobé-, .

Let E andE,_; denote the residue class fieldsfdhndE,_1. By the definition
of H andP

(H N P)/(H N Pl) = P(’I“ <=>1)/P1(’I“ <=>1) = GL[E:ET,l}(ET—l)-

Let H = Glg.p, ,(E, 1). Sincefp(6,) = 1, the characteé, determines a

characted, of the elliptic maximal torusz ™. The charactefl, corresponds (via
Deligne—Lusztig induction) to an irreducible cuspidal representatjaf H. The
restriction ofx, to H N P is the unique representation &f N P which is trivial
on H N P, and inducess, on H. To definex, on all of H, setk,(w,_1) =
0, (wr—1)kr (1), wherew,_1 is a prime element i, _1.

Our definition of the matrix (see Section 3) depended on a choice of basis of
L overF. Whenfg(60,) = 1, itis convenient to choose a basis that makes it easy
to determine the map induced byon P(r <1)/Pi(r <1).

Supposer;, C F, C F3is a tower of fields, and lek = {a;} be a basis of
F> overFy and = {b;} a basis off3 over F>. Write o* = {a;}, 8" = {b}
for the corresponding dual bases. Th&n = {bia1, b1ay, ... ;boa1, boay, ...} is
a basis forF3 over Fi, and the corresponding dual basis is easily seen to be
(Ba)* = {bjaj,bia3,...;bsa3,bsas,. . . }. Lets, be the transition matrix from the
basisa to the dual basia*, and similarly forsz andsg,,.

LEMMA 9.1. (i) The entries of,, are given bY(sq)ij = trp,/m (a;a;). In particu-
lar, s, is @ symmetric matrix
(i) The transition matrices defined above are related as follows

Sa 0

S$Ba = . S8,
0 Sa
where there ar¢F3: F>] diagonal blocks in the matrix on the left ard is inter-
preted as a matrix oveF' using the basis:.
Proof. (i) (sa)ij = (sa(ai), (a])") = (salai), a;) = tre,r (aia;).
(i) Using (i), we see that théij), (k¢)-entry of the transition matrix g, is
given by
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trFs/Fl(biajbkag)

=g, m (ajaetl py) 1, (Dibk)) = Wy 1y (ajae(sp)ik)

=1p/m (aj Z(Sdr@(%)ik) = (sa)erl(sp)ikls;-
(s s
(Here we wrotég(s):x];; for ther;jth entry of the matrix with respect to the basis
« of the elemen(ss);, € F> and also used the symmetry €f).
This last formula is precisely the required entry in the matrix product. O

Recall thatfg(6,) = 1 implies thatE is unramified overL (Lemma 5.1) and
overE, 1. Fixe € (g, such that is not a square il.. As before,c denotes the
non-trivial element of G&l//L). Let wg be a prime element ids,_1 N L. Let
fo= f(Erfl/(Erfl N L))’ €0 = G(Er,]_/(Er,]_ N L))

If eg =1, setwg = wy, = wo. If eg = 2, thenwg = /@0 is a prime element
in £ which generate#, ; over E, 1 N L and such that (wg) = <wg. The
elementw; = \/ewo = ewg is a prime element id.. Note that in the above
definition ofx, we can takeo, 1 = wg.

Letdp = f(L/(E,—1 N L)). Let M C L be the unramified extension of
E, 1N L of degready. We will use bars to denote residue class fields. Choose a
basis¢ = {£1,...,&q,} of M overE, 1N L such that; € O, and the images
of &1,...&4, In M form a basis ofM overE,_1NL. If L = M, setpg = .
Otherwiseeq = €(E,_1/(E,—1N L)) = eL/(E,_1N L)) = [L: M] = 2, and
ﬁg{gl, oy wre, ... wra,}t is a basis ofL overE,_q N L. If r > 1, let
a={a1,...,a;} beabasisoE,_1N L overF.

Applying Lemma 9.1 in the case where> 1, with F5 = L, F» = E._1 N L,

F; = F, and bases as defined above, we find that the corresponding transition
matrices are related as follows

Sa 0
§=88a = . S8,
0 Sa
where there ard = [E : E,_,] diagonal blocks in the matrix on the left angl is
interpreted as a matrix ovét using the basia. If r = 1, thenE,_1 N L = F and
we lets = sg.
Becauses,, has been chosen so thgilizs, = =z, wherez is an element

of F._1 N L viewed as a matrix oveF' via the basisy, it follows that if X €
gld(Er—l N L), then

s X g = sElTXSg,
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where”X refers to the transpose ovBf_; N L. Whenr = 1, the two transposes
X and’X are the same, and= s;.

Whenr > 1, we compare this situation with that of Lemma 3.4(ii), wNhin
that lemma replaced b, 1 and N replaced by, _1 N L. The above expression
says that the matri§ given in Lemma 3.4 can be taken to be

Continuing the comparison, we see thain Lemma 3.4 corresponds tge
while 7 corresponds tQ/@y if g = 2 and to,/e otherwise. Sinces;, = /@oe,
we see thai in the proof of Lemma 3.4(ii) correspondsdey, e~ if eg = 2 and
to 1 otherwise. Recall thgy = f(E,_1/(E,—1 N L)).

LEMMA 9.2. (i) If fo = 1, then the map induced kyonGL4(E,_1) is p(z) =
w~t lrw, with w a skew-symmetric matrix

(i) If fo = 2, then the map induced yonGLy(E, 1) is p(z) = h™t o (x)h,
with 4 a matrix that is hermitian relative t&, 1/(E, 1N L).

Proof. (i) The case where = 1 is immediate from the original definition gf
Now suppose > 1 andeg = 2. If we write [¢] for the matrix ofe with respect to
the basig, then the matrix of with respect to the given basis bfoverE, 1N L
is ([g] [g]) , while the matrix ofw;, is (? [5]530), (here | means théy x do identity
matrix).

