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On the Continuity of the Eigenvalues of a
Sublaplacian
Amine Aribi, Sorin Dragomir, and Ahmad El Soufi

Abstract. We study the behavior of the eigenvalues of a sublaplacian ∆b on a compact strictly pseudo-
convex CR manifold M, as functions on the set P+ of positively oriented contact forms on M by
endowing P+ with a natural metric topology.

1 Introduction

Let M be a compact strictly pseudoconvex CR manifold, of CR dimension n, without
boundary. Let P be the set of all C∞ pseudohermitian structures on M. Every θ ∈ P

is a contact form on M, i.e., θ ∧ (dθ)n is a volume form. Let P± be the sets of θ ∈ P

such that the Levi form Gθ is positive definite (respectively, negative definite). For
θ ∈ P+, let ∆b be the sublaplacian

(1) ∆bu = − div(∇Hu)

of (M, θ) acting on smooth real valued functions u ∈ C∞(M,R). As ∆b is a sub-
elliptic operator (of order 1/2) it has a discrete spectrum

0 = λ0(θ) < λ1(θ) ≤ λ2(θ) ≤ · · · ↑ +∞

(the eigenvalues of ∆b are counted with their multiplicities). Each eigenvalue λν(θ),
ν = 0, 1, 2, . . . , is thought of as a function of θ ∈ P+. We shall deal mainly with the
following problem: Is there a natural topology on P+ such that each eigenvalue function
λν : P+ → R is continuous? The analogous problem for the spectrum of the Laplace–
Beltrami operator on a compact Riemannian manifold was solved by S. Bando and
H. Urakawa [2], and our main result is imitative of their Theorem 2.2 (cf. [2, p. 155]).
We shall establish the following.

Corollary 1 For every compact strictly pseudoconvex CR manifold M, the space of pos-
itively oriented contact forms P+ admits a natural complete distance function d : P+ ×
P+ → [0,+∞) such that each eigenvalue function λk : P+ → R is continuous relative
to the d-topology.

By a result of J. M. Lee [8], for every θ ∈ P+ there is a Lorentzian metric Fθ ∈
Lor
(

C(M)
)

(the Fefferman metric) on the total space C(M) of the canonical circle
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On the Continuity of the Eigenvalues of a Sublaplacian 13

bundle S1 → C(M)
π
−→ M. Also, if � is the Laplace–Beltrami operator of Fθ (the

wave operator), then σ(∆b) ⊂ σ(�). Therefore the eigenvalues λk may be thought
of as functions λ↑k : C → R on the set C =

{
Fθ ∈ Lor

(
C(M)

)
: θ ∈ P+

}
of

all Fefferman metrics on C(M). On the other hand, Lor
(

C(M)
)

may be endowed
with the distance function d∞g considered by P. Mounoud [10] (associated to a fixed
Riemannian metric g on C(M)), and hence (C, d∞g ) is itself a metric space. It is then
a natural question whether λ↑k are continuous functions relative to the d∞g -topology.

The paper is organized as follows. In Section 2, we recall the needed material
on CR and pseudohermitian geometry. The distance function d (in Corollary 1) is
built in Section 3. In Section 4, we establish a Max-Mini principle (cf. Proposition 2)
for the eigenvalues of a sublaplacian. Then Corollary 1 follows from Theorem 1 in
Section 5. In Section 6, we prove the continuity of the eigenvalues with respect to
the Fefferman metric (cf. Corollary 2), though only as functions on C+ = {eu◦πFθ0 :
u ∈ C∞(M,R), u > 0}.

2 Review of CR and Pseudohermitian Geometry

Let
(

M,T1,0(M)
)

be a CR manifold, of CR dimension n, where T1,0(M) ⊂ T(M)⊗C
is its CR structure, cf., e.g., [5, pp. 3–4]. The Levi distribution is

H(M) = <{T1,0(M)⊕ T1,0(M)}.

The Levi distribution carries the complex structure J : H(M) → H(M) given by
J(Z − Z) = i(Z − Z) for any Z ∈ T1,0(M) (here i =

√
−1). A pseudohermitian

structure is a globally defined nowhere zero section θ ∈ C∞
(

H(M)⊥
)

in the conor-
mal bundle H(M)⊥ ⊂ T∗(M). Pseudohermitian structures do exist by the mere
assumption that M be orientable. Let P be the set of all pseudohermitian struc-
tures on M. As H(M)⊥ → M is a real line bundle for any θ, θ0 ∈ P there is a
C∞ function λ : M → R \ {0} such that θ = λθ0. Given θ ∈ P the Levi form is
Gθ(X,Y ) = (dθ)(X, JY ) for every X,Y ∈ X(M). Then Gλθ0 = λGθ0 . The CR mani-
fold M is strictly pseudoconvex if Gθ is positive definite (write Gθ > 0) for some θ ∈ P.
If M is strictly pseudoconvex then each θ ∈ P is a contact form, i.e., Ψθ = θ∧(dθ)n is
a volume form on M. Clearly, if Gθ is positive definite then G−θ is negative definite.
Hence P admits a natural orientation P+ (Gθ > 0 for each θ ∈ P+). Let M be a
strictly pseudoconvex CR manifold and θ ∈ P+. The Reeb vector field is the globally
defined, nowhere zero, tangent vector field T ∈ X(M), transverse to H(M), deter-
mined by θ(T) = 1 and (dθ)(T,X) = 0 for any X ∈ X(M) (cf. [5, Proposition 1.2,
p. 8]). The Webster metric is the Riemannian metric gθ on M given by

gθ(X,Y ) = Gθ(X,Y ), gθ(X,T) = 0, gθ(T,T) = 1,

for every X,Y ∈ H(M). Let S1 → C(M)
π
−→ M be the canonical circle bundle (cf.

