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GROUP REPRESENTATIONS AND CARDINAL 
ALGEBRAS 

PLATON C. DELIYANNIS 

Dedicated to the memory of Josephine J. Mehlberg 

0. Introduction. Our aim in this work is to show that the global theory 
of group representations (as presented in [4] for example) is actually and 
naturally a part of the theory of cardinal algebras. In this sense it is analogous 
to the work of Kaplansky [2] and Loomis [3] on operator rings. In his paper 
Loomis proposed an abstract scheme for representation theory; it appears, 
however, that the idea of abstracting the equivalence class of a representation 
is more suitable. It is the set of all these classes that forms the cardinal 
algebra which we study. 

The connection between cardinal algebras and operator theory has been 
made explicit by Fillmore [1], where he worked out a dimension theory for 
a class of cardinal algebras satisfying certain conditions. In the next section 
we shall discuss the relation between the two systems; we could say that the 
main difference lies in our introducing such axioms as to make possible the 
study of type III cases. 

We work out the case of representations in a separable Hilbert space. To 
cover the general case, a peculiar kind of algebra is necessary, where sums 
can extend over families of any cardinality. This, as pointed out by Loomis 
[3], involves set-theoretic complications but it seems that it can be carried out. 

The book by Tarski [5] will be used frequently throughout the paper as a 
reference. We shall first state the axioms for a cardinal algebra that we shall 
use, next we shall show that group representations satisfy them, and then we 
shall proceed with the development of the theory. 

Acknowledgement. I am indebted to the referee for his comments, which 
resulted in several improvements and corrections. I must also acknowledge 
the influence of a course by W. F. Stinespring in 1963 at the University of 
Chicago which led me to the present approach. 

1. The axioms. We state below a set of axioms for cardinal algebras which, 
as shown by Fillmore [1], is equivalent to that of Tarski. This form, however, 
is much more convenient to verify for the case of group representations. 

Let A be a set; we assume that to each sequence aly a2, . . . of elements in 
A there corresponds a unique element of A which we shall denote by ]£ at. 
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Axiom I (Commutative law). If p is a permutation of the positive integers 
and bi = ap(*), then X) °i = H ai> 

Axiom II (Existence of identity). There exists an element 0 of A such that 
if ai = a and #2 = #3 = . . . = 0, then £ #* = 0. 

We shall write S?=i a* or #i + a2 + . . . + a» for the element £ a t where 
a* = 0 for i > n. 

If 7 is a finite or countable set and / is a one-to-one map of 7 onto the 
appropriate segment of the cardinals, we shall write Y,iei at o r just £ at for 
the element J2 am) (by Axiom I this is consistent). If at — a for all i Ç 7 
and n is the cardinality of the index set 7, we shall write na for the element 

£ a*. 
Axiom III (Associative law). If 7i, 72, . . . is a partition of the finite or 

countable set 7, then X ^ / a * = ] L Œ * € J » #*)• 

Definition (1.1). We say that a is a part of b if & = a + c for some element c; 
we write this as a ^ & or b ^ a. If a ^ & and a ^ b, we write a < b or 
b > a. If a is not a part of &, then we write a $ & or è | a. 

Axiom IV (Splitting law). If & ^ £ a*, then 6 = £ &*, where &* rg a* for 
all i. 

Axiom V (Remainder). If a* = a i + i + &* for i = 1, 2, . . . , then there 
exists an element c such that at = c + X ^ &*;• 

Axiom VI (Refinement law). If a1 + a2 = #i + a2, then there exist four 
elements at

j such that #1^ + a2
j = aj and at

l + a*2 = az-. 

Now to these six axioms we shall add two more which will allow the 
development of the complete theory. 

Axiom VII (Division law). If a ^ b ^ 0, then there exists a cardinal n 
and an element c ^ b such that a = nb + c. 

Axiom VIII (Separability). Any well-ordered bounded subset of 4̂ contains 
at most countably many elements. 

In [1] Fillmore deduced the structure of certain cardinal algebras satisfying 
Axioms I-VI plus the next two: 

(i) Any two elements have a greatest lower bound. 
(ii) Every element is the sum of finite elements (see Definition (5.1)). 