Accordingly, the matrix otwgl is (wgll [g]) . Using the lemma above and also
the analogous result obtained by applying Lemma 9.1 With "L C M C L
asF, C F, C F3, we find that, in the notation of Lemma 3.4

se O
So = Swl= 555w£1 = ( 05 5§> 3{1@L}5w£1

_[se 0\ (21 0O 0 [
_<0 5§><0 2[w§]>(woll 0)
(s O 0 2

N <o s§> (2[5] 0 )

Without loss of generality, we can remove the constant 2 and let

[ 0 sele]
So_<3§[€] 0 )

So for X € gly(Er_1), o(X) = Syt 7o(X)So, where ’(-) means the transpose
overE, 1 ando = o, 3 is the non-trivial conjugation of,. 1 overE, 1N L,
applied to the entries of a matrix. Note tif&gtis symmetric.

To realizeM, 1 in a form in which it will be easy to reduce modulo the prime
idealpg . _,, we consider conjugating elementsif. 1 by the diagonal matrix

r—17

w 0
D= ( OE I) € glog(Er-1);
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here | is thaip x dp identity matrix. Note that

_ - cwyt 0 0 s¢fe]y (O swplsele]
7(D"%)S0 = < oE |> (sds] 0 )‘ <s§[s] Eo )

If X e gld(Er,]_), then

o(D*XD) = S5 To(D X D)Sy = Sy to(D) To(X)o(D 1)So

o [(L8) ) e (L8 )]

This shows that conjugation bl takesy into the map given by composing
the transpose ovel,_;, the automorphisne = o,_1, and conjugation by the

skew-symmetric matri><sjg} ’55[5}). Because of the way we chose the basis
¢, we find that not only does; have integer entries, but it is an element of

GL4y(Op,_,n1) C Glgy(Op, ). So(sﬁg} ’55[‘?]) is an element of GL(Op )
(sinced = 2dp). We can also think of its reduction modulogl,(pg,_,) as
a skew-symmetric element of the finite group &E,_1). Sinceo is trivial on
Og,_,/pE,_,, this finishes the proof of (j).

(ii) Supposefy = 2; theneg = 1, M = L andfB = £. As remarked above,
S=s3w=1,5s0

So=Sw = 58 = s¢.

Note thatSo € glg,(£,—1N L) is symmetric, and as abowg, € GL4,(Og,_,n1) C
GL4,(OF,_,). In particular,Sy is fixed byo, 1. So its reduction modulpg, _, is
a symmetric matrix that is fixed by, 1, and in particular it is hermitian. O

SetG°® = GL4(F,), whereq = ¢, _, is the cardinality ofF, ;. ThenT° = E*

is a maximal torus irG°. Recall that, is the irreducible cuspidal representation
of G° = H corresponding via Deligne—Lusztig induction@a The notationy,,
which has already been used for the character. pvill also be used to denote the
character ofz,.. Then in the notation of Section 8, using Theorems 4.2 and 7.1 of
[DL] to obtain the sign

xr(z) = (e1) 1R (0,) (), =€ G°. (9.3)
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Let  be the automorphism @f° = H given byn(z) = p(x~1). Comparing
character formulas ([DL]) results in

R (6,)(n(2)) = R%e(0, o m)(z), = €G°.

Also, by properties of, (Lemma 2.5(ii)),0, is fixed byn. Thusy, = x, o7,
that is,® is equivalent tas, o n. Choosing an operatot,, which intertwiness,
with %, o n and whose square is the identity, we ext@hdo a representation of
G = G° x (n) by settingr, (n) = A,. B B

Since the maximal torug™ is n-stable and, is fixex by n, 6, extends (in
two ways) to a character (also denotd of the (non-abelian) maximal torus
T =T°x(n) of G. Let R-C%(ér) be the Deligne—-Lusztig virtual character @f
defined by Digne and Michel ([DM], Definition 2.2). From the character formula of
Digne and Michel (Proposition 8.1), remarks following, and (9(.&)1)’1—11%3(@)
is a virtual character af which coincides withy, onG°. Thus, replacing..(n) by
0, (n) if necessary, we may assume tlﬁaﬂ)d—le(@) is the character of the
extension of, to G given byw,. (1) = A,,.

LetCs, respCy, be the set of elements il whose semisimple part is conjugate

to an element oE ™, resp.L ™. The images of and+/z in L andE will also be
denoted by and,/e. Similarly, o will be used to denote the non-trivial element of
GalE/L).

LEMMA 9.4. Letg € H”. Then the semisimple pait of g belongs toH”. If
v € Cx then{z Yyz:z € HYNE™ c L. In particular, g € Cr.

Proof. If ¢ = ~u is the multiplicative Jordan decomposition @ftheng =
v+7v(u<l) is the additive Jordan decomposition, isg 4 <1) is nilpotent, because
v andu commute. The additive Jordan decompositiop@f) is p(y+vy(u<l)) =
v + v(u <1), so equating semisimple partsc H" .

First we assume thgy = 1. By Lemma 9.2(i), there exists a skew-symmetric
w € H such thatp(g) = wY¥gw,g € H. Choosex € H such thaty; =
t vz e B Lety = o(x)z. If § € E,_1(m1), thenzéz~ € E, 1(v) implies
thatp(zdz~1) = z6z~L. Thatis,p(8) = yéy~L. The action ofp onE” is given
by o, so

yﬁyfl =0(d), &€ E, 1(n). (9.5)

Assume thaty, ¢ L. Thenvy; <o (y1) = ave € E,_1(71) for somea € L~.
Note thatp(y) = ¢(p(z)) = y. Thereforeyw 1! is skew-symmetric. By (9.5)
with § = a/z, yay/e € H”, and hencga/cw ! is also skew-symmetric. As
the determinant of a skew-symmetric matrix & is a square ink, 4, it fol-
lows that detay/z) € (E,_1)? Observe that détye) = Ny (ea%) =
(S)2Ng 5 (a)°Npj; _ (c). Ase ¢ (L”)?, we haveN /B,_,(6) & (E )2
Therefore(<1)%2 ¢ (E,_;). In particulard/2 is odd.
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As d/2 is odd, there exists € E,_; such thath,/c generates a quadratic
extension ofF,_; (which is not contained if). It follows from (9.5) that

yw (Ve )wy = by/e. (9.6)
There exists a matrix € GL4(E,_1(by/€)) such that

bVel)q 2 0
0 hvelyn )’

where 1/, denotes the(d/2) x (d/2) identity matrix. Sincewy ™! is skew-
symmetric, the matrixA = zwy~Yz € GLy(E, 1(by/2)) is skew-symmetric.
However, it is a consequence of (9.6), and the definitionsarfd.A that A com-
mutes with the (symmetric) matrixb,/ez~1. That isA € GLy2(Er-1(bve)) X
GLy/2(Er—1(by/)). This is a contradiction, ag/2 odd implies such matrices
cannot be skew-symmetric. Thys€ L.

