
The Journal of Symbolic Logic

Volume 88, Number 3, September 2023

STRUCTURAL PROPERTIES OF THE STABLE CORE

SY-DAVID FRIEDMAN, VICTORIA GITMAN, AND SANDRA MÜLLER

Abstract. The stable core, an inner model of the form 〈L[S],∈, S〉 for a simply definable predicate S,
was introduced by the first author in [8], where he showed that V is a class forcing extension of its stable
core. We study the structural properties of the stable core and its interactions with large cardinals. We show
that the GCH can fail at all regular cardinals in the stable core, that the stable core can have a discrete
proper class of measurable cardinals, but that measurable cardinals need not be downward absolute to the
stable core. Moreover, we show that, if large cardinals exist in V, then the stable core has inner models with
a proper class of measurable limits of measurables, with a proper class of measurable limits of measurable
limits of measurables, and so forth. We show this by providing a characterization of natural inner models
L[C1, ... , Cn ] for specially nested class clubs C1, ... , Cn , like those arising in the stable core, generalizing
recent results of Welch [29].

§1. Introduction. The first author introduced the inner model stable core while
investigating under what circumstances the universe V is a class forcing extension of
the inner model HOD, the collection of all hereditarily ordinal definable sets [8, 9].
He showed in [8] that there is a robust Δ2-definable class S contained in HOD such
that V is a class-forcing extension of the structure 〈L[S],∈, S〉, which he called the
stable core, by an Ord-cc class partial order P definable from S. Indeed, for any
inner model M, V is a P-forcing extension of 〈M [S],∈, S〉, so that in particular,
since HOD[S] = HOD, V is a P-forcing extension of 〈HOD,∈, S〉.

Let’s explain the result in more detail for the stable core L[S], noting that exactly
the same analysis applies to HOD. The partial orderP is definable in 〈L[S],∈, S〉 and
there is a generic filter G, meeting all dense sub-classes of P definable in 〈L[S],∈, S〉,
such that V = L[S][G ]. All standard forcing theorems hold for P since it has the
Ord-cc. Thus, we get that the forcing relation for P is definable in 〈L[S],∈, S〉 and
the forcing extension 〈V,∈, G〉 |= ZFC. However, this particular generic filter G is
not definable in V. To obtain G, we first force with an auxiliary forcing Q to add a
particular class F, without adding sets, such that V = L[F ]. We then show that G
is definable from F and F is in turn definable in the structure 〈L[S][G ],∈, S,G〉, so
that L[S][G ] = V . This gives a formulation of the result as a ZFC-theorem because
we can say (using the definitions of P and Q) that it is forced by Q that V = L[F ],
where F is V -generic for Q, and (the definition of) G is 〈L[S],∈, S〉-generic, and
finally that F is definable in 〈L[S][G ],∈, S,G〉. Of course, a careful formulation
would say that the result holds for all sufficiently large natural numbers n, where n
bounds the complexity of the formulas used.
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Without the niceness requirement on P that it has the Ord-cc, there is a much
easier construction of a class forcing notion P, suggested by Woodin, such that V
is a class forcing extension of 〈HOD,∈,P〉 (see the end of Section 2). At the same
time, some additional predicate must be added to HOD in order to realize all of
V as a class-forcing extension because, as Hamkins and Reitz observed in [13], it
is consistent that V is not a class-forcing extension of HOD. To construct such a
counterexample, we suppose that κ is inaccessible in L and force over the Kelley–
Morse model L = 〈VLκ ,∈, V Lκ+1〉 to code the truth predicate of VLκ (which is an
element of VLκ+1) into the continuum pattern below κ. The first-order part VLκ [G ]

of this extension cannot be a forcing extension of HODV
L
κ [G ] = VLκ (by the weak

homogeneity of the coding forcing), because the truth predicate of VLκ is definable
there and this can be recovered via the forcing relation.

While the definition of the partial order P is fairly involved, the stability predicate
S simply codes the elementarity relations between sufficiently nice initial segments
Hα (the collection of all sets with transitive closure of size less than α) of V. Given a
natural number n ≥ 1, call a cardinal α n-good if it is a strong limit cardinal andHα
satisfies Σn-collection. The predicate S consists of triples (n, α, �) such that n ≥ 1,
α and � are n-good cardinals andHα ≺Σn H� . We will denote by Sn the nth slice of
the stability predicate S, namely Sn = {(α, �) | (n, α, �) ∈ S}.1

Clearly the stable core L[S] ⊆ HOD, and the first author showed in [8] that it
is consistent that L[S] is smaller than HOD. The stable core is much more forcing
absolute than HOD. The model L[S] is clearly unaffected by forcings of size less
than the �th strong limit cardinal (because S is unaffected), and, assuming the
GCH, is preserved by forcing to code the universe into a real [8]. Jensen showed
that we can force over L to add a Π1

2-singleton r with a forcing of size continuum
(a subposet of Sacks forcing) [16]. The real r is obviously in HODL[r], and thus,
we can already change HOD with a forcing of size continuum. Also, the forcing to
code the universe into a real fails to preserve HOD whenever V �= L[a] for a set a
by Vopenka’s theorem that every set of ordinals is set-generic over HOD.

In order to motivate the many questions which arise about the stable core, let us
briefly discuss the set-theoretic goals of studying inner models.

The study of canonical inner models has proved to be one of the most fruitful
directions of modern set-theoretic research. The canonical inner models, of which
Gödel’s constructible universe L was the first example, are built bottom-up by a
canonical procedure. The resulting fine structure of the models leads to regularity
properties, such as the GCH and �, and sometimes even absoluteness properties.
But all known canonical inner models are incompatible with sufficiently large large
cardinals, and indeed each such inner model is very far from the universe in the
presence of sufficiently large large cardinals in the sense, for example, that covering
fails and the large cardinals are not downward absolute.

1Here we simplify the definition of S originally given in [8] to make it easier to work with. We do not
claim that the definitions are equivalent or that they produce the same model L[S], only that it is not
difficult to check that all the results from [8] still hold with the definition given here.
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The inner model HOD was introduced by Gödel, who showed that in a universe
of ZF it is always a model of ZFC. But unlike the constructible universe which
also shares this property, HOD has turned out to be highly non-canonical. While
L cannot be modified by forcing, HOD can be easily changed by forcing because
we can use forcing to code information into HOD. For instance, any subset of
the ordinals from V can be made ordinal definable in a set-forcing extension by
coding its characteristic function into the continuum pattern, so that it becomes an
element of the HOD of the extension. Indeed, by coding all of V into the continuum
pattern of a class-forcing extension, Roguski showed that every universe V is the
HOD of one of its class-forcing extensions [28]. Thus, any consistent set-theoretic
property, including all known large cardinals, consistently holds in HOD. At the
same time, the HOD of a given universe can be very far from it. It is consistent that
a universe can have measurable cardinals none of which are even weakly compact
in HOD, and that a universe can have a supercompact cardinal which is not even
weakly compact in HOD [2]. It is also consistent that HOD is wrong about all
successor cardinals [4].

Does the stable core behave more like the canonical inner models or more like
HOD? Is there a fine structural version of the stable core, does it satisfy regularity
properties such as the GCH? Is there a bound on the large cardinals that are
compatible with the stable core? Or, on the other hand, are the large cardinals
downward absolute to the stable core? Can we code information into the stable core
using forcing?

In this article, we show the following results about the structure of the stable core,
which answer some of the aforementioned questions as well as motivate further
questions about the structure of the stable core in the presence of sufficiently large
large cardinals.

Measurable cardinals are consistent with the stable core.

Theorem 1.1.

(1) The stable core of L[�], the canonical model for one measurable cardinal, is
L[�]. In particular, the stable core can have a measurable cardinal.

(2) Suppose that 〈κα | α ∈ Ord〉 is an increasing discrete sequence of measurable
cardinals. If �U = 〈Uα | α ∈ Ord〉, where Uα is a normal measure on κα , then
the stable core ofL[ �U ] isL[ �U ]. In particular, the stable core can have a discrete
proper class of measurable cardinals.

Theorem 1.1(1) is Corollary 4.3(1) and Theorem 1.1(2) is Theorem 4.6.
We can code information into the stable core over L or L[�] using forcing.

Theorem 1.2. Suppose P ∈ L is a forcing notion and G ⊆ P is L-generic. Then
there is a further forcing extension L[G ][H ] such that G ∈ L[SL[G ][H ]] (the universe
of the stable core). An analogous result holds for L[�].

Theorem 1.2 is Theorems 3.1 and 4.7.
An extension of the coding results shows that the GCH can fail badly in the stable

core.

Theorem 1.3.

(1) There is a class-forcing extension of L such that in its stable core the GCH fails
at every regular cardinal.
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(2) There is a class-forcing extension of L[�] such that in its stable core there is a
measurable cardinal and the GCH fails on a tail of regular cardinals.

Theorem 1.3(1) is Theorem 3.3 and Theorem 1.3(2) is Theorem 4.8.
Measurable cardinals need not be downward absolute to the stable core.

Theorem 1.4. There is a forcing extension ofL[�] in which the measurable cardinal
κ of L[�] remains measurable, but it is not even weakly compact in the stable core.

Theorem 1.4 is Theorem 5.1.
Although we don’t know whether the stable core can have a measurable limit of

measurables, the stable core has inner models with measurable limits of measurables,
and much more. Say that a cardinal κ is 1-measurable if it is measurable, and, for
n < �, (n + 1)-measurable if it is measurable and a limit of n-measurable cardinals.
Write m#

0 for 0# and m#
n for the minimal mouse which is a sharp for a proper class

of n-measurable cardinals, namely, an active mouse M such that the critical point
of the top extender is a limit of n-measurable cardinals in M. Here we mean mouse
in the sense of [26, Sections 1 and 2], i.e., a mouse has only total measures on its
sequence. The mousem#

n can also be construed as a fine structural mouse with both
total and partial extenders (see [31], Section 4).

Theorem 1.5. For all n < �, if m#
n+1 exists, then m#

n is in the stable core.

Theorem 1.5 is Theorem 6.8.
Moreover, we obtain the following characterization of natural inner models of

the stable core. Consider for n < �, the following class clubs:

Cn = {α | α is a strong limit cardinal and Hα ≺Σn V }.

We show in Proposition 2.3 that the clubs Cn are definable in L[S]. It is not difficult
then to see that they satisfy the hypothesis of the theorem below.

Theorem 1.6. Let n < � and suppose that m#
n exists. Then whenever

C1 ⊇ C2 ⊇ ··· ⊇ Cn
are class clubs of uncountable cardinals such that for every 1 < i ≤ n and every � ∈ Ci ,

〈H�,∈, C1, ... , Ci–1〉 ≺Σ1 〈V,∈, C1, ... , Ci–1〉,

then L[C1, ... , Cn] is a hyperclass-forcing extension of a (truncated ) iterate of m#
n .

An Ord-length iteration of the mouse m#
n produces a model M satisfying ZFC

without powerset whose largest cardinal is Ord. By truncating the model M at Ord,
we obtain the model VMOrd |= ZFC. The structure (VMOrd,∈, VMOrd +1) is a model of
the strong second-order set theory Kelley–Morse (with the Class Choice Principle).
In second-order set theory, hyperclass-forcing notions are definable partial orders
whose elements are classes (third-order objects). A forcing construction with
hyperclass-forcing notions can be made sense of over models of Kelley–Morse (with
the Class Choice Principle) for a certain class of nice enough partial orders. To
obtain Theorem 1.6, we will force over the structure (VMOrd,∈, VMOrd +1) with an
n-length iteration of Ord-length products of Prikry forcing. Since the Ord-length
product of Prikry forcing uses full support, conditions in this forcing are classes in
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the structure (VMOrd,∈, VMOrd +1), making it a hyperclass-forcing notion. Details of the
construction are provided in Section 7. Theorem 1.6 is Theorem 7.10.