As we shall derive results quite similar to (although somewhat more detailed 
than) Fillmore's, it is important to discuss these two properties. To begin 
with we observe that (i) is valid in our system, being a simple corollary of 
the comparability theorem (4.2). Fillmore deduced the comparability theorem 
from (i) and (ii), but it is very difficult to verify directly that (i) holds for 
any two equivalence classes of representations. It is thus clear that (i) is not 
suitable for the purpose of developing an abstract representation theory. 
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Furthermore, property (ii) above does not, in general, characterize elements of 
type p̂  III (Definition (7.1)), as the following example shows. Consider the 
set of all non-negative integers together with two elements x and y; a finite 
sum of integers is the usual sum; an infinite sum of integers is x; any sum in 
which x appears but not y is x; any sum in which y appears is y. In this 
cardinal algebra property (i) holds but not (ii); although y has finite type, 
it is not a sum of finite elements. In our system, because of Axiom VII, we 
can show (Theorem (9.3)) that (ii) characterizes elements of finite type, 
and we can further analyze elements of type III. 

Incidentally, the above example shows that Axiom VII is independent of 
all the others (Axiom VIII included). It is not hard to verify that Axiom VIII 
is also independent of all the rest by looking at the cardinal algebra of all 
subsets of a given uncountable set, where addition is defined as union. 

2. Verification, Let G be a group and A the set of all equivalence classes 
of unitary representations of G in a separable Hilbert space. For any sequence 
ai, a2, . . . in A we choose representations Rt G au the equivalence class of 
the direct sum of the Ri depends only on the sequence (at) and will be denoted 
by S aî- Trivially, Axioms I and II hold, where 0 is the class of representations 
on a zero-dimensional space. Then the finite sum is the finite direct sum of 
the representations chosen, and it is clear that Axiom III holds. 

To establish Axiom IV, let H be the direct sum of the spaces Ht on which 
the representations Rt act. Let R, acting on H, be the direct sum of the R^ 
Then b ^ X̂  a% means that for some invariant subspace M of R the restriction 
R\M is in the class b. Now consider families (Mtl Ki) such that the Mt are 
pairwise orthogonal invariant subspaces of M, the Ki are invariant subspaces 
of the Hi, while R\Mt is equivalent to R\Kt. Such families with non-zero 
Mi exist: for if PL is the projection on the subspace L, then PHiFV intertwines 
R\Hi and R\M and cannot be zero for all i. We order the set of all families 
described above by: (MY, K/) C (Mt", Kt") if M( is a proper subspace 
of Mi" and K{ C K-'. Clearly, if (Mf, Kf) is a linearly ordered set of 
such families, the family (Ua Mf, U a ^ r t is an upper bound. Thus there 
exists a maximal element say (Mu Ki) ; maximality implies that ® Mt = M, 
for otherwise the argument above can be repeated in the orthocomplement of 
0 Mi in M thereby producing a family 3 (Mt1 Kt). If we set bt for the class 
of R\MU we have b = YL bt and bt ^ at. 

The argument for Axiom V is shorter: Let a\ be the class of R acting on 
Hi; then there exists a sequence of invariant subspaces H2 3 Hz 2 . . . such 
that R\Hi is in the class at and R restricted to Ht C\Hi+ix (where _L denotes 
orthogonal complement) belongs to bt. The subspaces Ht C\ Hi+ix are pairwise 
orthogonal and the complement H relative to Hi of their direct sum is 
contained in all Ht. If c is the class of R\H, then at = c + 2 ] ^ bk. 

Now for Axiom VI. We are given a space H, a representation R, and two 
invariant subspaces My N such that R\M £ au R\M± Ç a2, R\N Ç a1, and 
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R\N± € a2. Then we have M = (M P N) ® M P (M P N)•*• and also 
M± = (M± P N±) ® M-*- P (AfJ- Pi iV-O-S all four subspaces in these two 
direct sums are invariant so that we can restrict R to M P Nf M P (M P TV) -s 
Mx P (M± P N-*-)-1-, and Mx P Nx to obtain representations whose classes 
we denote (respectively) by ai1, ai2, a2

x, and a2
2; it is clear that a±l + a\2 = ai 

and a2
x + a2

2 = a2. Now observe that M± P (M± P N *•)->- = M± C\(M U N) 
and that the four spaces N (^ (M n N)±, N/(M P N), (M U iV)/M, and 
(AfU iV) P Af A are canonically isomorphic, which implies that R restricted 
to the first and the last yields equivalent representations; since 

N = (N r\M) ® N P (N p M)\ 

we have a1 = a\l + a2
x. In a similar way we obtain the last equality. 

Thus we have shown that A is a cardinal algebra. As Axiom VIII is rather 
obvious because of the at most countable dimension of the representation 
spaces, we shall verify only Axiom VII. Let a be the class of R acting on H 
and consider families of orthogonal subspaces Ht such that R\Ht Ç b. The 
inclusion ordering provides us with a maximal such family, which means 
that H P ( 0 Hi)-1- contains no subspace on which R belongs to b. If c is 
the class of R\H P ( 0 Hi)-1-, then a = nb + c and c ^ b. 