Now assume thafy = 2. In this caseE, 1 = (E,_1 N L)(y/¢),ando | E,_1
generates the corresponding Galois group. Suppose thal andy; = 2z~ 1yz €
E. By Lemma 3.4(ii)

det(y1) = def(y) = def(p(y)) = det(o(v)) = o(dety)),
whichimplies thatddty) = N5z, (11) € E, 1NL.Ify € L, thenE = L(71)

=X

implies thatNg 7z _ (E™) C E,_1N L, which is impossible. Thug; € L. O

bzt = (

LEMMA 9.7. Supposeo = 2. Recall thaty = |E,_;|. Then

(i) (g")° isthed x d symplectic groufsp,(F, ).

(i) (GV=")° is thed x d special orthogonal group of,-rank equal to(d/2) < 1.

(i) If g € H ¥ N (C5\Cx), theng = z\/ep(x), for somer € H.

(iv) If g € H 7 is not of the formg = z/p(z), for somex € H, then the
G-conjugacy class ajn does not intersect .

Proof. Sincefo = 1, part (i) follows from Lemma 9.2(i).

For (i), note thaty € (GV#")° if and only if g(v/ew 1)tg = \/ew™ 1, where
w is the skew-symmetric matrix given by Lemma 9.2(i). Observe hat H ¥
implies that,/ew—! is symmetric. Fix a non-squarec F; . By [C], a symmetric
matrix determines the special orthogonal groufFpfank (d/2) <1 if and only
if its determinant belongs to=1)%/2 (F) ). It is simple matter to check that the
fact thate is a non-square ih”* implies that dety/z) € («1)%/2y(F )2. Sincew
is skew-symmetric, dét) € (F)%.

By Lemma 9.4,¢° € Ct. Therefore, agy € C3\Cy, the semisimple part
of ¢ is conjugate to an element qfe(Z™)2. This implies that déyw=!) €
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det(\/ew™")(F)2 Note that by Lemma 9.2(i)y € H * implies thatgw™! is
symmetric. Thereforggw—! and./w ! belong to the same equivalence class of
symmetric matrices. Part (iii) now follows from Lemma 9.2(i).

SinceT is n-stable, thej-conjugacy class ofn intersects7 if and only if
the H-conjugacy class ofn intersects7. Suppose thatgnz—t € T, for some
z € H. Thenzgnz~n=t = zgp(z) € T° = E*. Butzgp(z) € H ¥, so
zgp(z) € L™ . Since detryp(z)) = defz)? € (Fy)?, it follows that detg) €
dety/z) (F))2. Arguing as above, this implies that= z/cp(z), for somer € H,
a contradiction. O

LEMMA 9.8. Letg € H. Then
> xelzge(@)) = [Hlxr (gm)xr (n)x(1)~5
z€H

Proof. Note that forz,g € H,zgp(z) = zgnz~'n~l. The operator
Zmeﬁﬁr(:ﬁgnx_l) commutes withs,., so by Schur’'s Lemma is a scalar multi-

ple X of the identity operator. Evaluating the trace gives: |H|x,(gn)x-(1) ™.
Thus

> xr(zgp(z)) = tface(z Er(xgnxlnl)>

meﬁ meﬁ

= trace( > Er(xgnxl)ﬁr(nl)>

r€H
= trace|H|x,(g9n)x-(1) Fp(nh))

= [Hlxr(97)x (1) I (7). O
PROPOSITION 9.9.

(i) X,c xr(9) > 0.
(i) Suppose thatp = 2. Then

(v Y <0 and Y x(9)=0.

I TP
g€H *n(Cz\Cp) geH *ney

Proof. Takeg € H”. If fo = 1, by Lemma 9.2(j) there exists a skew-symmetric
w € H such thay = ¢(g9) = wtgw. Thusgw ! is skew-symmetric. It follows
that there exists € H suchthayw ! = zw 1!z, Thatisg = zp(x). If fo =2, a
similar argument shows that= z¢(z) for somexr € H, using hermitian matrices
rather than skew-symmetric matrices (see Lemma 9.2(ii)), and the fact that there is
one equivalence class of hermitian matricegfif[C]). The sum in (i) is equal to
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|H"| > zctr Xr(@p(2)), which by Lemma 9.8 is a positive multiple of (n)%. By
the remarks preceding Lemma 9.4, and Proposition 8.1

xr(n) = (&1) dilR%’(ér) (n)

TIYE 2 Y Qe (W e )
{z€H|zp(z)eT°}

21T HH" > Q@ | ). (9.10)
{zeHlzp(z)eT°}

Here we have used the fact that force H,n €T if and only if n € *?T if and
only if zp(z) € T°. For suchz, %, (n) = 0,(z~*p(x~1)n), which equalg,.(n)
since(7°)¢ = L™ andd, | = 1. The tori appearing in (9.10) are elliptic in
the semisimple groupG"”)°, hence havé&,-rank zero. Therefore all of the above
Green functions take real values at the identity with sign determined [#; trank
of (G")° (Theorem 7.1 of [DL]). This, together with,(n) = +1, implies that
xr(n)? > 0. Hence (i).