§2. Preliminaries. Recall that, for a cardinal α, Hα is the collection of all sets x
with transitive closure of size less than α. If α is regular, then Hα satisfies ZFC–

(ZFC without the powerset axiom). But for singular α, Hα may fail to satisfy even
Σ2-collection.

The following proposition is standard.

Proposition 2.1. Suppose α and � are uncountable cardinals.

(1) Hα ≺Σ1 V .
(2) If Hα ≺Σm V , then Σm-collection holds in Hα . In particular, every Hα satisfies

Σ1-collection.
(3) If Hα ≺Σm H� and Σm-collection holds in H� , then it also holds inHα .

Proof. Let’s prove (1), which is a classical fact attributed to Lévy. Suppose
∃x ϕ(x, a) holds in V, where ϕ(x, a) is a Δ0-formula and a ∈ Hα . We can assume
without loss that a is transitive and has size at least �. Let X ≺Σ1 V be a Σ1-
elementary substructure of size |a| with a ∪ {a} ⊆ X , and let M be the Mostowski
collapse of X. Since M is transitive and has size |a|, it is inHα . Also, by elementarity,
M satisfies ∃x ϕ(x, a). So there is b ∈M such thatM |= ϕ(b, a). But sinceM ⊆ Hα
is transitive and ϕ(x, y) is a Δ0-assertion, it follows thatHα satisfies ϕ(b, a) as well.

Next, let’s prove (2). Fix a Σm-formula ϕ(x, y, z) and sets a, c ∈ Hα . Suppose that
Hα |= ∀x ∈ a ∃y ϕ(x, y, c). Then, by Σm-elementarity, for every ā ∈ a, ∃y ϕ(ā, y, c)
holds in V. Thus, V satisfies ∀x ∈ a ∃y ϕ(x, y, c). In V, by collection, there is a set
b such that ∀x ∈ a ∃y ∈ b ϕ(x, y, c) holds. So V satisfies

	(c) := ∃z ∀x ∈ a ∃y ∈ z ϕ(x, y, c).

If m = 1, then 	(c) is a Σ1-assertion. Hence Hα |= 	(c) by elementarity. Thus,
we have verified Σ1-collection in Hα . If m > 1, we can suppose inductively that we
have verified Σm–1-collection in Hα . In this case, the formula 	(c) is equivalent by
Σm–1-collection to a Σm-formula 	̄(c). By Σm-elementarity, Hα |= 	̄(c). But then
Hα |= 	(c) since it satisfies Σm–1-collection by assumption. An analogous argument
shows (3). �

It follows immediately from Proposition 2.1(1) that the strong limit cardinals of
V are definable in the stable core.

Corollary 2.2. The class of strong limit cardinals of V is definable in the stable
core 〈L[S],∈, S〉. Indeed, α is a strong limit cardinal if and only if there is a cardinal
� such that (α, �) ∈ S1.

The stable core can also define, for each n, the class club Cn (introduced in the
introduction) of all strong limit cardinals α such thatHα ≺Σn V .

Proposition 2.3. For every n < �, the class club Cn is definable in the stable core.

Proof. The class club C1 is definable because it is precisely the class of all strong
limit cardinals. Now suppose inductively that the club Ci is definable for some
i ≥ 1. Let’s argue that Ci+1 is precisely the collection of all α ∈ Ci such that for
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cofinally many � ∈ Ci , we have 〈α, �〉 ∈ Si+1. If α is a strong limit cardinal such
thatHα ≺Σi+1 V , then clearly α ∈ Ci and there are cofinally many � ∈ Ci for which
Hα ≺Σi+1 H� . Next, suppose that α ∈ Ci and for cofinally many � ∈ Ci , Hα ≺Σi+1

H� . Suppose V satisfies ∃x ϕ(x, a), where ϕ is a Πi -formula. Then there is a set b
such that ϕ(b, a) holds in V. Choose a large enough � ∈ Ci withHα ≺Σi+1 H� such
that b ∈ H� . Thus,H� |= ϕ(b, a), and henceH� |= ∃x ϕ(x, a). SinceHα ≺Σi+1 H� ,
Hα |= ∃x, ϕ(x, a) as well. This completes our verification that Hα ≺Σi+1 V . �

Given a cardinal α, let H<α denote the relation consisting of pairs 〈�,H�〉 for
� < α.

Proposition 2.4. For m ≥ 1 and strong limit cardinals α and � , Hα ≺Σm+1 H� if
and only if 〈Hα,∈, H<α〉 ≺Σm 〈H�,∈, H<�〉.

Proof. For the forward direction, observe that the relation H<α is Π1-definable
and amenable over Hα , which implies that predicates which are Σm-definable over
〈Hα,∈, H<α〉 are Σm+1-definable overHα . So let’s focus on the backward direction.
First, observe that a Σ2-formula ∃x ∀y ϕ(x, y, a) holds in Hα if and only if the
Σ1-formula

∃z [z = (�,H�) ∧ ∃x ∈ H� ∀y ∈ H� ϕ(x, y, a)]

holds in 〈Hα,∈, H<α〉, and a Π2-formula ∀x ∃y ϕ(x, y, a) holds in Hα if and only
if the Π1-formula

∀z[z = (�,H�) → ∀x ∈ H� ∃y ∈ H� ϕ(x, y, a)]

holds in 〈Hα,∈, H<α〉. Both equivalences follow from Proposition 2.1(1) and the
fact that α and � are strong limits. Thus, the complexity of any assertion is reduced
by 1. �

Proposition 2.5. Suppose 1 ≤ m < �, α and � are strong limit cardinals, P ∈ Hα
is a partial order, and G ⊆ P is V-generic. For (1) and (2), suppose additionally that
Hα |= Σm-collection.

(1) The Definability Lemma and Truth Lemma for Σm-formulas hold for P in Hα .
Indeed, if ϕ(x̄) is a Σm-formula, then the relation p � ϕ(x̄) is also Σm inHα .

(2) Hα ≺Σm H� if and only if

HV [G ]
α = Hα[G ] ≺Σm H� [G ] = HV [G ]

� .

(3) Hα satisfies Σm-collection if and only ifHα[G ] satisfies Σm-collection.

Proof. The argument for (1) actually works for all cardinals α and � , not just
strong limits. We argue that the standard definition of the forcing relation works
in Hα . Suppose, for instance, that Hα satisfies p � 
 = � for P-names 
, � ∈ Hα
and let H ⊆ P be V -generic with p ∈ H . The relation p � 
 = � is a Σ1-assertion
stating that a tree exists witnessing the recursive definition of 
 = � in terms of
names of lower rank (in fact, the assertion is Δ1 because we can say “for every tree
obeying the recursive definition...”). So by Σ1-elementarity, p � 
 = � holds in V,
and hence 
H = �H . Conversely, suppose that 
H = �H for some V -generic filter
H ⊆ P. Then there is p ∈ H such that p � 
 = �, and hence, by Σ1-elementarity,
p � 
 = � holds in Hα as well. The remainder of the argument is by induction on
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the complexity of formulas. For instance, let’s argue for negations. Suppose that the
standard definition of the forcing relation holds inHα for a formula ϕ. By definition
of the forcing relation, p � ¬ϕ if for every q ≤ p, q does not force ϕ, but clearly this
holds in Hα if and only if it holds V provided that they agree on what it means for
q to force ϕ, which is the inductive assumption.

The argument that the definition of the forcing relation for a Σm-formula is
itself Σm is also standard. The collection assumption is required to make sure that
a formula is equivalent to its normal form where all the bounded quantifiers are
pushed to the back. The argument above already shows that for formulae of the form
“
 = �” the forcing relation is Δ1. Let’s argue for instance that for Δ0-formulas, the
complexity of the forcing relation is Δ1. Say p � ∃x ∈ 
 ϕ(x, 
), where ϕ(x, y) is a
Δ0-formula and by induction q � ϕ(x, y) is a Δ1-relation. Then p � ∃x ∈ 
 ϕ(x, 
)
holds if and only if for every q ≤ p, there is r ≤ q and � ∈ dom(
) such that
r � ϕ(�, 
), and of course, quantification over elements of P is obviously bounded.

Now let’s prove (2). We start with the forward direction, which is standard.
Suppose that Hα ≺Σm H� . Clearly, since P ∈ Hα , we have Hα[G ] = HV [G ]

α and
similarly for H� . If a Σm-assertion ϕ holds in Hα[G ], then there is some p ∈ G
such that p � ϕ holds in Hα , which is also a Σm-assertion by (1), and so p � ϕ
holds inH� , meaning thatH� [G ] satisfies ϕ.

Next, let’s prove the backward direction. Suppose that Hα[G ] ≺Σm H� [G ]. The
argument for m = 1 is trivial since if α and � are cardinals in V [G ], then they
are also obviously cardinals in V, and so the result follows by Proposition 2.1(1).
So suppose that m ≥ 2. Since P ∈ Hα , α remains a strong limit in V [G ]. Thus,
Hα[G ] = HV [G ]

α has a definable hierarchy consisting ofHV [G ]
� for regular � < α. The

existence of such a hierarchy suffices for the standard Δ2-definition of the ground
model in a forcing extension (due independently to Woodin [30] and Laver [22]) to go
through, so thatHα is Δ2-definable inHα[G ]. Indeed, examining the definition shows
that 〈Hα,∈, H<α〉 is Δ1-definable in 〈Hα[G ],∈, (H<α)V [G ]〉. Now suppose that Hα
satisfies a Πm-assertion ϕ(a), and let ϕ∗(a) be the equivalent Πm–1-assertion which
holds in 〈Hα,∈, H<α〉. Since 〈Hα,∈, H<α〉 is Δ1-definable in 〈Hα[G ],∈, (H<α)V [G ]〉,
there is a Πm–1-assertion ϕ∗∗(a) expressing in 〈Hα[G ],∈, (H<α)V [G ]〉 that ϕ∗(a)
holds in 〈Hα,∈, H<α〉. By Proposition 2.4,

〈Hα[G ],∈, (H<α)V [G ]〉 ≺Σm–1 〈H� [G ],∈, (H<�)V [G ]〉.

Thus, 〈H� [G ],∈, (H<�)V [G ]〉 satisfies ϕ∗∗(a), and therefore ϕ∗(a) holds in 〈H�,∈,
H<�〉. So finally, ϕ(a) holds inH� .

Finally, let’s prove (3). Again, we start with the standard forward direction.
Suppose thatHα satisfies Σm-collection. Let ϕ(x, y) and a be such that

Hα[G ] |= ∀x ∈ a ∃y ϕ(x, y).

So there is some p ∈ G and a name ȧ for a such that p � ∀x ∈ ȧ ∃y ϕ(x, y). Fix a
name 
 ∈ dom ȧ and apply Σm-collection in Hα to the statement

∀q ≤ p ∃y (q � 
 ∈ ȧ → q � ϕ(
, y))

to obtain a collecting set y
 . Next, apply Σm-collection in Hα , to the statement

∀x ∈ dom ȧ ∃z ∃q ≤ p (q � x ∈ ȧ → ∃y ∈ z q � ϕ(x, y)),
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which holds by the previous step because yx witnesses it for x, to obtain a collecting
set B. We can assume without loss that B consists only of P-names and let
ḃ = {(y, p) | y ∈ B}. It is not difficult to see that ḃG gives the collecting set in
Hα[G ].

For the backward direction, assume that Hα[G ] satisfies Σm-collection and let
ϕ(x, y) and a be such that Hα satisfies ∀x ∈ a ∃y ϕ(x, y). Again, the case m = 1
is trivial since cardinals are downward absolute, so we can assume m ≥ 2 and use
the Δ1-definability of 〈Hα,∈, H<α〉 in 〈Hα[G ],∈, (H<α)V [G ]〉. Thus, we can apply
Σm-collection in Hα[G ] to obtain a set b collecting witnesses for ϕ(x, y). Since P
can be assumed to have size less than α, we can cover b ∩ V with a set b̄ of size less
than α in V. So b̄ ∈ Hα . �

It follows from Proposition 2.5(2) and (3) that only an initial segment of the
stability predicate can be changed by set forcing. So the stable core is at least
partially forcing absolute.