3. Types. We shall define all terms used, although many are defined in [5]. 

Definition (3.1). The elements a and b are disjoint if they have no non-zero 
common part; write a _L b. The type of the element a is the set of all elements 
disjoint from a; write a. Also, write 0 for the type of 0 and T for the set of 
all types. 

We shall use on T the partial order S which is reverse to inclusion. Thus 
for s, t Ç T we shall say that s ^ t if and only if t Q s as sets, or equivalently 
that, iî s = a and t = b, then c _L b implies c JL a. 

Definition (3.2). The types 5 and / are disjoint if there is no type r ^ 0 
such that r ^ s and r ^ /; write s ± t. 

If s = a and t = b, then s ± t means a ± b. For let a _L 6; then c ^ a 
implies & J_ c and if further c S b, we have c 1 c or c = 0. Conversely, let 
â _L 5; if c ^ a and c ^ b, then c ^ â and c ^ b hence £ = 0 and c = 0. 

LEMMA (3.1). i j //ze elements at are pairwise disjoint and at ^ a for all i} 

then J2 ai = a-

Proof. First we prove this for two elements ai, a2 ^ a: we have a = a± + b, 
and since a2 ^ a we also have a2 = c + d, where c ^ ai and d ^ b ; as ai J_ a2 

we obtain c = 0 and thus a2 = d ^ b, hence a ^ a\ + a2. Using again the 
splitting axiom we see that ak+i ± Y,t=i ai a n d so by induction we have 
2*=i a* = a i°r all *• Thus by [5, Theorem 2.21] we obtain Y^ at = a> 

LEMMA (3.2). Let st = ai and s = â, where a = J^ at; then s is the supremum 
of the family (s^. 
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Proof. Since at ^ a, every b J_ a is also disjoint from a* and thus s* g 5. 
Let s* ^ c for ail i; if b _L c, then b A_ at for all i, hence 6 J_ X) a* = a. 
Because if d is a part of b and of ^ au then d = J^ dt where di ^ at and 
this implies that d* = 0 or d = 0. But then we have s S c. 

We shall write U st or, for a finite family, s± KJ s2 W . . . KJ sn for the 
supremum. 

We can now prove the main theorem on types. 

THEOREM (3.1). Let a £ A and s £ T; then there exist unique b, c £ A such 
that a = b -\- c, b rg 5 and c JL s. 77m element b is the largest part of a of 
type S s. 

Proof. We consider (finite or countable) families of pairs (tit, bt) such that 
the fit are cardinals, the elements bt are distinct and non-zero, bi S s, and 
S ni)i = a- For any two such families (n\U bu) and (n2j} b2j) we say that 
the first precedes the second if each bu is among the b2j while for bu = b2j 
we have nu ^ n2j; thus Ylnubu ^ 2] n2jb2j. Since these sums are bounded 
by a, any well-ordered subset of such families has at most countably many 
distinct sums. The bs appearing in these sums are at most countable, and 
so we can write them as 61, b2, . . . , index the families by some ordered set K, 
and represent each family by (nikl bt), where nik = 0 for those bt which do 
not occur in the family; the set K is countable and nikl S nik2 for all i if 
ki < k2. Now let tit = supk^Knik; we wish to show that (nu bt) is a bound 
for the well-ordered set of families we started with, so that by Zorn's lemma 
we shall obtain a maximal family. It suffices to show that X njbi ^ a since, 
by Lemma (3.2), the type of the sum is ^s. First we choose a sequence 
fei, k2, . . . cofinal in K, i.e. such that nt = supm nikm for all i. Then we have 

00 

nt = nikl + ^2 (nikm+1 — niklt), 

where the expression 00—00 is by convention set equal to zero. Thus we 
obtain 

00 

X nibi = S »tti&* + 2 Z) (»<*»+! - nikm)bi 
i m = l 

____ 00 ^_^ 

= Z) niklbt + X X («ftm+i — nikm)bi. 
ra=l i 

But we see that if we extend the sum in this last term (over the index m) 
from 1 to j we obtain J^inikjbi which is g a by hypothesis, and hence the 
whole sum from 1 to 00 will be ^a by [5, Theorem 2.21]. Thus there exists 
a maximal family (nu bt) and we write a = X ntbi + c. We shall now show 
that if d ^ a and d ^ s, then d ^ X w^*- We split: J = di + ^2, where d\ ^ c 
and 6?2 ̂  X) ntbi. Since di + X) ̂ ^ = a a n d 5i ^ 5, d\ must necessarily 
(if not zero) be one of the bu say bi01 or else we could adjoin (1, d\) to the 
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maximal family (nu bi); then niQ = oo, otherwise we could replace (ni0, bi0) 
by the pair (niQ + l,bi0). Thus 

L nfii = L »*&< + di è ^2 + di = d. 