Supposeg = 2andg € H . Arguing as in the proof of Lemma 9.7 iy~
is symmetric, wherev is the skew-symmetric matrix given in Lemma 9.2(i). By
Lemma 9.7(iii), ifg € Cz\Cz, theng = z\/ep(z), for somez € H. So, using
Lemma 9.8

ér(\/g) Z xr(9)

TP
geH *n(Cx\C)

=0,(ve) [ (GVN°I 1Y xi(avEw(2))

z€H

= 0r(v/2) | (GVN°| M H X7 (VEn) xr (m)xr (1) (9.11)

By Lemma 9.7(i), theF,-rank of (G")° is d/2. The tori ((*7)7)° are elliptic

and haveF,-rank zero. Therefore, by Theorem 7.1 of [DL], the sign of the
value at the identity of each Green function occurring in (9.10)«si)?/2.

So (<1)%26,(n)x,(n) > 0. Applying Proposition 8.1 to expresg.(v/en) in
terms of ,(v/en) and Green functions for elliptic tori ifGv")°, and then
using Lemma 9.7(ii) to determine the signs of the Green functions, we obtain

(«2)(#2-10, (\/en)x: (v/en) > 0. We cannow conclude thi(v/z) x, (vEn) xy (1)
is a positive multiple of

0, (VE) (1) Y2710, (Ven) (s1) V20, (n) = «1.

The first part of (ii) now follows from (9.11).
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It remains to deal with the cagé “ N Cy # 0. Fix a symmetric matriy which
is not in the same equivalence clasgas 1. By Lemma 9.7(iii), iff € H “NCr,
theng = zyp(x), for somer € H. Applying Lemma 9.8

> xe(9) = 1GY° T HH [xe (yn)xr (m)xr (1)
geH ner

By Lemma 9.7(iv), theG-conjugacy class ofjn does not intersecf. Since
y € H 7, (yn)? = yp(y~1) = <1, which implies thatyy is semisimple. By
Proposition 8.1y, (yn) = 0. O

10. The casdg(0;) = 1: part two

In this section, we consider the cagg(d,) = Land dimk; = 1forl<i < r<l.
We show that certain conditions @himply thatZ(F) > 0 (Theorem 10.7). In
order to determin€(F) in this case, it suffices to consider the values¢pfon
(wi(HNP))%,j=0,1(Lemma10.1). Becausedin=1forl<i < r<l,x;
is easily expressed in terms@f(Lemma 10.2). Lemma 10.3 and Proposition 10.5
combine results from Section 9 describing the mapHrinduced byy with
Lemma 10.2 to obtain relations betweB{) and sums ok, over certain subsets
of H. The signs of these sums were determined in Proposition 9.9, as a consequence
of the expression of, in terms of Green functions of finite reductive groups, and
of the results of Section 8.

If C C G, let1¢ be the characteristic function ¢f. SetFy = x.1ynp and
F1 = Xelgy(unp)- Recall thateg = e(E,_1/(E,—1 N L)) and fo = f(E,_1/
(Er,—1NL)).

LEMMA 10.1. Suppose thafx(0,) = 1anddimk; = 1for1 < i < r <1 Then
I(F) = &Z(Fo) + Z(F1)).

Proof. Letz € H N P. Recall thatp(wg) = o(wg) = (&l)felo Dy, It
follows that

, : , P 0
wpre(wl) = who(w))(wy zwl,) € wi (H N P).

Thus the mag: — wjé:mp(wi?) is @ measure-preserving bijection fr¢ N P)¥

to (w? (H N P))¥. Also

xr(@gae(@))) = Or(@no(@n)) X (@5 o)),
Sincewp € E, 1, conjugation bywg has no effect on Glg.g, _,)(E; 1), So the
image ofw ' zw}, in H is the same as the image ofin H. By Lemma 2.5(ii),
0,(0c(wg)) = 0, (wg) L. We conclude that

xr(@hap(wh)) = x-(z), ze€ HNP.
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vp(wh)) = ri(who(ws) z)

= 0;(Ng/p,(wpo(wp)’))ki(z) = xi(),
the last equality following fronl; o Ny, 0 0 = (65 0 Ngyp,) ~*

Consequentlw-“(w%zgo(wE)j) = F(z) forz € H N P and, given the above
remarks regarding measures,

For 1< i < r <1, sincek; is one dimensional,
J
W

xi(@

Z(xxl ZJ(HQP)) I(Fo), 0<j<eel
By a similar argument

T(xxl 2]+1(H0P)) Z(F1), 0<j<esl

The lemma now follows fronfF = x,1g andlg = Z 11 wl (HAP)" with S as
in Section 4. O

Let Sy, resp.Sg_r, be the setof € H N P whose image iftH N P)/(H N P)
belongs td’7, respC3; \ C1. Recall that, if dims; = 1, 1 <4 < r 1, thenm; = ¢;
andk; = w;, WherewZ is the character aoff defined in Sectlon 5.

LEMMA 10.2. Suppose thafz(0,) = 1. Fix 1 < 7 < r <1 and assume that
(i) f z € (HNP)? NSy, theny;(z) = 1.
(i) If z € (wp(H N P))? is such thatw;'z € S, thenx;(z) = 0;(Ng/g,

(wE)).
(ii)) If z € (we(H N P))? is such thatwy 'z € Sp_r, theny;(z) = 0;(Ng/g,

(Vewn))-

Proof. As remarked above, diry = 1 implies thaty;(z) = w;(x) for z € H.
Letz € (HNP)¥ U (wg(H N P))¥. As shown in the proof of Lemma 5.2, there

existsy € (w’!E(x)Ki)‘P such thatr € yL; andw;(z) = w;(y). Therefore we may
assume that € (=" K;)%.

Suppose thatr ")z € S;. Let A € O} be such that the semisimple part of
the image ofwg”(x)x in H is conjugate to the image @¥y,,()) in Z”. Then
det(w,”z) € det(Ng L (N) det(Pr(i)). Setg = w "™ N, (A"1)z. Recall
thatp(wg) = (<1)fol0-Ywy. Thus, since(z) = z,

o(g) = (1) VN (A7) g Ny (V@
which implies that

o(det(g)) = det p(g) = (&1)folco VL1l det(g) = det(g).
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That is, def(g) € E; N L. Together with dgtg) € det(Pi(i)) € 1+ pg, and
0;| (L + pg,nz) = 1, this implies that;(det(g)) = 1. Therefore, using; o
Ng/(g,nr) = 1 (Lemma 2.5(ii)),

0;(det(z)) = 0;(det (™ Np,(N)))

= 0:(Niy, (@i )Ny pinny (V) = 0: (N, (@i ™).