Corollary 2.6. If P ∈ H� is a forcing notion and G ⊆ P is V-generic, then
(n, α, �) ∈ S if and only if (n, α, �) ∈ SV [G ] for all α, � ≥ �. So, in particular, S
and SV [G ] agree above the size of the forcing.

Next, let’s give an argument that consistently the stable core can be a proper
submodel of HOD. The fact follows from results in [8], but here we give a simplified
argument suggested to the second author by Woodin.

Proposition 2.7. It is consistent that L[S] � HOD.

Proof. Start in L and force to add a Cohen real r. Next, force to code r into
the continuum pattern on the ℵn’s and let H be L[r]-generic for the coding forcing
P (the full support �-length product forcing on coordinate n with Add(ℵn,ℵn+2)
whenever n ∈ r and with trivial forcing otherwise). Observe that HODL[r][H ] = L[r]
because it has r, which the forcing P made definable, and it must be contained in
L[r] because P is weakly homogeneous. We would like to argue that the stable core
of L[r][H ] is L. By Corollary 2.6, the stable core of L[r] is L. So it remains to argue
that forcing with P does not change the stable core. The forcing P preserves that ℵ�
is a strong limit cardinal because it forces 2ℵn ≤ ℵn+2 for all n < �, and it preserves
all larger strong limit cardinals because it is small in size relative to them. So the
strong limit cardinals of L[r] are the same as in L[r][H ]. By Corollary 2.6, only
triples (n,ℵ�, �) with n ≥ 2 in S can be affected by P. But for n ≥ 2, (n,ℵ�, �) can
never make it into any stability predicate because Hℵ� believes that there are no
limit cardinals and H� sees ℵ� . �

We end the section with a brief description of a class forcing notion P making no
use of the stability predicate such that V is a class generic extension of 〈HOD,∈,P〉
(this possibility was first suggested by Woodin). Conditions in P are triples (α,ϕ, �),
where α < � are ordinals, ϕ is a formula with ordinal parameters below � which
defines in V� a non-empty subset X (α,ϕ, �) of P(α). The ordering is given by
(α∗, ϕ∗, �∗) ≤ (α,ϕ, �) whenever α ≤ α∗ and for all y ∈ X (α∗, ϕ∗, �∗), y ∩ α ∈
X (α,ϕ, �). Observe that P is a V -definable class contained in HOD, and hence
〈HOD,∈,P〉 |= ZFC. It is not difficult to see that if A is an Ord-Cohen generic class
of ordinals, then the collection G(A) = {(α,ϕ, �) ∈ P | A ∩ α ∈ X (α,ϕ, �)} is P-
generic over V. But since we can easily recover A from G(A) and clearly V = L[A],
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we have that V = L[G(A)]. In particular, we get that G(A) is 〈HOD,∈,P〉-generic
and HOD[G(A)] = L[G(A)] = L[A] = V . However, unlike the forcing in [8], P
does not have the Ord-cc.

§3. Coding into the stable core over L. We will argue that any set added generically
over L can be coded into the stable core of a further forcing extension. It is easiest
to code into the strong limit cardinals (because these are always definable in the
stable core), but we will show that we can actually code into any mth slice Sm of the
stability predicate.

Theorem 3.1. Suppose P ∈ L is a forcing notion and G ⊆ P is L-generic. Then for
every m ≥ 1, there is a further forcing extension L[G ][H ] such that G ∈ L[SL[G ][H ]

m ].

Proof. We can assume via coding that G ⊆ κ for some cardinal κ. Also, since P
is a set forcing, GCH holds on a tail of the cardinals in L[G ], and so on a tail, the
strong limit cardinals coincide with the limit cardinals. Also, on a tail, SL agrees
with SL[G ] by Corollary 2.6.

We work in L. High above κ, we will define a sequence 〈(��, �∗� ) | � < κ〉 of coding
pairs such that (��, �∗� ) ∈ SLm. The coding forcing C will be defined so that ifH ⊆ C

is L[G ]-generic, then we will have � ∈ G if and only if (��, �∗� ) ∈ SL[G ][H ]
m . Since

L[SL[G ][H ]
m ] can construct L, it will have the sequence of the coding pairs as well as

SL[G ][H ]
m , so that all the information put together will allow it to recover G.
Call a strong limit cardinal α m-stable if Hα ≺Σm L. Observe that there is a

proper class of m-stable cardinals and if α and � are both m-stable, then the pair
(α, �) ∈ SLm. Let 
0 be the least strong limit cardinal above κ. Let �0 be the least
m-stable cardinal above 
0 of cofinality 
+

0 and let �∗0 be the least m-stable cardinal
above �0. Now supposing we have defined the pairs (��, �∗� ) of m-stable cardinals
for all � < �, let 
� be the supremum of the �∗� for � < �, let �� be the least m-
stable cardinal above 
� of cofinality 
+

� , and let �∗� be the least m-stable cardinal
above �� . In particular, �� > 
+

� since, by m-stability, �� is a strong limit cardinal.
Note that the sequence 〈(��, �∗� ) | � < κ〉 is Σm+1-definable over L. Note also that
�� < �

∗
� < �� < �

∗
� for all � < � < κ and for limit � < κ, �� >

⋃
�<� �� , so that the

sequence of the �� will be purposefully discontinuous. Since the forcing P is small
relative to 
0, by Corollary 2.6, the coding pairs (��, �∗� ) ∈ SL[G ]

m .
Now for � < κ, let C� be the following forcing. If � ∈ G , then C� is the trivial

forcing. If � /∈ G , then C� = Coll(
+
� , ��). Let C be the full support product Π�<κC�

and letH ⊆ C be L[G ]-generic.
Let’s check thatC collapses the minimum number of cardinals, namelyC collapses

a cardinal 
 if and only if there is a non-trivial forcing stage � such that 
+
� < 
 ≤ �� .

For every � < κ, the forcing C factors as Π�<�C� × Π�≤�<κC�, where the second
part is <
+

� -closed (using full support), and so cannot collapse any cardinals ≤ 
+
� .

Observe next that the forcing Coll(
+
� , ��) has size �


�
� = �� because cf(��) > 
�

by our choice of �� , and so cannot collapse any cardinal ≥ �+
� . It follows that the

forcing C cannot collapse any 
 ∈ (��, 
+
�+1]. It remains to show that 
� and 
+

� for
a limit � are preserved. By what we already showed, 
� is a limit of cardinals in
the forcing extension, and therefore remains a cardinal. Also, by what we already
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showed, if 
+
� is collapsed, then it must be collapsed to 
�. Suppose this happens

and fix a bijection f : 
� → 
+
� in the forcing extension. We can let f =

⋃
�<� f� ,

where f� : �� → 
+
� and the �� are cofinal in 
�. Each function f� must be added

by some proper initial segment of Π�<�C� by closure, and therefore its range must
be bounded in 
+

� . Now build a descending sequence of conditions 〈p� | � < �〉 in
Π�<�C� such that p� decides the bound on the range of f� . But then any condition
p below the entire sequence forces that f is bounded in 
+

� , which is the desired
contradiction.

By the following claim, the forcing C also preserves the GCH where the coding
forcing takes place, so the strong limit cardinals of L[G ][H ] are precisely the limit
cardinals there.

Claim 1. The GCH continues to hold on the part where it holds in L[G ] in the
forcing extension L[G ][H ] by C.

Proof. By closure, it is clear that wherever the GCH held below 
+
0 , it will

continue to hold. Since G ⊆ κ, GCH holds in L[G ] above 
0.
If there is trivial forcing at stage 0, then the GCH holds at 
+

0 in L[G ][H ]. So
suppose that C0 = Coll(
+

0 , �0) is a non-trivial stage. Recall that Coll(
+
0 , �0) has

size �0 so that there are �+
0 -many nice names for subsets of 
+

0 (and of course in
L[G ][H ], (
+

0 )+ = (�+
0 )L[G ]), which shows that the GCH holds at 
+

0 in L[G ][H ] in
this case as well.

Now suppose inductively that the GCH holds up to some cardinal �. If � = 
+
� for

a successor ordinal �, we repeat the argument for � = 0. If 
+
� < � < 


+
�+1 and there

was non-trivial forcing at stage �, then �� < � < 
+
�+1, and so the GCH continues

to hold because the initial forcing is small relative to � and the tail forcing is
closed. Next, suppose � = 
+

� for a limit cardinal � < κ. Since � is a limit, the
initial segment forcing Π�<�C� has size at most 
+

� . This means that there are (
+
� )+-

many nice-names for subsets of 
+
� , so that the GCH holds at � = 
+

� . Finally,
suppose � = 
�. Each A ⊆ 
� is uniquely determined by the sequence 〈A� | � < �〉
with A� = A ∩ �� . Let ḟ� be a name for an injection from P(��) into 
�, which
exists since, by assumption, the GCH holds below 
� in L[G ][H ]. Let’s argue that
every sequence 〈A� | � < �〉 such that A� ⊆ �� in the extension has a name of the
form Ȧ, where Ȧ(�) = ḟ–1

� (�) for some � ∈ 
�. Let Ḃ be any name for the sequence
〈A� | � < �〉 and p′ ∈ H be a condition forcing that Ḃ is a sequence of the right
form. Below p′, we build a descending sequence p� for � < � of conditions deciding
that Ḃ(�) = ḟ–1

� (��) for some fixed �� < 
�. By closure, there is some p below the
entire sequence. So by density, there is some such p ∈ H . It follows that there are at
most as many subsets of 
� in the extension as there are functions f : �→ 
� in the
ground model, and there are 
+

� -many such functions. �

Now we will argue that the pair (��, �∗� ) belongs in SL[G ][H ]
m if and only if

� ∈ G . If � /∈ G , then �� is not even a cardinal in L[G ][H ], and therefore certainly
(��, �∗� ) /∈ SL[G ][H ]

m . Suppose that � ∈ G , so that there is trivial forcing at stage �. By
what we already argued about which cardinals are collapsed in L[G ][H ], it follows
that �� and �∗� are limit cardinals there. Let Csmall = Π�<�C� and Ctail = Π�<�<κC�,
and note that since there is no forcing at stage �, C factors as Csmall × Ctail.
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LetHsmall ×Htail be the corresponding factoring of the generic filter H. Since Ctail is
≤ �∗� -closed, we have that HL[G ][H ]

��
= HL[G ][Hsmall]

��
and HL[G ][H ]

�∗
�

= HL[G ][Hsmall]
�∗
�

. By

Proposition 2.5(3), HL[G ][Hsmall]
��

satisfies Σm-collection and by Proposition 2.5(2),

H
L[G ][Hsmall]
��

≺Σm H
L[G ][Hsmall]
�∗
�

. �

It follows from Theorem 3.1 that (consistently) the stable core is not a fine-
structural or in any sense canonical inner model. Among the numerous corollaries
of Theorem 3.1 are the following.

Corollary 3.2.

(1) The GCH can fail on an arbitrarily large initial segment of the regular cardinals
in the stable core.

(2) An arbitrarily large ordinal of L can be countable in the stable core.
(3) MA + ¬CH can hold in the stable core.

Proof. For (1), we force over L to violate the GCH on an initial segment of
the regular cardinals, and then code all the subsets we add into the stable core of the
forcing extension by the coding forcing C. For (2), we force over L to collapse the
ordinal, and then code the collapsing map into the stable core of the forcing extension
by the coding forcing C. For (3), we force Martin’s Axiom with 2� = κ, where κ
is uncountable and regular, to hold over L, and let L[G ] be the forcing extension.
We then code the G into the stable core of the forcing extension high above κ. Any
ccc partial order P on κ in the stable core of the coding extension already exists
in L[G ], and therefore G will have added a partial generic filter (meeting some less
than continuum many dense sets) for it. �

Theorem 3.3. It is consistent that the GCH fails at all regular cardinals in the
stable core.