Finally we shall show that c can be chosen to have type disjoint from s. 
We shall use Axiom VII: write c = mj)i + 0\ where C\%b\\ this allows us 
to write a = ]T #*&* + Ci, since Wi must equal «i + mi by the maximality 
of the family (nu bt). Let a = ]T ^^^ + c^ where c* ^ 61, b2, . . . ,bk and 
write c* = mk+ibk+i + c^+i, where cfc+i ^ fr^+i (and, of course, ^bt for i S k). 
Then, as before, we have a = ^ nfit + c^+i. By Axiom V we have 
£& = Co + Y,ifnk+ibk+i for some c0, and clearly c0 contains no bt. Since 
«i = fit + mu we obtain a = £ ŵ ft* + c0, and by the argument given 
previously we see that Co can contain no non-zero element of type ^s, as 
it would then have to contain some bt. Thus Co _L s. Uniqueness is immediate 
from the refinement law. 

We can now proceed to study the structure of the set T of all types and 
show that the partial order makes it a generalized Boolean cr-algebra (i.e. a 
Boolean c-ring without identity). 

LEMMA (3.3). Let s S t; then there exists a unique r _L s such that t = s \J r. 

Proof. Let t — a, and write a = b + c as in Theorem (3.1). If b 7e s, 
there must exist an element d of type ^s which is disjoint from 6, because 
otherwise s ^ b and hence s = b. Since d g 5 ^ â there exists a non-zero 
elements ^ a which is also Sd. Then e J_ b so that b < b + awhile b + e g a; 
as 6 + e ^ s we have found an element strictly larger than b of type ^s 
which is a part of a; this contradicts Theorem (3.1). Hence b = s and so 
t = s VJ c with c JL s. Uniqueness is implied by Theorem (3.1). 

The relative complement of 5 in /, whose existence we have just proved, 
will be written as t C\ s'. 

LEMMA (3.4). If r ^ s ^ t, then tC\s' ^tC\r'. 

Proof. Let t = â with a = b + c} where b = s and c — t C\ s'. Since r -^ s 
we have b = d + e with d = r and e _L d. Then a = J + c + e and as both 
c, e are disjoint from d we have c + e = t C\r' \ but c ^ c + e, hence the 
conclusion. 

LEMMA (3.5). Let st ^ t and r = U(t Hi s/); then tC\rf is the infimum 
of the st. 

Proof. Since / C\ s/ ^ r è t, we have t C\ rf S t C\ {t C\ s/)' = st by the 
uniqueness of relative complements. Let u ^ st for all i so that tC\s/ ^ tC\u' \ 
hence r ^ t C\u' or u ^ t C\r'. 

For arbitrary s* we shall write D st for their infimum. For any s, t we shall 
write / C\ s' for the type t C\ (t C\ s)'. To complete the argument we only 
need the distributive law which follows from the following lemma. 
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LEMMA (3.6). For any s, t we have s = (s P\ i) \J (s H t'). 

Proof. It is clear that s ^ (s H t) U (s H tf), and so consider an r disjoint 
from both 5 C\ t and 5 C\ t'. We shall show that r _L s. Let u ^ r, u ^ 5 so 
that w JL 5 P\ /. If u ^ w H /, we have z / ^ H ^ and also v ± s C\ t, and 
thus v — 0; but then ^ _L £ and since u ^ s we have ^ g 5 H f. On the 
other hand, u A. s C\ t' because u g r J_ s C\ tf. Therefore u = 0 and r _L s. 

4. Restriction to a type. 

Definition (4.1). The largest part of a with type ^ s is the restriction of 
a to s; write a|s. 

THEOREM (4.1). For any a, 6, a* and s, t, st we have: 
(i) a\s = a if and only if a ^ s, 

(ii) a ^ b implies a\s ^ è|s, and s S t implies a\s ^ a\t, 

(iii) (E^Ok = E (a<k), 
(iv) ^a|5)|/ = a\(sC\ t), 
(v) a|s = â r\ s, 

(vi) / / the Si are pairwise disjoint, then a\\J st = E (#k0-

Proof. There is no need to give an argument for (i) and (ii). We prove (iii). 
Since at\s ^ au we have E (#<k) = S #*> a n d since the type of the left side 
is ^ s , we have £ (#*k) ^ (]C a*)k- Let & S Z) a*> 5 ^ s; we have 6 = £ &* 
with bi S a>t and since 5* ^ 5 we also have bt g a^s, which implies that 
b S H (ai\s). Thus X (#*k) is the largest element of type ^s which is a 
part of £ «i. For (iv), we consider any b ^ a\s with type ^t\ then b S s C\ t 
and thus & ^ a|(s P\ /) . This means that (a|s)|£ ^ a|(s C\ t). The reverse is 
immediate. For (v), we write a = (a\s) + c with c ± s\ take types of both 
sides and intersect with 5 to obtain a P\ 5 = a\s since the type of a\s is ^s. 
For (vi), we can restrict our attention to the case â = U Si, so that a — YL ai 
with ai = st; then a |^ = S (ai\sj) = aj\sj = # r 

The main result is the following. 