By definition ofw;, sincex € EXK;, w;(z) = 0;(det(x)). Parts (i) and (ii) now
follow.

Let z be as in (ii). The@, the image ofwy'z in H, is in H*, where
¢ = (&1)fooY) |f ¢ = 1, then Lemma 9.4 implies that; = € C7. This forces
wy'r € Sp, which is a contradiction. Therefore= <1 andw; 'z € Cz\Cr. By
Lemma 9.4(w k)2 € H” implies that(w,'z)? € Cz. From this it follows that
the semisimple part@is conjugate to some € E such that (1) = <1.
Thus there existd € O, such that the image Qfe Ny, (A) in E” is equal toy;.

Now setg = \/E‘lwglNE/L(A)*lx and argue as for parts (i) and (ii). O

LEMMA 10.3. Assume thafz(0,) = 1.

(i) Suppose that € P(r <1)¢. Then there existg € P(r < 1) such that
z = gp(g).

(i) Supposethat € (wgpP(r<1))¢. Ifeg = 2andwglz € Sg_p,orifeg =1,
then there existg € P(r < 1) such thatr = gwr¢(g).

(iif) Suppose thatg = 2and f(L/(E,_1N L)) is even. Fix) € P(r 1) NSy,
such thatp(wgd) = wgd. If ¢ € (wpP(r ©1))? andw,'z € Sz, then
there existy € P(r <1) suchthatr = gwrdp(g).

REMARK. In (iii), the assumptiory(L/(E,_1 N L)) even is necessary fdto g
P(r <1))% to intersectw Sy, nontrivially.

Proof. Letr = 1,w, andwgd in cases (i), (i), and (iii), respectively. Suppose
that

There existg; € P(r <1) such thay; 'zo(g; ) € (TP(r <1))¥. (10.4)

Sincer € (E* P(r <1))%, by Lemma 3.9 applied with = 1 andi = r <1,
there existsj, € Pi(r < 1) such thatyyzp(g7t) = g27p(g2). It follows that
x = gr(g), for g = g1g>. Thus it suffices to prove (10.4).

Giveny € P(r 1), lety denote the image afin H ~ P(r <1)/Py(r ©1).

As in previous sections, the map éhinduced by will also be denoted by.

Letz € P(r <1)%. If fo = 1, by Lemma 9.2(i), there exists a skew-symmetric
W € H such thatt = p(z) = W tmW. ThuszW—! is skew-symmetric. It
follows that there exists € H such thatWW =1 = zW1tz. Thatis,z = zy(2).
Choosingy; € P(r<1) suchthaf; = z, we obtain (10.4). Iffp = 2, the argument
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is similar, except that it involves hermitian matrices rather than skew-symmetric
matrices (see Lemma 9.2(ii)), and the fact that there is one equivalence class of
hermitian matrices it ([C]).

Next, letz € (wg P(r<1))¥. Aswg was chosen to be ifi,_1, andp(wg) =
cwp, ¢ = (1)~ it follows thatw,'e € P(r <1)%.

If eo = 1, thenwy = wy, andw; 'z € P(r <1)¥, so it follows from (i) that
wglm = gp(g) for someg € P(r <1). Thusz = gwpe(g)-

Let g = 2. Then, setting) = wglx, we havey € H . By Lemma 9.2(i),
there exists a skew-symmetric matdi¥ € H such thagW~! is symmetric. As
[E: E,_1] is even, there are two equivalence classes of symmetric matridés in
and they can be distinguished by the coset®f ;)2 in E, ; in which their
determinants lie ([C]). Note thatz)V ! is symmetric.

If y € Sg_1, then as remarked in the proof of Lemma 10.2, the semisim-
ple part ofy is conjugate to an element ifz L™. This implies that déy)
det(v/2)(E,"_;)% from which it follows thaty = zv/EW 1tz for somez € H.
Choosingy; € P(r 1) such thag, = z, we obtaing; typ(97t) € VEPL(r <1).

That is, g7 tzp(97t) € wpVePI(r ©1) = wpPi(r 1) and (10.4) holds in
case (ii).

If y € S, then by definition of, there exists € H such thag)V—1 = z§'z.

The remainder of the argument is as for case (i), withreplaced bywgd. O

As in Section 9, the notatiog, is used for the character &f and also for the
character of,.

PROPOSITION 10.5Suppose thatg (0,) = 1. If fo = 2, assume thadimx; = 1
forlg<i<rel.

() Z(Fo) = Z(Lanp) (X ,cq7 xr ().
(ii) If eo = 1, thenZ(F1) = 0(wy) Z(Fo).
(iii) If eo = 2and f(L/(E,_1N L)) is odd, then

I(F1) = (g, (rry) (@) 6:(VE) ™ | D xel(2)
x€H 7

(iv) If eo =2and f(L/(E,_1N L)) is even, let be as in Lemma0.3(iii). Then

I(F1) = Il (unpy))0(@)0r (vVE) ™ > Xr(z)

z€(CH\CNH ¥
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+I(1p,5(aney)) O(@E) Z xr ()
z€CNH 7
Proof. Note that ifeg = 2, then by Lemma 5.7, dim; = 1 for 1 < i < r 1.

Thus Lemma 10.2 applies in every case.
Letz € (HNP)? U (wg(H N P))?. Then

v(z)

l/(x) =1= (,D(ZDE. x) = CwE(wglx)wE, c = (<:>1)f0(60—1)

and, since conjugation byr € E, 1 has no effect on Glg.p, j(Er-1), the
image ofwy 'z in H belongs taH ™ if v(z) = 1.