Proof. The idea will be to force the GCH to fail at all regular cardinals over L,
and then use Ord-many coding pairs to code all the added subsets into the stable
core of a forcing extension. In this argument, we will code into the limit cardinals,
namely S1, by using generalized Cohen forcing instead of the collapse forcing.

In L, let P be the Easton support Ord-length product forcing with Add(κ, κ++)
at every regular cardinal κ, and let G ⊆ P be L-generic. Standard arguments show
that in L[G ], 2κ = κ++ for every regular cardinal κ, while the GCH continues to
hold at singular cardinals (see, for example, [15]). Since 〈L[G ],∈, G〉 has a definable
global well-order, we can assume via coding that G ⊆ Ord (and define the coding
forcing in this expanded structure).

We first work in L. Let 
0 be the least strong limit cardinal. Above 
0, we will define
a sequence 〈(��, �∗� ) | � ∈ Ord〉 of coding pairs of strong limit cardinals. Let �0 < �

∗
0

be the next two strong limit cardinals above 
0. Now supposing we have defined
the pairs (��, �∗� ) of strong limit cardinals for all � < �, let 
� be the supremum of
the �∗� for � < � and let �� < �∗� be the next two strong limit cardinals above 
� .
Observe that every strong limit cardinal of L remains a strong limit in L[G ], and so
in particular, the elements �� and �∗� of the coding pairs are strong limits in L[G ].

For each ordinal �, let C� be the following forcing. If � ∈ G , then C� is the
trivial forcing. So suppose that � /∈ G . If 
� is singular, we let C� = Add(
+

� , ��)
(the partial order to add ��-many Cohen subsets to 
+

� with bounded conditions),
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and otherwise, we let C� = Add(
�, ��). Let’s argue that all forcing notions C�
are cardinal preserving. If 
� is singular, then the GCH holds at 
� , and therefore

Add(
+
� , ��) has the (2<


+
� )+ = (2
� )+ = 
++

� chain condition, which means that it
preserves all cardinals. If 
� is regular, then it is inaccessible because it is always a limit
cardinal, and therefore Add(
�, ��) preserves all cardinals. Obviously, every non-
trivial forcing C� destroys the strong limit property of �� in the forcing extension.

Let C be the Ord-length Easton support product Π�∈OrdC� . Let’s argue that the
forcing notion C is also cardinal preserving. Observe first that if 
� is singular,

then the initial segment Π�<�C� has size 


�
� = 
+

� since the GCH holds at 
� . If 
� is
regular, then 
� is inaccessible, so that conditions in Π�<�C� are bounded, and hence

Π�<�C� has size 

<
�
� = 
� . Now we can argue that if 
+

� < � < 
�+1 is a cardinal, then
it remains a cardinal in the forcing extension by C because by previous calculations,
the initial segment Π�<�C� × C� cannot collapse �, and the tail forcing is highly
closed. Cardinals of the form 
�+1 cannot be collapsed because the successor stage
forcings are cardinal preserving. It remains to consider cardinals of the form 
� and

+
� for a limit cardinal �. By what we already showed, 
� is a limit of cardinals in

the forcing extension, and hence must be a cardinal itself. If 
� is regular, then it is
inaccessible, and hence the initial segment Π�<�C� is too small to collapse 
+

� . So
suppose that 
� is singular with cof(
�) = � < 
�. By regrouping the product, we
can view the forcing Π�<�C� as a product of length �, which is <�-closed on a tail.
Thus, an analogous argument to the one given in the proof of Theorem 3.1 shows
that 
+

� cannot be collapsed to 
� in this case, completing the proof that C is cardinal
preserving. In particular, this implies that the GCH continues to fail at all regular
cardinals in any forcing extension by C.

Let H ⊆ C be L[G ]-generic. For each � ∈ Ord, we can factor C as the product
Π�<�C� × Π�≤�C�, where the tail forcing Π�≤�C� is <
�-closed since we used Easton
support. Note that since C is a progressively closed class product, it preserves ZFC
to the forcing extension L[G ][H ] [27].

Suppose � < κ is a trivial stage of forcing in C. Let Csmall = Π�<�C� and Ctail =
Π�<�C�. The forcing Csmall has size at most 
+

� , and therefore cannot destroy the
strong limit property of �� and �∗� , and neither can Ctail, which is <�∗� -closed. It
follows that �� and �∗� remain strong limits in L[G ][H ]. �

In the above result, we coded the subsets added by G into S1. Let’s see what
it would take to code subsets added by G into the mth slice Sm of the stability
predicate form ≥ 2. The main problem is that if α is a singular cardinal, then P � α
has unbounded support in α, and therefore P � α is not a class forcing over Hα ,
which prevents us from using standard lifting arguments to go fromHLα ≺Σm H

L
� to

HL[G ]
α ≺Σm H

L[G ]
� . The construction would go through for m, if we assume that L has

a proper class of inaccessible cardinals α such thatHLα ≺Σm+1 L. The class forcing P
is Δ2-definable, so the forcing relation for Σm-formulas is Σm+1-definable. Using this,
we can argue that ifHLα ≺Σm+1 H

L
� , thenHL[G ]

α = HLα [G ] ≺Σm H
L
� [G ] = HL[G ]

� .
Finally, let’s note that if we only wanted the GCH to fail cofinally, then we could

force in a single step to add κ++-many subsets to some κ, followed by the forcing to
code the sets into the stable core, and do this for cofinally many cardinals, spacing
them out enough to prevent interference.
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§4. Measurable cardinals in the stable core. In [18], Kennedy, Magidor, and
Väänänen studied properties of the model 〈L[Card],∈,Card〉 for the class Card
of cardinals of V. They showed that if there is a measurable cardinal, then L[�],
the canonical model for a single measurable cardinal, is contained in L[Card]. In
particular, L[Card]L[�] = L[�], which shows that L[Card] can have a measurable
cardinal. Recently, Welch showed that ifm#

1 exists, then L[Card] is a certain Prikry-
type forcing extension of an iterate ofm#

1 adding Prikry sequences to all measurable
cardinals in it [29]. It follows from this that, in the presence of sufficiently large large
cardinals, the model L[Card] satisfies the GCH and has no measurable cardinals,
although it does have an inner model with a proper class of measurables.

We adapt techniques of [18] to show that if there is a measurable cardinal, then,
for everym ≥ 1,L[�] is contained inL[Sm]. In particular,L[SL[�]] = L[�], showing
that the stable core can have a measurable cardinal. Indeed, we improve this result
to show that the stable core can have a discrete proper class of measurable cardinals.

Let’s start with the following easy proposition showing that if 0# exists, then it is
in the stable core.

Proposition 4.1. If 0# exists, then 0# ∈ L[Sm] for every m ≥ 1.

Proof. Every L[Sm] has many increasing �-sequences of V -cardinals, so fix
some such sequence 〈αn | n < �〉. We have that ϕ(x0, ... , xn–1) ∈ 0# if and only if
Lαn |= ϕ(α0, ... , αn–1). �

Theorem 4.2. Suppose that κ is a measurable cardinal and L[�] is the canonical
inner model with a normal measure � on κ. Then L[�] ⊆ L[Sm] for every m ≥ 1.

The proof of this theorem uses techniques from the proof of Kunen’s Uniqueness
Theorem ([19], [20], for a modern account, see, for example, [15, Theorem 19.14])
and is following the idea of Theorem 9.1 in [18].

Proof of Theorem 4.2. We will first argue that for some sufficiently large �, the
normal measure �� on the �th iterated ultrapower ofL[�] by � is inL[Sm], and then
find in L[Sm] an elementary substructure of size (κ+)V of an initial segment L� [��],
for some very large � (in particular, ensuring that �� ∈ L� [��]), of the iterate that
will collapse to L�̄ [�]. Since we were able to choose the substructure to be of size
(κ+)V , �̄ ≥ (κ+)L[�], ensuring that L�̄ [�] contains �.

We can assume that � ∈ L[�]. We work in V and fix m ≥ 1. Let � > κ+ be a
strong limit cardinal with unboundedly many α in � such that (α, �) ∈ Sm. Let
j� : L[�] → L[��] be the embedding given by the �th iterated ultrapower of L[�]
by �, so that in L[��], �� is a normal measure on the cardinal � = j�(κ) (by [17,
Corollary 19.7], for all cardinals � > κ+, the �th element of the critical sequence
is �). Let 〈κ� | � < �〉 be the critical sequence of the iteration by �. Finally, let F
denote the filter generated by the tails

A� = {� < � | � ≤ � such that (�, �) ∈ Sm}

for � < �. We will argue that L[��] = L[F ]. It will follow that L[��] ⊆ L[Sm] since
L[Sm] can compute L[F ] from Sm.
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First, let’s argue that �� ⊆ F . Suppose X ∈ ��. Then there must be a � < � such
that {κ� | � ≤ � < �} ⊆ X (see [17, Lemma 19.5]). As κ� = � for every sufficiently
large cardinal � < � (see [17, Corollary 19.7]), it follows that

{� < � | � ′ ≤ � and � is a cardinal} ⊆ X

for some � ′ < �. In particular, A�′ ⊆ X , and thus X ∈ F . But now since �� is
an ultrafilter in L[��] and F is a filter, it follows that F ∩ L[��] ⊆ �� and hence
F ∩ L[��] = ��. From here it is not difficult to see that L[��] = L[F ], and hence
L[��] ⊆ L[Sm].

Now we will define in L[Sm], a sequence of length (κ+)V whose elements
will generate the desired elementary substructure. Recall that if � is a strong
limit cardinal of cofinality greater than κ and moreover � > � (the length of the
iteration), then j�(�) = � (see [17, Corollary 19.7]). Let �∗ � � be a strong limit
cardinal of cofinality greater than (κ+)V such that the set S�

∗
m = {� | (�, �∗) ∈ Sm}

is unbounded in �∗. Let �0 be the (κ+)V th element of S�
∗
m above �. Inductively,

let ��+1 be the (κ+)V th element of S�
∗
m above �� and �
 =

⋃
�<
 �� for limit

ordinals 
. Let A = {��+1 | � < (κ+)V }. As (κ+)V is regular (in V), it follows that
cfV (��+1) = (κ+)V for all ��+1 ∈ A. Therefore each element of A is fixed by the
iteration embedding j�.

Fix � above the supremum of A. Let X ≺ L� [��] be the Skolem hull of κ ∪ A in
L� [��], and note that X ∈ L[Sm]. Let N denote the Mostowski collapse of X, and
let


 : N → X ≺ L� [��]

be the inverse of the collapse embedding. Note that � is in X as it is definable as the
unique measurable cardinal in L� [��]. In fact, 
(κ) = � by the following argument.
As X is generated by elements from j�“L[�], it is contained in j�“L[�] ≺ L[��].
But there is no � ∈ j�“L[�] with κ < � < �, so � has to collapse to κ. Finally, since
|A| = (κ+)V and 
(κ) = �, the collapse N has the form L�̄ [�] with � a normal
measure on κ and �̄ an ordinal of size (κ+)V . By Kunen’s Uniqueness Theorem
(see, for example, [15, Theorem 19.14]), N = L�̄ [�], and thus L�̄ [�] ∈ L[Sm]. So
L[�] ⊆ L[Sm], as desired. �

Corollary 4.3.

(1) We have L[SL[�]] = L[�]. In particular, it is consistent that the stable core has
a measurable cardinal.

(2) LetKDJ denote the Dodd–Jensen core model below a measurable cardinal. Then
KDJ ⊆ L[S], and hence L[SK

DJ
] = KDJ .

(3) If 0† exists, then 0† ∈ L[S].

Proof. (1) follows immediately from Theorem 4.2 by applying it inside
V = L[�].