THEOREM (4.2) (Comparison). For any a, b there exist types s, t such that 
s r\ t = 0, a\s ^ b\s, a\t ^ b\t, and a\u = &|w = 0 for any u ±_ s \J t. 

Proof. Working within the Boolean c-algebra of all types ^ â U ô (which 
satisfies the countable chain condition because of Axiom VIII) , we consider 
sets L, M of types such that the elements of L KJ M are pairwise disjoint, 
while s Ç L, t Ç M imply a\s ^ b\s and a\t ^ &|J. We can then find L0, Mo 
maximal with respect to inclusion; each will contain, by the chain condition, 
at most countably many elements, and we can take the supremum of L0 for 
s, and the supremum of Mo for t. 

Although the type s' does not exist (since T has no unity) we shall abbreviate 
the conclusion of the theorem to a\s ^ b\s, a\sf ^ b\s'. 
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5. Finite and infinite elements. 

Definition (5.1). An element a is finite if a + b = a implies b = 0; an 
element is infinite if it is not finite. A type 5 is finite if there exists a finite 
element a such that s = â. 

THEOREM (5.1). If a ^ b and a is finite, so is b. If a, b are finite, so is a + b. 
If the at are pairwise disjoint and finite, so is ^ at. If a is finite and 
a + b = a + c, then b = c. 

The proof can be found in [5, Theorems 4.14, 4.16, 4.18, 4.19]. 

LEMMA (5.1). For any a there exists a largest type f such that a\f is finite. 

Proof. We consider within the Boolean <r-algebra of all types rgâ families 
of types t such that a\t is finite. We can obtain a maximal such family of 
pairwise disjoint types which will be countable; its supremum i s / . 

Definition (5.2). The finite part of a is the element a\f. An element a is 
purely infinite if its finite part is 0. 

LEMMA (5.2). An element a is infinite if and only if it contains some non-zero 
element oo b. 

Proof. If a is not finite, then a = a + b for some b 9^ 0, hence a ^ cob 
by [5, Theorem 2.21]. The converse is obvious. 

Thus, if we have nkb ^ a with a finite and nk tending to infinity, then 
b = 0. 

THEOREM (5.2). An element b ^ 0 is purely infinite if and only if b = cob. 

Proof. If b = cob, then b = b + b and, for any type s, b\s = b\s + b\s; 
thus b\s cannot be finite (if non-zero) and so b is purely infinite. Now suppose 
that b is purely infinite. By Lemma (5.2) we have b ^ cod for some d ^ 0 
and thus b = cod + c, where c ^ d. Write a = cod so that b = a + c with 
a = co a and c ^ a. Now compare a and c: a\s ^ c\s, a\sr ^ c|s'; then 
b\s = a\s + c\s = a|s since a|s + c\s ^ 2(a|s) = a\s. If a|s = 0, then c\s = 0 
and c\s' — c while a|s' = a and so c ^ a which is not the case. Thus the set 
S of all types s ^ b such that b\s = coa for some a ^ 0 is not empty. By 
the usual procedure we find a maximal element s0 of S. But this must be b, 
for otherwise we consider b\b C\ s0' ^ 0 and repeat the argument to increase 
So. Thus b = oo a for some a and hence b = cob. 

We shall now give an alternate characterization of types. 

THEOREM (5.3). For a, b purely infinite we have a ^ b if and only if â ^ b. 

Proof. First let â = b; by comparison we may assume that a ^ b. As in 
the proof of the previous theorem we can find a maximal type s such that 
b\s = a\s 9e 0. If à H / ^ 0, we restrict ourselves to it and repeat the 
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construction to contradict the maximality of s. Thus â = s and since 6 — â 
we have a — b. Now, if â ^ b we have a and b\d having the same type, so 
that they are equal and a ^ b. 