By (9.3) and Proposition 8.1, vanishes at points i N P which do not lie
in S;, U Sp_1. Putting this together with,(z) = 6,(@\”) x, (@ " “z) and
Lemma 10.2, we obtain

0(@ ) xr (@, “y e sy,
Xs(®) = < O(wr) 0,(VE)  xr(wpte), if v(z)=1 andw,lz€ Sy 1,
0, if w;’(x)x %SL USE_r.

x), if w,”

By Corollary 3.8, there existg € (', (P(r <1))? andz € L,_; such that
2 = yz. Note that

wg'Ds(HNP) = wg"Wy(HNP), and

—u(z) { P(rel)?, if v(z)=0,
wE .

P(rel)®, if v(z)=1
Thus, given a coset off N Py in H N P which contains elements such that
o(u) = uorp(u) = cwguwy®, we can (and do) choose a coset representative in
P(r <1) which transforms the same way underLet {y; |7 € |}, j = 1,2,3,
resp., be a set of such representatives of those cosets containing elenoénts
Sp if 7 = 1,2, resp. ofSg_, if 7 = 3, which satisfyp(u) = v if 7 = 1 and
o(u) = cwglqu if 5 = 2,3. Observe that, by Lemma 9.4, there are no cosets
containinge-invariant elements o§z_ . By definition of |;, j = 1,2, 3, and the
above formula fory,(y;), ¢ € Iy andx.(@wgy:), i € 1,5 = 2,3,

I(Fo) = Y xr (W) T(Ly, (minpy))

i€lq

I(F1) = 0(@r) Y xr W) (1o by, (ry)

i€lp

+0(wr) 0, (VE) Y. X (W) I (Lo pys (1)) - (10.6)

1€l3
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Setry = 1, 2 = wg, andm3 = wgd. By Lemma 10.3, ifi € |;, since
oy, € (( %(Tf)P(r 1)), by definition of I, there existg;(j) € P(r <1)
v TJ

such thatw; ’y; = ¢i(j)7590(9i(4)). It follows thatv — g;(5)ve(g:(5)) from
7;(H N P1))? to (w ”(T])yZ(H N P1))¥ is a measure-preserving bijection. Thus,

given: € 1,
I(]-HﬂPl)a if .7: 13
I(lw HNP; )7
I _viry =4 oEnn — L
wg ! yi(HNPy) if eo=2andj=3, orif eg=1 andj = 2,

I(le(;(Hmpl)), if eg=2 andj =2

Observe thatitg = 1, thenc = 1, wg = wy, and b is nonempty, andslis empty
(Lemma 9.4). lfeg = 2 thenc = <1 and, if f(L/(E,—1 N L)) is odd, b is empty
and g nonempty, otherwise both nd k are nonempty.

Now (10.6) can be rewritten as

Z(Fo) = Z(1unp) (Z Xr(Yi ) )

i€lq

i€lp

I(‘Tl) = e(wL) wL HﬁPl <Z XT’ yl > ) If 60 = 17

I(]_—l) = e(wE) wL (HNPy) (Z XT’ Yi )

i€l3

+0(w)0r(VE)  T(Lgpsmnry) O xr (i), if eo=2.

i€lp

Identifying eachy;, i € |;, with its image inH”, resp.H*, if j = 1, resp.
j = 2 or 3, results in (i), (iii), (iv) and, ikg = 1,

Z(F1) = 0(wr) Z(1 wr (HNPy) (Z Xr(® )

zeH”

= Z(1p, (mnry)I(Lunp) I(Fo).

To finish the proof of (i), note that it > 1 thenfy, = 2. If E; is ramified
overE1N L, thenf(E/E1), hencgE : Eq] is even, and by Lemma 7.13(jp = 2
implies thatm; = ¢; + 1 for some; < r <1. As we have assumed that = ¢; for
1<i < rel,itfollows thatF, is unramlfled oveFy N L. Thus by Lemma 7.9(i),
e(El/F) is odd. Asmj = {1, e(E/E1) is odd. Thusifr > 1,e = e(E/F) is
odd. Ifr = 1, then E/F) = 1. Ase = e(L/F), there exists\ € O such
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thatwf = Awp, wherewy is a prime element iF. Choose) € Oj; such that
A = Ng/1,(n). Because + 1is even, the map

(HNP)? — (0PN HH N PY)Y = (wpwr(HN PL))?

_ e 2 — e 2
o gD 2y LD/

(e+1)/2) ( 71w(Le+1)/2))

veln

iS a measure-preserving bijection. Furthermore, by definition of the measure,
wpv IS measure preserving. Thus

= wrwy, (p(nw,

I(]-Hﬂpl) = I(]‘waL(HﬂP]_)) = I(]'ZUL(HQP]_))?
completing the proof of (ii). O

THEOREM 10.7.Suppose thafg(0,) = 1. If fo = 2, assume thatn; = ¢; for
1<ig<rel.

(i) Ifeo=1andd| L* = 1, thenZ(F) > 0.

(i) If o =2and@| L* # 1, thenZ(F) > 0.

Proof. Note that since¥/L is unramified and) o 0 = 6~1 the condition
0| L* = 1is equivalent t®(w;) = 1. By Lemma 10.1, it suffices to show that
I(j:z) >0,1=12.

If eo =1 andf(w;) = 1, (i) is a consequence of Proposition 10.5(i) and (ii),
and Proposition 9.9.

If e =2 andd(wy) = <1, (i) is a consequence of Proposition 10.5(i), (i) and
(iv) and Proposition 9.9. O

11. Main results

Recall thatF is a tamely ramified degreenZextension ofF' and#@ is a unitary
character of2*, admissible ovef’, having the property th#to o = 1 for some
involutione in Aut(E/F'). We continue to assume that the residue charactepistic
of F'is odd. The fixed field of is denoted byl andF; is a subfield of appearing

in the Howe factorization of (see (2.1)). Ifr = 1 (that is,f is generic over)
thenE; = E. Let fg(0) be the conductoral exponent@flf fx(60) > 1, lete; be

as in (2.3). It follows from remarks preceding Lemma 2.5 thatepresent# on

1+ piF D7 thatis,0(1 + z) = (tr p(crz)) for z € pif O 1 1f ¢ € E also
representg on 1+ p’fEE((’)_l, thenF(c) D F(c1) = E1. ThusEq is minimal among
those subfields aFf generated by elements which represeon 1+ pJ;E(e)_l. Our
main results are stated in terms of the value8 of L* and, if £ is unramified
overL, the degre¢E : E4].