For (2) we first recall the definition of the Dodd–Jensen core modelKDJ from [5].
We call a transitive model M of the formM = 〈Jα[U ],∈, U 〉 a Dodd–Jensen mouse if
M satisfies that U is a normal measure on some κ < α, all of the iterated ultrapowers
of M by U are well-founded, and M has a fine structural property implying that
M = HullM1 (� ∪ p) (the Σ1-Skolem closure of M) for some ordinal � < κ and some
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finite set of parameters p ⊆ α (see [5, Definition 5.4]). The Dodd–Jensen core
model KDJ = L[M], where M is the class of all such Dodd–Jensen mice (see
[5, Definition 6.3] or, for a modern account, [26]). So we need to argue that every
such mouse M is in L[S]. We essentially follow the proof of Theorem 4.2 to show
that some �th iterate M� of M is in L[S]. Then we argue that M ∈ L[M�] as, by
Σ1-elementarity of j�, M is isomorphic to HullM�1 (� ∪ j�(p)). Hence,M ∈ L[S].

For (3), since the strong limit cardinals of V are definable in L[S], the result for
0† follows from Theorem 4.2 as in the proof of Proposition 4.1. �

By analyzing the proof of Theorem 4.2, we see that what it really used was not Sm,
but the class club Cm (of all strong limit cardinals α such that Hα ≺Σm V ) which
is, of course, definable from Sm. Thus, abstracting away the argument, we see that
the proof of Theorem 4.2 relied on the fact that for a certain club C of cardinals
(namely Cm), L[�] ⊆ L[C ] and L[C ] ⊆ L[S]. The following result shows that this
argument with one club C cannot be pushed further to show that stronger large
cardinals are in the stable core. Given a club C, we will denote by Ĉ , the collection
of all successor elements of C together with its least element.

Theorem 4.4 [29]. Suppose that C is a class club of uncountable cardinals. Then
there is an Ord-length iteration of the mouse m#

1 such that in the direct limit model
MC (truncated at Ord), the measurable cardinals are precisely the elements of Ĉ .

Proof. Let κ̄ be the critical point of the top measure of m#
1 . Let 〈α� | � ∈ Ord〉

be the increasing enumeration of C.
Iterate the first measurable cardinal κ0 of m#

1 α0-many times, so that κ0 iterates
to α0, and letMα0 be the iterate. Sincem#

1 is countable,Mα0 has cardinality α0, and
hence the critical point of the top measure κ̄α0 , the image of κ̄ inMα0 , is below α1.
In particular, the next measurable cardinal κ1 above α0 in Mα0 is below α1 and
we can iterate it to α1 by iterating it α1-many times. Repeat this for all successor
ordinals � and take direct limits along the iteration embeddings at limit stages with
the following exception.

Suppose we have carried out the construction for a limit �-many steps resulting
in the model M� , where κ̄� is the critical point of the top measure, in which the
measurable cardinals limit up to κ̄� . In this case, we must have � = α� . When this
happens we have run out of room and don’t have a measurable cardinal to iterate
to the next element α�+1 of Ĉ . To make more space, in the next step, we iterate
up the top measure to obtain the modelM�+1 with more measurable cardinals. By
cardinality considerations, the critical point κ̄�+1 of the top measure is obviously
below α�+1. Hence, we can continue the construction, iterating the least measurable
cardinal κ�+1 above � inM�+1 to α�+1.

Let M be the resulting model obtained as the direct limit along the iteration
embeddings and letMC be M truncated at Ord, which is the cardinal on which the
top measure of M lives. The construction ensures that we hit every element of Ĉ
along the way, so that the measurable cardinals inMC are exactly the elements Ĉ . �

A more elaborate version of this iteration argument is going to be used in Section 6
to generalize the results of [29] to a finite number of specially nested clubs.

Corollary 4.5. If C is a class club of uncountable V-cardinals, then m#
1 /∈ L[C ].
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Proof. Suppose towards a contradiction thatm#
1 ∈ L[C ]. Iteratem#

1 insideL[C ]
to a model M as in the proof of Theorem 4.4, and letMC be the truncation of M at
Ord. In particular, C is definable inMC by considering the closure of its measurable
cardinals. It follows that L[C ] is a definable sub-class ofMC , so that L[C ] =MC .
But this is impossible because m#

1 is a countable model (in L[C ]), which means, in

particular, that �
m#

1
1 = �MC1 is countable in L[C ]. �

In the last section of the article we will show that, unlike L[Card], the stable core,
given sufficiently large large cardinals, can have inner models with a proper class of
n-measurable cardinals for any n < �.

Now we can say more precisely what Welch showed about the model L[Card]
in [29]. LetMC , for the class club C of limit cardinals, be the iterate ofm#

1 (truncated
at Ord) obtained as in the proof of Theorem 4.4 in which the measurable cardinals
are precisely the cardinals of V of the form ℵ�·α+� (namely elements of Ĉ ). Let
Uα ⊆ PMC (ℵ�·α+�) be the iteration measures on ℵ�·α+� in MC , and note that a
subset of ℵ�·α+� inMC is in Uα if and only if it contains some tail of the cardinals.
Let �U = 〈Uα | α ∈ Ord〉. The modelMC has the form L[ �U ] because it is an iterate
of the mouse m#

1 . Let Wα ⊆ PL[Card](ℵ�·α+�) consist of all subsets of ℵ�·α+� in
L[Card] containing some tail of cardinals ℵ�·α+n, n < �, and let �W be the sequence
of theWα . Now it is easy to see that L[ �W ] = L[ �U ], and hence, since �W is definable
in L[Card],MC is contained in L[Card]. Let f be a function on Ĉ such that

f(� · α + �) = 〈� · α + n | n < �〉.

We clearly have that L[Card] = L[f], and also L[f] = L[ �W ][f] =MC [f] because
the sequence �W can be recovered from f. Thus, L[Card] =MC [f], and it turns out
that in some sense which we will explain in detail in Section 7,MC [f] is a Prikry-type
forcing extension ofMC adding Prikry sequences to all its measurable cardinals.

Note that in this construction we iterated the measurable cardinals to elements
of Ĉ , where C is the club of limit cardinals, instead of to all successor cardinals,
because we need to have enough cardinals in between to be able to use them to
define the measures in �U , so that L[ �U ] is contained in L[C ]. If on the other hand,
we iterate the measurable cardinals to all successor cardinals, then we can get an
inclusion in the other direction: L[C ] is contained in the iterateMC .

We will now generalize the result that the stable core of L[�] is equal to L[�]
to show that if �U is a discrete proper class sequence of normal measures, then the
stable core of L[ �U ] is L[ �U ]. It follows that the stable core can have a proper class of
measurable cardinals.

Theorem 4.6. If �U is a discrete proper class sequence of normal measures, then
L[S]L[ �U ] = L[ �U ]. In particular, it is consistent that the stable core has a proper class
of measurable cardinals.

Proof. Let �U be a discrete proper class sequence of normal measures and work
in V = L[ �U ]. Consider the stable core L[S] and the corresponding core models
K0 = KL[S] and K = KV . Recall that all measurable cardinals in V are measurable
in K as witnessed by restrictions of the measures in �U , and therefore V and K have
the same universes. Compare K0 and K in V. As both are proper class models they
have a common iterate K∗.
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Case 1. The K-side of the coiteration drops.

ThenK∗ is the Ord-length iterate of some mouse2 M which appears after the last
drop on the K-side of the coiteration such that K∗ is the result of hitting a measure
on some κ in M and its images (truncated at Ord). The successive images of κ form
a V -definable club D0 of ordinals which are regular cardinals in K∗. The K0-side
of the coiteration does not drop, so there is an iteration map �0 : K0 → K∗ and
the ordinals α such that �0“α ⊆ α form a V -definable club D1. Let D = D0 ∩D1.
Note that the iteration of K0 has set-length, since the measures on the K-side, and
therefore also those on the K0-side, are bounded by the measurable κ which is sent
to Ord on the K-side of the iteration (by the discreteness of the measure sequence).
It follows that for some 
, all elements of D of cofinality at least 
 are fixed by the
iteration map �0.

Let n < � be large enough such that D is Σn-definable in V. Recall from
Proposition 2.3 that the class club Cn consisting of all strong limit � such that
H� ≺Σn V is definable from S. Let � ∈ Cn be sufficiently large. In V, D is cofinal in
Ord. Therefore, in H� , D ∩H� is cofinal in � , and hence � ∈ D. So a tail of Cn is
contained in D and there is a 
-sequence of adjacent elements of Cn contained in D
such that its limit � is singular of uncountable cofinality in L[S]. But � ∈ D and all
elements of D are regular inK∗. As �0(�) = �, � is also regular inK0, contradicting
the covering lemma for sequences of measures in L[S] (see [24], [25]).

Case 2. The K0-side of the coiteration drops.

Let N be the model on the K0-side of the coiteration after the last drop. Then
N ∩ Ord < Ord, but the coiteration of N and an iterate K ′ of K results in the
common proper class iterate K∗. The iteration from K to K ′ is non-dropping and
hence K ′ is universal. But this contradicts the fact that the coiteration of N and K ′

does not terminate after set-many steps.

Case 3. Both sides of the coiteration do not drop, i.e., there are elementary
embeddings �0 : K0 → K∗ and � : K → K∗.

As K∗, and hence K0, has a proper class discrete sequence of measures it is
universal in V = L[ �U ]. Therefore, in fact, K0 = K∗ by the proof of Theorem 7.4.8
in [31]. Finally, we argue that K cannot move in the iteration to K0. Suppose this is
not the case and let U on κ be the first measure that is used. Let κ∗ be the image of κ
inK0. For some large enough n < �,Cn can define a proper classC ∗ of fixed points
of � as follows. There is a V -definable club C of ordinals α such that � ”α ⊆ α.
As in Case 1, a tail of Cn is contained in C. Let � ∈ Cn be an arbitrary element of
that tail and let � be the �-th element of Cn above � . Then � is a closure point of
� and cf(�) = � in V and hence in K, since the universes of V and K agree. So the
iteration map is continuous at � and therefore �(�) = �.

Let K̄0 be the transitive collapse of HullK0(κ ∪ {κ∗} ∪ C ∗). Then K̄0 has a proper
class of measurable cardinals including κ. In particular, K̄0 is a universal weasel,
and hence an iterate of K, where the first measure used in the iteration has critical

2Note that when we say mouse here we mean a fine structural iterable premouse which has partial
measures on its sequence as, for example, in [31, Section 4].
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point above κ. Therefore K̄0 and hence L[S] and K0 contain the measure U on κ,
contradicting the fact that this measure was used in the iteration.

Therefore, we obtain thatK0 = K . AsL[ �U ] can be reconstructed from K it follows
that L[S] = L[ �U ]. �

The arguments of Section 3 generalize directly to coding sets added generically
over L[�] into the stable core of a further forcing extension. If the forcing adding
the generic sets is either small relative to the measurable cardinal κ of L[�] or
≤ κ-closed, and the coding is done high above κ, then the stable core of the coding
extension will continue to think that κ is measurable.

Theorem 4.7. Suppose V = L[�]. If P is a forcing notion of size less than κ or P is
≤ κ-closed and G ⊆ P is V-generic, then there is a further forcing extension V [G ][H ]
such that G ∈ L[SV [G ][H ]], and κ remains a measurable cardinal there.

Proof. Suppose P is a small forcing. By the Lévy–Solovay theorem, κ remains
measurable in V [G ], as witnessed by the normal measure � on κ such that A ∈ � if
and only if there is Ā ∈ � with Ā ⊆ A. Since the coding forcing defined in the proof
of Theorem 3.1 is ≤ κ-closed, � continues to be a normal measure on κ inV [G ][H ].
SinceL[�] ⊆ L[SV [G ][H ]] by Theorem 4.2, inL[SV [G ][H ]], we can define �∗ such that
A ∈ �∗ if and only if there is Ā ∈ � with Ā ⊆ A, and clearly �∗ must be a normal
measure on κ in L[SV [G ][H ]].