Since for any a we have â = co~d, we see that the set of all types is in a 
one-to-one correspondence with the set of all purely infinite elements (idem-
multiple in Tarski's terminology) which preserves the ordering. It is easy to 
see that if 5 corresponds to cob, then a\s is just the infimum of a and cob: 
we have s = b and if c ^ a, c ^ s, then c ^ cob so that a\s is ^a and also 
^ cob; on the other hand any element ^ a and ^ oo 6 has type ^ 5 and is 
thus ^a\s. It is in exactly this way that Fillmore [1] bypassed the introduction 
of types by assuming instead that any two elements have an infimum. 

The next theorem will be very useful in structure theory. 

THEOREM (5.4). If a Ç A and n is any cardinal, then there exist 6, c such 
that a = nb + c and c contains no non-zero element nd. 

Proof. First the case where a is finite. If n — oo, take b = 0 and c = a. 
Let n 9^ oo and suppose that a = nb + c, if c ^ nd for any d, our proof is 
complete, otherwise write b = 6i, c = C\ and suppose that for all ordinals 
r < p we have a = nbT + cT with 6T+i > 6T and all cT containing some non-zero 
ndT. If p = o- + 1, let ca = wd, + c+i so that a = n{bff + dff) + ca+i\ then 
the element Z?ff+i = bff + dff > bff since d* 7̂  0 and ba S a is finite. If p is a 
limit ordinal, it has to be countable (because of Axiom VIII) and so there 
exists a cofinal sequence r<. By Axiom V we obtain a = nb' + cf, where 
b' > bT for all r; if c' contains no non-zero nd, our proof is complete, otherwise 
we write c' = nd + cp, bp = V + d to obtain a = wfrp + cp with bp > br for 
all T < p. But this process cannot continue since the set of all countable ps 
is not countable and Axiom VIII is assumed. Thus we have the result in the 
case where a is finite. For the general case, write a = a\ + a2 with a\ purely 
infinite and a2 finite. If the given cardinal n — 00, this is the desired 
decomposition, since a\ = 00 a\. If n is finite, we have a2 = nb + c with c 
containing no non-zero nd, and then a = n{a\ + b) + c. 

6. Multiplicity free elements. 

Definition (6.1). An element is multiplicity free if it has no non-zero part 
of the form 26. 

LEMMA (6.1). The element a is multiplicty free if and only if a — 6 + c 
implies 6 J_ c. If a is multiplicity free and 6 ^ a, then 6 is also. Every multiplicity 
free element is finite. The sum of pairwise disjoint multiplicity free elements is 
multiplicity free. 

Proof. Only the last assertion may need a proof. If at J_ a,j and X) a* = 26, 
then a{ ^ 2(6|â*)ï hence b\ât — 0 for all i and b = b\{J ât = J2 (6|a*) = 0. 
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THEOREM (6.1). Let a, b be multiplicity free. If â = b, then a = b; if a rg b, 
then a ^ b. 

Proof. Since the types of a\s and b\s will be the same in case â = 5, we may 
by comparison restrict ourselves to the case a ^ b. Thus b = a + c and 
hence £ ^ b = â; but ô is multiplicity free and thus a JL c, or £ = 0. For the 
second compare a, è: a|s ^ b\s, a\s' ^ 6J5,/. This implies that â C\ s' ^ b C\ sf, 
hence â C\ sr = 5 C\ s'', or a|s' = b\s'\ but these elements are multiplicity 
free, and so a\s' = b\s'. Since a\s ^ b\s, we have a S b. 

THEOREM (6.2). If â g c and b ^ a with b multiplicity free, then b S c. 

Proof. We compare a to c and b to c: a\s ^ c\s, a\s' ^ c|s', and b\t S c\t, 
b\t' = c\tf. Since 6 =" a, we have 6|(/' H s') = c| (5' H /')• Il r = s C\ t', then 
c|r ^ b\r so that c|r is multiplicity free; on the other hand, we have 

c\r = cr\r^à~r\r^ b C\ r = b\r 

so that c\r = b\r. Therefore b\t! = c\t' and so b ^ c. 

COROLLARY. If â = b and b is multiplicity free, then b ^ a. 

LEMMA (6.2). Ifc^b and b is multiplicity free, then c = b\c. 

Proof. If d ^ b and d S c, then d is multiplicity free and hence d ^ c; 
thus c is the largest part of b of type c. 

Definition (6.2). An element is irreducible if it covers 0. A type is primary 
if it covers 0. An element is primary if its type is primary. 

The following are typical theorems in representation theory. 

THEOREM (6.3). An element is irreducible if and only if it is primary and 
multiplicity free. 