The functionF € C°(GLy,(F)) defined in Section 4 represents a finite sum
of matrix coefficients of the unitary supercuspidal representaticassociated
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to 0. Results of Shahidi state (see Section 4) that non-vanishing of the integral
Z(F) defined in Section 4 is related to reducibility of the representation of a
classical group induced from the extensionrdb a maximal parabolic subgroup.

In Theorem 11.1, we show that certain conditionsédr.™ force Z(F) to be
positive. In Theorem 11.4 this is translated into statements about reducibility.

THEOREM 11.1If 6 satisfies one of the following conditions, thHg{#) > 0.
(i) Eisramified overL andf|L* =1,
(i) E is unramified over, and@ | L* = (<1)YO{FF]-1) "with the additional
assumption that if > 1and fg(6,) = 1, thenm,; = ¢;, 1 <igrel.
Proof. If (i) holds, the result follows from Proposition 5.3 and Lemma 5.5.
Suppose that (i) holds. Becaug¢E/L) = 2, 6 o 0 = 6~ implies that
0() = 0(wr)"), 7 € EX, so

0(wy) = (1) PPt 9| LX = (e1)VO(FE]=D), (11.2)

If fE(0 ) = 1, thenZ(F) > 0 by Theorem 10.7. Thus we may assume that
fe(6,) > 1. Letl< i < r. AsshowninLemmab5.2,

xi(z) = ki(z) = 0;(Ng g, (1(2))), if m; =4, (11.3)

Suppose thain; = ¢; + 1. Let H; and H] be as in Section 6. Because
fe(6;) > 1, we know thatH; = FX(1+pE) _1. By Corollary 3.8, there
existye (E*K;_1)¥ = (E*H;)¥ andze€ L;_1 such thatr = yz. As shown at
the beginning of Section 6;;(x) = xi(y) and by Lemma 6.1y;(y) # 0 implies
thaty is conjugate to an element & H/. By definition of the functiong and,
v(z) = v(y) andu(z) = u(y).

By (11.3), Proposition 7.12, and Lemma 7.13; & H¥ is such thaj, (z) # 0,
then there exists,, > 0 such that

r

Xul@) = ag (1) ORI T 0,(N ) s, (=)
=1

= (1) WEED ().

In view of (11.2), it follows from the assumption @éhthat if z € H¥ is such that
xx(z) # 0, then x.(z) > 0. In particular, x.(z) > 0 for z€ (w}
P, (r<1)... Py, (0)%, j€Z. The subset ofp-invariant points in this set has
positive measure i, (H N P))?. AsF = x,, on szeole(H N P), and zero
elsewhere, it follows that(F) > 0. O

REMARKS. (i) If dimx = 1, or if 6 is generic, therf | L* = 1 implies that
Z(F) > 0. Ifdimx = 1, this is Proposition 5.3, and whéris generic, it follows
from Theorem 11.1 since = E; andr = 1.
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(i) The case excluded from the theoremy 1, fx(6,) = 1andm,; = ¢;+ 1 for
somei < r <1 can occur only ifE,. 1 is unramified ove®, ; N L (Lemma5.7).
In this case, the sign of, on H? will be influenced by both the sign of the
cuspidal representatior). of the finite general linear group Gk, | (E-_1) and
by the signs of the characters of the Heisenberg representations fof these-1
such thatn; = ¢; + 1. Therefore, in order to compute the signyqf, it would be
necessary to find a way to combine the techniques in Sections 610 in such a way

that sums of productg,., x,, over certain sets could be computed.

Letn be the irreducible unitary self-contragredient supercuspidal representation
of G = GLy,(F) associated t@ via Howe’s construction ([H2]). Let(ir) be
the induced representation 6f defined in Section 4, wher&@’ = SOy, (F),
SOy, +1(F) or Spy, (F). The following theorem is an immediate consequence of
Theorem 11.1 and results of Shahidi (see Theorem 4.1 and Lemma 4.2).

THEOREM 11.4 Suppose that the admissible charadt@ssociated tar satisfies
(i) or (i) of Theoremll.1 Then the representatiorir) is irreducible if G’ =
SQu, (F) or Spy, (F') and reducible i{G' = SOy, 11(F).

A non-unitary irreducible self-contragredient supercuspidal representation of
G arising via the construction of Howe is of the form® |det-)|%, for some
real numbeky and somer as above. The admissible character corresponding to
such a representation |y /p(-)[*¢. Given an admissible character of £*
such tha®¥’ o o = ' for some involutions in Aut(E/F), there exists a unitary
admissibleéd having the same property relativedaand a real numbet such that
0" = |NE/F(')|a0'

COROLLARY 11.5.Assume that satisfieqi) or (ii) of Theorenil.1.

(i) If G' = SOy, (F) or Spy, (F), thenl(r ® | det(-)|*) is reducible fora = +3
and irreducible for other real values of.

(i) If G' = SOy41(F), thenl(m @ | det(-)|*) is irreducible for all non-zero real
values ofo.

Proof. Both (i) and (ii) follow from Theorem 11.4 and [Sh], Theorem 5.3, which
relates reducibility of (=) to reducibility of (7 ® |det-)|%). O

Given an irreducible unitary supercuspidal representatiai G, let p(7') denote
the conjectural irreducibler2dimensional representation of the Weil groidg-
parametrizingr’ ([B], [T]). Let = be as above (unitary and self-contragredient).
Henceforth, in order to avoid stating cases, we assumeGhat SOy, (F') or
Sp, (F). As indicated by Shahidi ([Sh]), as a consequence of propertids of
functions attached to representationdif, it is expected that(ir) is irreducible

if and only if p(7) factors through Sp (C). Otherwise,p should factor through
SO, (C) and () should be reducible.
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From now on, we assume thatloes not divide 2. In this case, Moy ([Mo2])
has shown that every irreducible supercuspidal representatiohG arises via
Howe's construction ([H2]) from an admissible charaeteof the multiplicative
group of a tamely ramified degree 2xtension ofF". The map

0 —r(0') = Indjy <o’

induces a bijection between (equivalence classes of) admissible quasi-ch@facters
as above and (equivalence classes of) irreducibleithensional representations
of Wr ([Mo2], Theorem 2.2.2). Thus we have a bijectidh« r(6').