The argument for≤ κ-closedP is even easier because� remains a normal measure
on κ in V [G ][H ]. �

Moreover, we get the following variant of Theorem 3.3 in the presence of a
measurable cardinal.

Theorem 4.8. It is consistent relative to the existence of a measurable cardinal that
the stable core has a measurable cardinal above which the GCH fails at all regular
cardinals.

§5. Measurable cardinals are not downward absolute to the stable core. In this
section, we show that it is consistent that measurable cardinals are not downward
absolute to the stable core. We will use a modification of Kunen’s classical argument
that weakly compact cardinals are not downward absolute [21].

Theorem 5.1. Measurable cardinals are not downward absolute to the stable core.
Indeed, it is possible to have a measurable cardinal in V which is not even weakly
compact in the stable core.

Proof. Suppose V = L[�], where � is a normal measure on a measurable
cardinal κ.

Let Pκ be the Easton support iteration of length κ forcing with Add(α, 1) at every
stageα such thatα is a regular cardinal inV Pα . It is a standard fact that whenever the
GCH holds, which is the case in V = L[�], Pκ preserves all cardinals, cofinalities,
and the GCH (see, for example, [3]). Let G ⊆ Pκ be V -generic. In V [G ], let Q be
the forcing to add a homogeneous κ-Souslin tree and let T be the V [G ]-generic tree
added by Q (the forcing originally appeared in [21] and a more modern version is
written up in [12]). In V [G ][T ], let C be the forcing, as in the proof of Theorem 3.1
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for the case m = 1, to code T, using the strong limit cardinals, into the stable core
of a forcing extension high above κ and let H ⊆ C be V [G ][T ]-generic. Finally, in
V [G ][T ][H ], we force with T to add a branch to it, and let b ⊆ T be aV [G ][T ][H ]-
generic branch of T. Note that, as a notion of forcing, T is <κ-distributive and κ-cc.
As Kunen showed, the combined forcingQ ∗ Ṫ , where Ṫ is the canonical name for T,
has a <κ-closed dense subset, and therefore is forcing equivalent to Add(κ, 1) [21].
Thus, the iteration Pκ ∗ Q̇ ∗ Ṫ is forcing equivalent to Pκ ∗ Add(κ, 1).

Obviously, κ is not even weakly compact in V [G ][T ], and hence also not in
V [G ][T ][H ] because the coding forcing C is highly closed, and so cannot add a
branch to T. Thus, κ is also not weakly compact in the stable core of V [G ][T ][H ]
because, by our coding, L[SV [G ][T ][H ]] has the κ-Souslin tree T.

Next, let’s argue that the measurability of κ is resurrected in the final
model V [G ][T ][H ][b]. Standard lifting arguments show that κ is measurable in
V [G ][T ][b], which is a forcing extension by Pκ ∗ Add(κ, 1). But V [G ][T ][H ][b]
and V [G ][T ][b] have the same subsets of κ, which means that κ is also measurable
in V [G ][T ][H ][b].

For ease of reference, letW = V [G ][T ][H ]. We will argue that the stable core of
W [b] is the same as the stable core of W, so that κ is not weakly compact there.

Note, using Claim 1 in the proof of Theorem 3.1, that all forcing extensions in
this argument satisfy the GCH. Observe now that since W andW [b] have the same
cardinals (since forcing with T is <κ-distributive and κ-cc), and the GCH holds in
both models, they have the same strong limit cardinals (namely the limit cardinals).
Thus, we have that SW1 = SW [b]

1 . The remaining arguments will therefore assume
that n ≥ 2 in the triple (n, α, �).

It is easy to see that for α < � ≤ κ, a triple (n, α, �) ∈ SW if and only if it is in
SW [b] because forcing with the tree T does not add small subsets to κ.

The case κ < α < � follows by Proposition 2.5 because α is above the size of the
forcing T.

Finally, we consider the remaining case α ≤ κ < � . Observe that for every strong
limit cardinal α < κ, HWα satisfies the assertion that for every successor cardinal
�+, there is an Lα(H�+ )-generic filter for Add(�+, 1)Lα(H�+ ). The reason is that

HV [G ]
�+

= HV [G� ]
�+

, where we factor Pκ ∼= P�+1 ∗ Ptail and correspondingly factorG ∼=
G�+1 ∗Gtail. The complexity of the assertion is Π2 because we can express it as
follows:

∀�̄∀H∃� < �̄ [(� is regular and �++ = �̄ and H = H�+) →

∃g∃Y (Y = L�̄(H ) and g is Y -generic for Add(�+, 1)Y ].

However, HW� cannot satisfy this assertion because it obviously cannot have an

L�(H�+ )-generic filter for Add(�+, 1)L� (H�+ ), where � = κ++, because the H�+ of
L�(H�+ ) is the realH�+ of W. The same argument holds forW [b] showing that no
triple (n, α, �) can be in either SW or SW [b] for n ≥ 2. �

§6. Separating the stable core andL[Card]. Finally, we would like to consider the
possible relationships between the stable core L[S] and the model L[Card].
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Even though the stable core can define the class of strong limit cardinals of V,
there is no reason to believe that it can see the cardinals. Indeed, it is even possible
to make L[Card] larger than the stable core.

Theorem 6.1. It is consistent that L[S] � L[Card].

Proof. We start in L. Force to add an L-generic Cohen real r. Next, force with
the full support product P = Πk<�Qk , where if k ∈ r, then Qk = Coll(ℵ2k,ℵ2k+1),
and otherwise Qk is the trivial forcing. The forcing P codes r into the cardinals
of the forcing extension. Suppose H ⊆ Πk<�Qk is L[r]-generic, and observe that
r ∈ L[CardL[r][H ]] because it can be constructed by comparing the cardinals of L
with the cardinals of L[r][H ]. However, the stable core L[SL[r][H ]] = L remains
unchanged because we preserved the strong limit cardinals, and for the slices Sn of
the stable core with n ≥ 2, it suffices that the forcing has size smaller than the second
strong limit cardinal. �

Next, let’s show that in various situations, L[Card] can be a proper submodel of
the stable core L[S].

Theorem 6.2. It is consistent that L[Card] � L[S].

Proof. We start in L and force to add a Cohen real r. We then code r into
the stable core of a further forcing extension using the coding forcing from the
proof of Theorem 3.3. More precisely, we let 
0 be any sufficiently large singular
strong limit cardinal, and let 〈(�n, �∗n ) | n < �〉 be the sequence of �-many pairs
of successive strong limit cardinals above 
0 (note that they must all be singular),
which will be our coding pairs. Now define that Cn is trivial for n �∈ r, and otherwise
let Cn = Add(
+

n , �n), where 
n = �∗n–1 for n > 0. By the arguments given in the
proof of Theorem 3.3, the full support forcing C = Πn<�Cn is cardinal preserving.
LetH ⊆ C be L[r]-generic. Now observe that since we have CardL = CardL[r][H ], it
follows that L[CardL[r][H ]] = L, but L[r] ⊆ L[SL[r][H ]]. �

Theorem 6.3. It is consistent that L[S] has a measurable cardinal and L[Card] �
L[S].

Proof. We start in a model V = L[�] with a measurable cardinal κ and force
to add a Cohen subset to some 
 � κ. Let G ⊆ Add(
, 1) be V -generic. We then
code G into the stable core using the cardinal preserving coding forcing C from the
proof of Theorem 3.3. Let H beV [G ]-generic for C. Since we forced high above κ, κ
remains measurable inL[SV [G ][H ]] as in Theorem 4.7. BecauseC preserves cardinals,
L[CardV [G ][H ]] = L[CardV ] = V , but L[SV [G ][H ]] contains G by construction. �

We also separate the modelsL[Card] andL[S] by showing that, for each n < �, if
m#
n+1 exists, then m#

n ∈ L[S]. Recall that even m#
1 cannot be an element of L[Card]

(Corollary 4.5).
Given a class A, we will say that a cardinal � is Σn-stable relative to A if

〈H�,∈, A〉 ≺Σn 〈V,∈, A〉. We will say that a class B is Σn-stable relative to A if every
� ∈ B is Σn-stable relative to A. Let us say that a cardinal is strictly n-measurable if
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it is n-measurable, but not n + 1-measurable. Recall that given a club C, we denote
by Ĉ , the collection of all successor elements of C together with its least element.

Theorem 6.4. Suppose that C1 ⊇ C2 are class clubs of uncountable cardinals such
thatC2 is Σ1-stable relative toC1. Then there is an Ord-length iteration of the mousem#

2
such that in the direct limit modelMC1,C2 (truncated at Ord) the strictly 1-measurable
cardinals are precisely the elements of Ĉ1 and the 2-measurable cardinals are precisely
the elements of Ĉ2.

Proof. Let C1 = 〈α� | � ∈ Ord〉 and let 〈�� | � ∈ Ord〉 be a sequence such that
α�� is the �th element of C2 in the enumeration of C1. The iteration will closely
resemble the iteration from the proof of Theorem 4.4.

Iterate the first measurable cardinal κ0 of m#
2 α0-many times, so that κ0 iterates

to α0, and let Mα0 be the iterate. Continue to iterate measurable cardinals onto
elements of Ĉ1 until we reach for the first time a direct limit stage �0 where in
the model M�0 all measurable cardinals below the first 2-measurable cardinal are
elements of Ĉ1. It is not difficult to see that �0 is the first cardinal such that �0 = α�0 ,
the �0th element of C1, and that inM�0 , �0 is the first 2-measurable cardinal. Since
C2 is Σ1-stable relative to C1, �0 must be below the first element of C2. To achieve
our goal of making the least 2-measurable the least element of C2, at this stage,
we iterate up �0 to obtain a modelM�0+1 with more strictly 1-measurable cardinals
and continue iterating measurable cardinals onto elements of Ĉ1. Let �� be the �th
stage where we iterate up the first 2-measurable cardinal �� as above. Since α�0 , the
least element of C2, is Σ1-stable relative to C1, it must be that �� < α�0 for every
� < α�0 as every iteration of a shorter length � < α�0 (of the kind we have been
doing) has to be an element of Hα�0 by Σ1-elementarity. We would like to argue
that the thread t in the stage α�0 direct limit such that t(�) is the first 2-measurable
cardinal maps to α�0 as desired. It suffices to observe that every ordinal thread s
below t must be constant from some stage onward. So suppose that s < t, which by
definition of direct limit means that on a tail of stages �, s(�) < t(�). Fix some such
� in the tail and consider a stage ��̄ > � where we have s(��̄) < t(��̄) = ��̄ . Here the
equality holds by elementarity as ��̄ is the first 2-measurable cardinal inM�

�̄
. Since

the critical points of the iteration after this stage are above ��̄ , the thread s remains
constant from that point onward.

Thus, α�0 must be the first 2-measurable cardinal in the direct limit model
Mα�0 . Having correctly positioned the first 2-measurable cardinal, we proceed with

iterating the strictly 1-measurable cardinals onto elements of Ĉ1 below the next
element of C2. As in the proof of Theorem 4.4, it will be the case that at some limit
stages in C2, we will need to use the top measure of m#

2 to create more room for the
iteration to proceed.

Let M be the resulting model obtained as the direct limit along the iteration
embeddings and let MC1,C2 be M truncated at Ord. The construction ensures that
the strictly 1-measurable cardinals of MC1,C2 are precisely the elements of Ĉ1 and
2-measurable cardinals ofMC1,C2 are precisely the elements of Ĉ2. �

Given a club C, let C ∗ denote the club of all limit points of C. Next, let’s argue
that if C1 and C2 are clubs as above, thenMC∗

1 ,C
∗
2

is contained in L[C1, C2].
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Theorem 6.5. Suppose that C1 ⊇ C2 are class clubs of uncountable cardinals such
that C2 is Σ1-stable relative to C1. Then MC∗

1 ,C
∗
2

(obtained as in Theorem 6.4) is
contained in L[C1, C2].