Proof. Let a be irreducible and a — 2b + c. Then either 2b = 0 or c = 0; 
but if c = 0, then a = b + b so that again b = 0. Thus a is multiplicity free. 
Suppose that b ^ a so that a\b ^ a, and hence either a\b = 0 or a\b = a; 
in the first case we have 5 = 0 and in the second 5 = â. Thus a is primary. 
Conversely, suppose that a is primary and multiplicity free. Let a = b + c; 
then b ± c and â = 5 U c so that either 5 or £ is 0. But then either 6 = 0 
or b = a, and a is irreducible. 

THEOREM (6.4). If a is primary, b is irreducible, and b ^ a, then a = nb 
for some cardinal n. 

Proof. We have a = nb + c, where c ^ b. Then c ^ â so that either c = 0 
or c = â. In the first case, our proof is complete. In the second, since b — â 
(because 5 ^ â and b ^ 0), we have c = b and by the corollary above & S c 
which is impossible. Then c — 0 in this case also. 
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COROLLARY. If a is primary and b and c are irreducible parts of a, then b = c. 

Proof. We have a = nb, a = mc, hence b = c and thus b = c. 

7. Classification of types. 

Definition (7.1). A type s is called discrete (write s 2g I) if s = â for some 
multiplicity free element a. A type t is called continuous if t J_ 5 for all 5 ^ I. 
For a continuous finite type we write 5 ^ II ; for a continuous type t disjoint 
from all finite types we write t ^ III. If d ^ j (j = I, II, III) , we say that a 
has type j or is of type j . 

THEOREM (7.1). Any type s is the disjoint union of types sIf sU) sni where 
Sj ^ j ; this decomposition is unique. Any element a is the disjoint sum of elements 
aT, aUl aUI where a3- has type j ; this decomposition is also unique. 

Proof. Using Lemma (6.1) we find the largest Sj ^ s which is discrete. 
Then 5 Pi s/ is continuous. Using the results of § 5 we find the largest 
sn ^ s C\ Si which is finite. Then sUI = 5 P\ Sj P\ sn' is ^ III and the 
requirements are fulfilled. Uniqueness is obvious. Given a we write a as a 
disjoint union of types ^ 1 , II, III and restrict a accordingly. 

8. Structure of type I elements. This is completely determined by 
the following. 

THEOREM (8.1). If a has type ^ 1 , then a = Y^nfiu where the nt are distinct 
cardinals and the b t are pairwise disjoint multiplicity free elements; this form 
is unique. 

Proof. There exists some multiplicity free element b such that b = â, and 
then b ^ a by § 6. Thus a = nb + c with c ^ b. If s = a C\ cf, then 
a\s = n(b\s), and observe that s 9^ 0 for otherwise c ^ d and this by 
Theorem (6.2) would imply that c ^ b which is not the case. We can then 
obtain a maximal s ^ d such that a\s = ]£ ntbi with nu bt as required by the 
theorem. Since a\sf will also be of type I, we see that s = d. The proof of 
uniqueness is straightforward. 

We shall reformulate this theorem to make it similar to the corresponding 
theorems for types II, III. 

THEOREM (8.2). Let b have type ^d where a is multiplicity free. Then 
0 = Y^ni(a\si)i where the nt are distinct and the st pairwise disjoint. Given a, 
then nif $i are unique. 

9. Structure of type II elements. 

LEMMA (9.1). If a has continuous type and 2 ^ n < 00, then there exists a 
unique b such that a = nb. 
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Uniqueness is proved in [5, Theorem 2.34], and the proof, although 
complicated, is valid for any cardinal algebra. A short proof can be given 
using Theorem (4.2). Existence for finite elements follows immediately 
from Theorem (5.4). 

For rational p > 0, p = m/n, we shall write pa for the element mb, where 
nb = a; this is of course unique, and for purely infinite a we have pa = a. 

LEMMA (9.2). Let q, r, pki and p = X) Pk be rationals > 0 , and a, at have 
continuous types. Then q(ra) = (qr)a, g(]£ at) = Z)(ga*)> Pa = S(£*a)> 
and p(X) &i) = L*,ijM<-

Proof. The only part that may need proof is the third relation for an infinite 
series. Since by the remainder axiom we have 2ZT=i ipno) = Pa, and also for 
any m we have 

n ^ 

Pa ^ Ç (Pkd) +—a 

for large enough n, we obtain 

pa ^ H (P*fl) +~a 

m 
for all m, and hence pa ^ ]C (Pk&) for finite a. For purely infinite a all relations 
are trivial. 

Now assume that b ^ â, where a has type II and consider first the case 
of finite b. 

For p a non-negative rational let sp be the largest type s ^ a such that 
b\s ^ p(a\s). We then have the following. 

LEMMA (9.3). For any p, sp = Up<<z sq. 

The proof is straightforward. This lemma shows that if we assign to each 
interval (p, q] the type sq P\ s / , we can extend this map to a spectral measure 
in the sense of the following definition. 