Necessary and sufficient conditions f@é') to be symplectic or orthogonal are
known.

LEMMA 11.6 ([Mo1], Theorem 1)Let K/F be an extension of degr@e. Sup-
pose that' is a unitary character ofX *, admissible ove#' and of finite order.
Then the representatiar{¢’) is orthogonal, resp. symplectic, if and only if there
exists an involutionr € Aut(K/F) such that?’ o 7 = ¢’ * and#'|K™ = 1, resp.
O'|K™ £ 1.

REMARK. Moy's result is stated for Galois representations. Such representations
can be identified with a subset of the representations of the Weil gigu[T],

(2.2)). Arepresentation d¥/ is a Galois representation if and only if it has finite
order. Note that the conditicho o = #~1 guarantees tha@has finite order.

Assuming that the conjectural representafomn) does exist, it cannot be equal to

r (0) because(0) does not satisfy the required functoriality properties; in particular,
7w andr () do not have the same local constants (see [Mo2], [R]). In Section 4
of [Mo2], Moy defines a characte® of E* (depending orf) such that thatr

andr (20) have the same local constants. (There is a misprint in Moy’s paper: the
ramification degree(d”;/ F'), not £/ E1), should appear in the definition ).

We have checked th& | L* = sgr%/L(G | L*), wherea = 1if f(E/L) =1 and
a=[E:E\]if f(E/L) = 2. Here, sgp ,;, denotes the character bf* associated

by class field theory to the quadratic extensiBAL. Therefore if p(w) were
equal tor (0€2), by Lemma 11.6 and remarks above, we would have a criterion
for reducibility of I(7) in terms of f(E/L), parity of [E: E4], andf | L*, as
follows.

CONJECTURE.

1, if f(E/L) =1,

. . «
I() isirreducibles 6| L { (1) OUBBIY it f(E/L) =
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Thus, as a complement to Theorem 11.4, we would like to prove

If ¢ satisfies one of the following conditions,
then () is reducible (forG' = SOy, (F') or Spy,,(F'))

(i)Y Eis ramified over andf | L* # 1.
(i)’ Eis unramified oved, andd | L* = (<1)vO)1EEA],

(11.7)

In order to to prove (11.7) using Shahidi's theorem (Theorem 4.1), it would
be necessary to show thaf(f) = 0 for everyf € C2°(G) representing a matrix
coefficient ofr, for all choices of a matrix coefficient. We remark thatiif’ is
satisfied andf (E/F) = f(L/F) is odd, or if (ii)’ is satisfied and @ /F) =
e(L/F)is even, then (11.7) holds because in both these é44€s is non-trivial,
so I(w) must be reducible by Theorem 4.1.

In some cases, if we assume thét) does exist, then using Theorem 11.4 and
properties op(x), we can see that (11.7) holds AifE /L) = 2, orif f(E/L) =1
and (¢ &1)/gcde, g 1) is even, there exists a characterof F* (of finite
order) such thak o Ny | L* = sgry,,,. Thusf satisfies conditiorfii)’ if and
only if (<1)"0)0 = (x o Npp)0 satisfies the first two parts of condition (ii) of
Theorem 11.1 (that is, drop the additional assumption omthg). Similarly, if
we assume thdly <1)/gcd(e, ¢ 1) is even, therd satisfies conditiorti)’ if and
only if x(Ng,/r(+))0 satisfies (ii) of Theorem 11.1. One of the expected properties
of w4 p(m) is p(m ® x o deh) = p(7) ® x ((Mo2]). Also, the supercuspidal
representation corresponding(tpo Ny, )0 is m ® x o det. Hence it follows from
the definition ofy thatp() is orthogonal if and only ib(7 ® x o det) is symplectic.

In view of Theorem 11.4, we get the following result.

COROLLARY 11.8.Assume that the representatipfrr) exists. Suppose that one
of the following holds

(@) (¢ =1)/gcde, ¢ <1) is even and satisfieqi)’;
(b) 6 satisfies(ii)’, together with the additional condition that if > 1 and
fe(6,) =1,thenm; = ¢;forl <i<r<l.

Thenl(7) is reducible and (7 @ | def(-)|*) is irreducible for every nonzero real
numberc.

In Section 7 of [Sh], Shahidi interprets the reducibility criterion of Theorem 4.1
in terms of the theory of twisted endoscopy ([KS1], [KS2]). The group,S@is
a twisted endoscopic group of GL([Sh] Section 3) and has $C) x Wy as
its L-group. Wherp(n) factors through Sg,(C), which should correspond tér)
being irreducible ([Sb]), thep(7) should parametrize airpacket of discrete series
representations of SQ;1(F'). Thatis, theL-packet{«} of GL2, (F") should come
via twisted endoscopic transfer from thepacket of S@Q,1(F') parametrized by
p(m). Thus if 0 is as in Theorem 11.4 an@’ = SOy, (F') or Spy,,(F), thennw
should come from ai-packet of discrete series representations of, S F).
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Similarly ([Sh], Sections 3 and 7), a quasi-split §0s a twisted endoscopic
group of Glp,. If I () is reducible then, singg ) should factor through S£(C),

m should come via twisted endoscopic transfer fromLapacket of a quasi-split
SO (F).

Therefore if the above conjecture holds, and the theory of twisted endoscopy
holds, then we have a criterion, in termgofor determining whether an irreducible
unitary self-contragredient representationomes via twisted endoscopy from an
L-packet of SQ,1(F') or of a quasi-split S@, (F').
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