Proof. Given α ∈ Ĉ ∗
1 , let Uα ⊆ P(α)

MC∗1 ,C
∗
2 be the iteration measures in

MC∗
1 ,C

∗
2

, and note that a set from MC∗
1 ,C

∗
2

is in Uα if and only if it contains a tail

of C1 ∩ α. Let �U = 〈Uα | α ∈ Ord〉. Similarly, for � ∈ Ĉ ∗
2 , let W� ⊆ P(�)

MC∗1 ,C
∗
2

be the iteration measures in MC∗
1 ,C

∗
2

, and let �W = 〈W� | � ∈ Ord〉. Here we also
have that a set is in W� if and only if it contains a tail of C2 ∩ � because, as we
noted in the proof of Theorem 6.4, at every stage in C2 we iterate up the measure
on the 2-measurable cardinal until we reach an element of Ĉ ∗

2 . Finally, observe that
MC∗

1 ,C
∗
2

= L[ �U, �W ], and thus, it is contained in L[C1, C2]. �

Theorems 6.4 and 6.5 easily generalize to n nested clubs C1, ... , Cn such that Ci
is Σ1-stable relative to C1, ... , Ci–1 (more precisely, relative to the class canonically
coding the the sequence 〈C1, ... , Ci–1〉 of classes) for all 1 < i ≤ n.

Theorem 6.6. Suppose that C1 ⊇ C2 ⊇ ··· ⊇ Cn are class clubs of uncountable
cardinals such that Ci is Σ1-stable relative to C1, ... , Ci–1 for all 1 < i ≤ n. Then there
is an Ord-length iteration of the mousem#

n such that in the direct limit modelMC1,...,Cn

(truncated at Ord), for 1 ≤ i ≤ n, the strictly i-measurable cardinals are precisely the
elements of Ĉi .

Theorem 6.7. Suppose that C1 ⊇ C2 ⊇ ··· ⊇ Cn are class clubs of uncountable
cardinals such that Ci is Σ1-stable relative to C1, ... , Ci–1 for all 1 < i ≤ n. Then
MC∗

1 ,...,C
∗
n

(obtained as in Theorem 6.6) is contained in L[C1, ... , Cn].

Theorem 6.8. For all n < �, if m#
n+1 exists, then m#

n is in the stable core.

Proof. By Proposition 2.3, for i ≥ 1, the stable core can define class clubs Ci of
strong limit cardinals α such that Hα ≺Σi V . In particular, each Ci is Σ1-stable
relative to C1, ... , Ci–1. Fix some n < �. If m#

n+1 exists, then by Theorem 6.7,
MC∗

1 ,...,C
∗
n+1

is contained in the stable core, and so in particular, the stable core

has m#
n . �

§7. Characterizing models L[C1, ... , Cn]. In this section, we will generalize
Welch’s arguments in [29] to show that, in the presence of many measurable cardinals,
models L[C1, ... , Cn], where

C1 ⊇ C2 ⊇ ··· ⊇ Cn
are class clubs of uncountable cardinals such that Ci is Σ1-stable relative to
C1, ... , Ci–1, are truncations to Ord of forcing extensions of an iterate of the mouse
m#
n via a full support product of Prikry forcings.
In [10], Fuchs defined, given a discrete set D of measurable cardinals, a Prikry-

type forcing PD to singularize them all, as follows. For every α ∈ D, we fix a normal
measure �α on α with respect to which the forcing PD will be defined. Conditions
in PD are pairs 〈h,H 〉 such that H is a function on D with H (α) ∈ �α and h is
a function on D with finite support such that h(α) ∈ [α]<� is a finite sequence of
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elements of α below the least element of H (α) and above all � ∈ D with � < α.
Extension is defined by (h,H ) ≤ (f,F ) if for all α ∈ D, H (α) ⊆ F (α), h(α) end-
extends f(α), and h(α) \ f(α) ⊆ F (α). Note that the first coordinate of the pair
has finite support while the second coordinate has full support so that the forcing
is a mix of a finite support and a full support-product. It is not difficult to see that
the Magidor iteration of Prikry forcing for a discrete set D of measurable cardinals
is equivalent to PD . For the definition and properties of the Magidor iteration, see
Section 6 of [11].

Theorem 7.1 (See [10]). The forcing PD has the |D|+-cc, preserves all cardinals,
and preserves all cofinalities not in D.

The forcing PD also has the Prikry property, namely, given a condition (h,H ) ∈
PD and a sentence ϕ of the forcing language, there is a condition (h,H ∗) deciding
ϕ such that for every α ∈ D, H ∗(α) ⊆ H (α) (see [11, Section 6] for details).

For an ordinal �, letD<� beD � � andD≥� be the rest of D. The forcing PD factors
as PD<� × PD≥� .

Proposition 7.2. Suppose f is V-generic for PD . If g : � → V� is a function in
V [f] with � < �, then g is added by f � �.

Proof. It suffices to see that PD≥� cannot add g over V [f � �]. Let ġ be a PD≥�

-name for g so that 1PD≥�
� ġ : �̌ → V̌� . By the Prikry property of PD≥� , for every

x ∈ V� and α < �, there is some condition (∅, Hx,α) deciding whether ġ(α̌) = x̌.
There are less than κmany such conditions, where κ is the least measurable cardinal
in D greater than or equal to �. Thus, we can intersect all the measure one sets
on each coordinate of Hx,α to obtain a condition (∅, H ) below all of the (∅, Hx,α).
Clearly (∅, H ) decides ġ. �

Proposition 7.3. Suppose that κ is inaccessible and D is contained in and
unbounded in κ. Then κ remains inaccessible after forcing with PD .

Proof. By Theorem 7.1, κ is regular after forcing with PD . So it remains to show
that κ is a strong limit after forcing with PD . Fix a cardinal α < κ and let � be the
least measurable cardinal in D above α. Since D ⊆ κ, � < κ. By Proposition 7.2,
every subset ofα added byPD is already added byPD<� . But sinceκ is an inaccessible,
PD<� clearly has a chain condition less than �, and therefore a nice-name counting
argument shows that it adds less than κ-many subsets of α. �

Fuchs showed that the forcing PD has a Mathias-like criterion for establishing
when a collection of sequences is generic for it.

Theorem 7.4 [10]. Suppose that M is a transitive model of ZFC, D is a discrete
set of measurable cardinals in M, and the forcing PMD is constructed in M as above. A
function f on D such that f(α) ∈ [α]� is an �-sequence in α above � ∈ D for every
� < α is M-generic for PMD if and only if for every function H on D with H (α) ∈ �α ,⋃
α∈D f(α) \H (α) is finite.

We will now give the technical set-up for the forcing construction that we want to
perform over iterates of the mice m#

n .
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Let ZFC–
I be the theory consisting of ZFC– together with the assertion that there

is a largest cardinal κ and that it is inaccessible, namely κ is regular and for every
α < κ, P(α) exists and has size smaller than κ. Note that, in particular, Vα exists
in models of ZFC–

I for all ordinals α ≤ κ. Natural models of ZFC–
I are Hκ+ for

an inaccessible cardinal κ. The theory ZFC–
I is bi-interpretable with the second-

order class set theory KM + CC, Kelley–Morse set theory (KM) together with the
Class Choice Principle (CC) [23]. Models of Kelley–Morse are two-sorted of the
form V = (V,∈, C), with V consisting of the sets, C consisting of classes, and ∈
being a membership relation between sets as well as between sets and classes. The
axioms of Kelley–Morse are ZFC together with the following axioms for classes:
extensionality, existence of a global well-order class, class replacement asserting that
every class function restricted to a set is a set, and comprehension for all second-order
assertions. The Class Choice Principle CC is a scheme of assertions, which asserts
for every second-order formula ϕ(x,X,Y ) that if for every set x, there is a class X
such thatϕ(x,X,Y ) holds, then there is a single class Z choosing witnesses for every
set x, in the sense thatϕ(x,Zx, Y ) holds for every set x, whereZx = {y | 〈x, y〉 ∈ Z}
is the xth slice of Z. If V = (V,∈, C) is a model of KM + CC, then the collection
of all extensional well-founded relations in C, modulo isomorphism and with a
natural membership relation, forms a model MV of ZFC–

I , whose largest cardinal
κ is (isomorphic to) Ord, such that VMV

κ
∼= V and the collection of all subsets of

V
MV
κ inMV is precisely C (modulo the isomorphism).3 On the other hand, given any

modelM |= ZFC–
I , we have that V = (VMκ ,∈, C), where C consists of all subsets of

VMκ in M, is a model of KM + CC, and moreover,MV is then precisely M.
The bi-interpretability of the two theories was used by Antos and Friedman in [1]

to develop a theory of hyperclass forcing over models of KM + CC. A hyperclass
forcing over a model V = (V,∈, C) |= KM + CC is a partial order on a sub-collection
of C that is definable over V. Suppose that G is P-generic for a hyperclass-forcing P
over V, meaning that it meets all the definable dense sub-collections of P. We move
toMV , over which P is a definable class-forcing, and consider the forcing extension
MV [G ]. The forcing P may not preserve ZFC–

I , but whenever it does, we define
that the hyperclass-forcing extension V[G ] is the Kelley–Morse model consisting of
V
MV [G ]
κ together with all the subsets of VMV [G ]

κ inMV [G ].
An Ord-length iterate M of a mouse m#

n is obviously a model of ZFC–
I with

largest cardinal Ord, and moreover it has a definable global well-ordering. Thus, M
naturally gives rise to a model of KM + CC, namely its truncation at Ord, whose
classes are the subsets of VMOrd in M.

Let M be a model of ZFC–
I with a largest cardinal κ and a definable well-ordering

of the universe. Let D be a discrete set in M of measurable cardinals below κ and
suppose that D is unbounded in κ. Over M, PD is a class forcing notion all of whose
antichains are sets. Class forcing works the same way over models of ZFC– as it does
over models of ZFC. Pretame forcing (see [7] for definition and properties) preserves
ZFC– to forcing extensions and has definable forcing relations (this is due to Stanley
and can be found in [14]). In a model with a definable global well-order, every class
forcing all of whose antichains are sets is pretame. Although “mixing of names” is

3We will from now on ignore the isomorphism and assume we have actual equality.

https://doi.org/10.1017/jsl.2023.10 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.10


STRUCTURAL PROPERTIES OF THE STABLE CORE 913

not always doable with class forcing that has proper class-sized antichains, it still
works if all antichains are sets. Finally, the existence of a definable global well-order
gives that the Mathias criterion of Theorem 7.4 still holds in this setting.

Forcing with PD preserves the inaccessibility of κ by Proposition 7.3, while
singularizing all the measurable cardinals below it. Thus, in particular, a forcing
extension by PD remains a model of ZFC–

I .

Proposition 7.5. Given a PD-generic f, we have that VM [f]
κ = VMκ [f].

Proof. The one inclusion VMκ [f] ⊆ VM [f]
κ is clear. For the other inclusion

suppose that a ∈ VM [f]
κ . There is some �-fixed point cardinal α < κ inM [f] such

that a ∈ VM [f]
α , so that a is coded there by a subset A of α inM [f]. By Proposition

7.2, A must be added by some initial segment of the product PD , and therefore is an
interpretation of a name in VMκ by an initial segment of f. �

We can also view PD as a hyperclass forcing over the model V = (VMκ ,∈, C), with
C being the collection of all subsets of VMκ in M. SinceM [f] is a model of ZFC–

I

(because κ remains inaccessible), we can form the forcing extension V[f], and it is
(by definition) the model (Vκ[f],∈, C∗) with C∗ being the collection of all subsets
of VMκ [f] inM [f].