Definition (9.1). A spectral measure is a map JU from the Borel sets of the 
real line into the Boolean <7-algebra of all types ^ â such that: 

(i) if the sets Et are pairwise disjoint, then ti{Et) _L v(Ej) and M ( U Et) = 
U n(Et)f 

(ii) n(E) = Oif E C ( - o o , 0 ) . 

Observe that such measures correspond to Borel measurable non-negative 
functions on any measurable space whose ring of measurable sets modulo 
null sets is isomorphic to the Boolean algebra of all types ^a. 

We shall use spectral measures to integrate elements as follows. Let a0 = 0 
and let an be the element 

"v * I (l ±±±\ 
h 2"ar\2'" 2" J • 
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Then an ^ an+i and we set bn+i for the unique b such that an+i = an + b. 
The sum X &* will be written as J pa\dn(p). 

LEMMA (9.4). If a is finite, then so is the integral J pa\d^{p). 

Proof. By considering the sum defining an we see that bn ^ cn + (l/2n)a, 
where cn is finite of type g/*(» + 1/2", n + 1 + 1/2W+1]. Thus 

X 6< ^ X ẑ + » 

and as the ct are pairwise disjoint and finite, so is their sum. 

We can now prove the following structure theorem. 

THEOREM (9.1). Let b be finite, and b ^ â, where a is finite of type II. Then 
b = j pa\d\x{p), where \x is the spectral measure determined by the family sp. 
This representation is unique. 

Proof. By using the facts \x{p, q] C sq and /JL(P, q] J_ sp we obtain easily 
that an ^ b\ since J* pa\dfx(p) = X &* a n d 6i + 62 + . . . + bn — any we have 
J pa\dfx(p) ^ b. On the other hand, the definition of the integral shows that 
b ^ J pa\dfx(p) + (l/2m)a for all ra, and since a is finite, equality follows. 
Now if b = j pa\dv(p) for some spectral measure v, then for any type 
5 ^ v{— 00, p] we have 6|s ^ £ ( a k ) hence p( — 00, p] ^ sp. Also, 

/ _L v{— 00,g] 

implies ô|/ è q.{a\t) and thus sp ^ v(— 00 , g] for all p < q. Since v is a spectral 
measure we obtain sv ^ p( — 00, p], or /* = v. 

Now the case of purely infinite b. 

THEOREM (9.2). Let b be purely infinite, b ^ â with a finite. Then b = 00 (a\ b). 

Proof. We compare b and na, where n is a finite cardinal: Z?|sw ^ wa|sw, 
&|s«' = wa|sw'. Since b is purely infinite and na is finite, we have b\sn' = 0, 
or b = 6|sn. Therefore 6 ^ w(a|sw) è ^a |5 for all n, and hence b ^ co (a\b). 
Now apply Axiom VII to obtain an element c such that b = 00 (a\b) + c, 
where c ^ 00 (a|5). Since b S â we have c ^ a, and we wr te c = Ci + c2 

with Ci finite and c2 purely infinite. We claim that 00 (a\b) + C\ = 00 (a|5). 
By comparison we can consider the cases a\b ^ £1, Ci ^ a\b without loss of 
generality. In the second, our claim is obvious; in the first, the above argument 
where00 (a\b) plays the role of b and C\ the role of a yields C\ ^co (a\b) which 
again proves our claim. Thus b = 00 (a\ b) + c, where c is purely infinite 
^a\b. Now, if the type â P \ 5 P \ c ' = s = 0, then c = a\b and by the first 
part of the argument we obtain c ^ oo(a|5) ^ a\b which is not the case. 
Thus s 9e 0 and hence b\s = 00 (a\s) 9^ 0. The maximal such type 5 must be 
b, for otherwise we repeat the argument on b r\ s to obtain a contradiction 
to the maximality of s. Thus b = 00 (a\b). 
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We shall end this section by characterizing the elements of finite type. 

THEOREM (9.3). The type of a is finite if and only if a is the sum of finite 
elements. 

Proof. Since the set of finite types is a filter closed under any disjoint unions, 
it is closed under any unions, so that the type of YL ai is finite if all at are 
finite. Conversely, if à is finite and we write a = a,\ + a2 with a,\ purely 
infinite and a<i finite, we see that a\ = coc for some finite c by Theorem (9.2), 
and thus a is the sum of finite elements. 

10. Structure of type III elements. This is quite simple. 

THEOREM (10.1). Let b ^ â where a is of type I I I ; then b = a\b. 
Since we have b = b P\ d = a\b, and as b and a\b are both purely infinite, 

we see that they are equal by Theorem (5.3). 
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