Now we go back to our specific setting in which we consider Ord-length iterates
of the mice m#

n .
Let C be the class club of limit cardinals and let M be the (non-truncated) iterate

model of m#
1 constructed by Welch (see Section 4). The model M satisfies ZFC–

I

with the largest cardinal Ord and has a definable well-ordering of the universe. Let
D = Ĉ be the collection of all measurable cardinals of M. Let f be the function
on D such that f(� · α + �) = 〈� · α + n | n < �〉. Welch showed that f is generic
for PD (defined using measures arising in the iteration) by verifying the Mathias
criterion. As before, let MC be M truncated at Ord. Let C be the collection of
subsets ofMC in M and C∗ be the collection of all subsets ofMC [f] inM [f]. With
this set-up, Welch proved the following theorem.

Theorem 7.6 (Welch [29]). The modelM [Card] is a class forcing extension of M
by the class forcing PD . Equivalently, the second-order model (MC [Card],∈, C∗) is a
hyperclass-forcing extension of (M,∈, C) by the hyperclass forcing PD .

Indeed, it is not difficult to see that the function f cannot be added by any set
forcing over M (or equivalently, cannot be added by any class forcing overMC ).

Theorem 7.7. In the notation of Theorem 7.6, f is not set-generic over M.
Equivalently, f is not class-generic over the second-order model (MC [f],∈, C).

Proof. Consider the regressive function g with domain D defined by g(α) =
min(f(α)). If g0 is any regressive function in M on D then by genericity, g dominates
g0 at all but finitely many elements of D. But if P is any set-forcing of M, P has size
at most Ord in M, and therefore we will argue that P cannot add such a dominating
function. Let {p� | � ∈ Ord} be a listing of the elements of P in which every element
of P appears cofinally often. Let ġ be a P-name for a regressive function on D. For
every � ∈ Ord, choose a condition p∗� extending p� that decides ġ(α�) = �� , where
α� is the �th element of D. Define g0(α�) = �� + 1. Then any condition p� in P
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has an extension forcing g0(α�) > ġ(α�). Since every p ∈ P appears in our listing
cofinally often, for cofinally many � < κ, every p ∈ P has an extension forcing
g0(α�) > ġ(α�), which means that ġ cannot be forced to dominate all regressive g0

on D in M on a final segment of D. �

We will need to make use of the following theorem.

Theorem 7.8. Forcing with PD preserves all measurable cardinals not in D. Indeed,
if κ /∈ D is a measurable cardinal in M and � is a normal measure on κ that does
not concentrate on measurable cardinals, then κ has a normal measure �̄ ∈M [f], a
forcing extension by PD , such that Ā ∈ �̄ if and only if there is A ∈ � with A ⊆ Ā.

See Section 6 of [11] for a proof.
Suppose that m#

2 exists and C1 ⊇ C2 are class clubs of uncountable cardinals
such that C2 is Σ1-stable relative to C1. Let M be the (untruncated) iterate of m#

2
constructed as in the proof of Theorem 6.4 for the clubs C ∗

1 and C ∗
2 consisting of

the limit points of C1 and C2 respectively. With this set-up, we get the following
generalization of Welch’s theorem. Recall that we denote byMC∗

1 ,C2∗ the truncation
at Ord of the model M obtained by iterating the mouse m#

2 so that its strictly
1-measurable cardinals are precisely the elements of C ∗

1 and its 2-measurable
cardinals are the precisely the elements of C ∗

2 .
Let Di for i = 1, 2, be the class of strictly i-measurable cardinals in M. For every

measurable cardinal α ∈M , let �α be the normal measure on α arising from the
iteration. Let PD1 and PD2 be the product Prikry forcings defined with respect to
the measures �α in M. Let f be M-generic for PD2 . In M [f], every measurable
cardinal in D1 remains measurable by Theorem 7.8. Since no �α concentrates on
measurable cardinals (otherwise α would have Mitchell order 2), by Theorem 7.8,
every measurable cardinal α ∈ D1 has, in M [f], a normal measure �̄α generated
by �α . Thus, we can define inM [f], the Prikry product forcing P̄D1 with respect to
the measures �̄α . Let ṖD1 be the PD2 -name for this Prikry forcing product. Notice
that PD1 is the product Prikry forcing defined in M, while P̄D1 is the product Prikry
forcing defined in a forcing extension of M by PD2 . Although these are potentially
different forcing notions, we will show below that they are forcing equivalent.

Theorem 7.9. The modelM [C1, C2] is a forcing extension of M by the class forcing
iteration PD2 ∗ ṖD1 . The iteration PD2 ∗ ṖD1 is equivalent to the product PD2 × PD1 .
Moreover,MC∗

1 ,C
∗
2

[C1, C2] = L[C1, C2], and the latter is then the first-order part of a
hyperclass-forcing extension of the Kelley–Morse model 〈VMOrd,∈, C〉 (where C consists
of the subsets of VMOrd in M).

Proof. Let f1 be the function on the elements α of Ĉ ∗
1 such that f1(α) is the

�-sequence of elements of C1 limiting up to α. Let f2 be the function on the
elements α of Ĉ ∗

2 such that f2(α) is the �-sequence of elements of C2 limiting up
to α. The arguments in [29] already verify that f2 satisfies the Mathias criterion for
PD2 and f1 satisfies the Mathias criterion for PD1 . Indeed, we will now argue that
PD1 densely embeds into P̄D1 = (ṖD1 )f2 . Since class forcing notions with set-sized
antichains which densely embed produce the same forcing extensions (see [14]), we
will be able to assume without loss that we are actually forcing with PD1 .
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It suffices to argue that for every function F onD1 inM [f2] such that F (α) ∈ �α ,
there is a function F ∗ ∈M such that F ∗(α) ∈ �α and F ∗(α) ⊆ F (α) for every
α ∈ D1. Let Ḟ be a PD2 -name for F such that 1PD2

forces that Ḟ (α) ∈ �̌α for every
measurable α (this requires mixing names). We will argue in M, by induction on
� ≤ Ord, that we can define cohering functions f� onD1 � � such that f�(α) ∈ �α
and 1PD2

� f̌�(α) ⊆ Ḟ (α) for every α ∈ D1 � � . Suppose inductively that we can
construct f� for � < � as required. Let’s argue that we can construct f� . If � is a
limit ordinal, then f� is just the union of the f� . So suppose that � = �∗ + 1 and
assume that F is defined at �∗ because otherwise there is nothing to prove. Observe
that F � � must be added by PD2<�

by Proposition 7.2. Since �∗ ∈ C1 cannot be a

limit of elements of C2, PD2<�
must have size � < �∗. Let ḟ be a PD2<�

-name for

F � � such that 1PD2
� ḟ = Ḟ � � . For every condition p ∈ PD2<�

, if p forces that

some A ∈ ��∗ is contained in ḟ(�∗), then choose some such Ap. Since there are at
most �-many such sets Ap ∈ ��∗ and � < �∗, we can intersect them all to obtain a
setA ∈ ��∗ such that 1PD2<�

� Ǎ ⊆ ḟ(�∗). It follows that f� defined to extend f�∗

with f�(�∗) = A satisfies our requirements.
This completes the argument that PD1 densely embeds into P̄D1 . The argument

also shows that f1 meets the Mathias criterion for P̄D1 because it met the Mathias
criterion for PD1 over M and every sequence of measure one sets fromM [f2] can
be thinned out on each coordinate to a sequence of measure one sets which exists
in M. Thus, f1 isM [f2]-generic for P̄D1 .

Finally, by Proposition 7.3, forcing with P̄D1 preserves the inaccessibility of Ord
in M [f2], so that we can form the hyperclass forcing extension of the Kelley–
Morse model whose first-order part isMC∗

1 ,C
∗
2

and the first-order part of the forcing
extension is then the modelMC∗

1 ,C
∗
2

[f2][f1] =MC∗
1 ,C

∗
2

[C1, C2]. Using Theorem 6.5,
it is clear thatMC∗

1 ,C
∗
2

[C1, C2] = L[C1, C2]. �
The characterization easily generalizes to n-many clubs C1, ... , Cn. Suppose that

m#
n exists and C1 ⊇ C2 ⊇ ··· ⊇ Cn are clubs of uncountable cardinals such that Ci is

Σ1-stable relative to (the class canonically coding) C1, ... , Ci–1 for all 1 < i ≤ n. Let
M be the (untruncated) iterate of m#

n constructed as usual for the clubs C ∗
1 , ... , C

∗
n

consisting of the limit points of the clubs C1, ... , Cn respectively.

Theorem 7.10. The modelM [C1, ... , Cn] is a forcing extension of M by the class
forcing iteration PDn ∗ ··· ∗ ṖD1 , where Di , for 1 ≤ i ≤ n, is the class of strictly
i-measurable cardinals. The iteration PDn ∗ ··· ∗ ṖD1 is equivalent to the product
PDn × ··· × PD1 . Moreover, MC∗

1 ,...,C
∗
n

[C1, ... , Cn] = L[C1, ... , Cn], and the latter is
then the first-order part of a hyperclass-forcing extension of the Kelley–Morse model
〈VMOrd,∈, C〉 (where C consists of the subsets of VMOrd in M).

Theorem 7.7 also generalizes to show that such an extension cannot be obtained
by a set forcing over M (or equivalently a class forcing overMC∗

1 ,...,C
∗
n

).

§8. Open questions. The article did not answer several difficult questions about
the structure of the stable core. In Sections 3 and 4, we showed how to code
information into the stable core over small canonical inner models using the fact
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that these models must be contained in the stable core so that we can use them
for decoding. In a very recent work Friedman showed that there is a large cardinal
notion below a Woodin cardinal such that the stability predicate is definable over
an iterate of a mouse with such a large cardinal. This immediately implies that we
cannot code any set into the stable core and that there is a bound (below a Woodin
cardinal) on the large cardinals that can exist in inner models of the stable core [6].
This leaves the following open questions regarding the structure of the stable core.

We still don’t have a precise upper bound on the large cardinals that can exist in
the stable core.

Question 1. Can the stable core have a measurable limit of measurable cardinals?

For HOD, we know that the HOD of HOD can be smaller than HOD and that
any universe V is the HOD of a class forcing extension of itself.

Question 2. Can the stable core of the stable core be smaller than the stable core?

Question 3. When is V the stable core of an outer model? More precisely, is there
a tame (ZFC-preserving) class forcing notion P such that for some V-generic filter
G ⊆ P we have V = L[SV [G ]]?

Finally, with regard to Section 7, we can ask whether the results there generalize
to �-many clubs.

Question 4. Is there a version of Theorem 7.10 for �-many clubs?
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Birkhäuser/Springer, Cham, 2018, pp. 17–46.

[2] Y. Cheng, S.-D. Friedman, and J. D. Hamkins, Large cardinals need not be large in HOD. Annals
of Pure and Applied Logic, vol. 166 (2015), no. 11, pp. 1186–1198.

[3] J. Cummings, Iterated forcing and elementary embeddings, Handbook of Set Theory, vols. 1, 2, 3
(M. Foreman and A. Kanamori, editors), Springer, Dordrecht, 2010, pp. 775–883.

[4] J. Cummings, S.-D. Friedman, and M. Golshani, Collapsing the cardinals of HOD. Journal of
Mathematical Logic, vol. 15 (2015), no. 2, p. 1550007.

[5] A. J. Dodd and R. Jensen, The core model. Annals of Mathematical Logic, vol. 20 (1981), no. 1,
pp. 43–75.

[6] S.-D. Friedman, Capturing the universe. Submitted.
[7] ———, Fine Structure and Class Forcing, de Gruyter Series in Logic and its Applications, vol. 3,

Walter de Gruyter, Berlin, 2000.
[8] ———, The stable core. The Bulletin of Symbolic Logic, vol. 18 (2012), no. 2, pp. 261–267.

https://doi.org/10.1017/jsl.2023.10 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.10


STRUCTURAL PROPERTIES OF THE STABLE CORE 917

[9] ———, The enriched stable core and the relative rigidity of HOD. Fundamenta Mathematicae,
vol. 235 (2016), no. 1, pp. 1–12.

[10] G. Fuchs, A characterization of generalized Přı́krý sequences. Archive for Mathematical Logic,
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