[5, Definition 2.9, p. 119]). For every θ ∈ P+ there is a Lorentzian metric Fθ on
C(M) (the Fefferman metric, cf. [5, Definition 2.15, p. 128]) such that the set C =
{Fθ : θ ∈ P+} of all Fefferman metrics is given by C = {eu◦πFθ : u ∈ C∞(M,R)} for
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14 A. Aribi, S. Dragomir, and A. El Soufi

each fixed contact form θ ∈ P+ (by a result of Lee [8], or [5, Theorem 2.3, p. 128]).
C is also referred to as the restricted conformal class of Fθ and it is a CR invariant.

If u ∈ C∞(M,R) then the horizontal gradient ∇Hu ∈ C∞
(

H(M)
)

is given by
∇Hu = ΠH∇u. Here ΠH : T(M) → H(M) is the projection relative to the de-
composition T(M) = H(M) ⊕ RT and ∇u is the gradient of u with respect to the
Webster metric, i.e., gθ(∇u,X) = X(u) for any X ∈ X(M). The divergence oper-
ator div : X(M) → C∞(M,R) is meant with respect to the volume form Ψθ, i.e.,
LXΨθ = div(X)Ψθ for any X ∈ X(M). The sublaplacian ∆b of (M, θ) is then the
formally self-adjoint, second order, degenerate elliptic (in the sense of J. M. Bony
[4]) operator given by ∆bu = − div(∇Hu) for any u ∈ C∞(M,R). A systematic
application of functional analysis methods to the study of sublaplacians (on domains
in strictly pseudoconvex CR manifolds) was started in [3]. By a result following es-
sentially from work in [9] (cf. also [12]), if M is compact, then ∆b has a discrete
spectrum σ(∆b) = {λν : ν ≥ 0} such that λ0 = 0 and λν ↑ +∞ as ν →∞.

3 A Topology on the Space of Oriented Contact Forms

Let {Uλ}λ∈Λ be a finite open covering of M such that the closure of each Uλ is con-
tained in a larger open set Vλ which is both the domain of a local frame {Xa : 1 ≤
a ≤ 2n} ⊂ C∞

(
Vλ,H(M)

)
with Xα+n = JXα for any 1 ≤ α ≤ n, and a coordi-

nate neighborhood with the local coordinates (x1, . . . , x2n+1). For each point x ∈ M,
let Px (respectively Sx) be the set of all symmetric positive definite (respectively merely
symmetric) bilinear forms on Tx(M). Let us consider the anti-reflexive partial order
relation on Sx defined by

ϕ < ψ ⇐⇒ ψ − ϕ ∈ Px, ϕ, ψ ∈ Sx.

Next let ρ ′ ′x : Px × Px → [0,+∞) be the distance function given by

ρ ′ ′x (ϕ,ψ) = inf{δ > 0 : exp(−δ)ϕ < ψ < exp(δ)ϕ}

for any ϕ,ψ ∈ Px. Then (Px, ρ
′ ′
x ) is a complete metric space (by [2, Lemma 1.1 (iii),

p. 158]).
Let M be the set of all Riemannian metrics on M, so that gθ ∈M for every θ ∈ P+.

Following [2], one may endow M with a complete distance function ρ. Indeed, as M
is compact, one may set

ρ ′ ′(g1, g2) = sup
x∈M

ρ ′ ′x (g1,x, g2,x), g1, g2 ∈M.

Also let S(M) be the space of all C∞ symmetric (0, 2)-tensor fields on M, organized
as a Fréchet space by the family of seminorms

{
| · |k : k ∈ N ∪ {0}

}
, where

|g|k =
∑
λ∈Λ

|g|λ,k, |g|λ,k = sup
x∈Uλ

∑
|α|≤k

|Dαgi j(x)|,

where

Dα = ∂|α|/∂(x1)α1 · · · ∂(x2n+1)α2n+1 , gi j = g(∂/∂xi , ∂/∂x j) ∈ C∞(Vλ,R),
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for any g ∈ S(M). The topology of S(M) as a locally convex space is compatible to
the distance function

ρ ′(g1, g2) =

∞∑
k=0

1

2k

|g1 − g2|k
1 + |g1 − g2|k

, g1, g2 ∈ S(M).

In particular
(

S(M), ρ ′
)

is a complete metric space. If

ρ(g1, g2) = ρ ′(g1, g2) + ρ ′ ′(g1, g2)

then (M, ρ) is a complete metric space (cf. [2, Proposition 2, p. 158]). Each met-
ric g ∈ M determines a Laplace–Beltrami operator ∆g , hence the eigenvalues of ∆g

may be thought of as functions of g and as such the eigenvalues are (by [2, Theo-
rem 2.2, p. 161]) continuous functions on (M, ρ). To deal with the similar problem
for the spectrum of a sublaplacian, we start by observing that the natural counter-
part of M in the category of strictly pseudoconvex CR manifolds is the set MH of
all sub-Riemannian metrics on

(
M,H(M)

)
. Nevertheless, only a particular sort of

sub-Riemannian metric gives rise to a sublaplacian, i.e., ∆b is associated to Gθ ∈MH

for some positively-oriented contact form θ ∈ P+. Of course P+ ⊂ Ω1(M) and one
may endow Ω1(M) with the C∞ topology. One may then attempt to repeat the argu-
ments in [2] (by replacing S(M) with Ω1(M)). The situation at hand is however much
simpler since, once a contact form θ0 ∈ P+ is fixed, all others are parametrized by
C∞(M,R), i.e., for any θ ∈ P+ there is a unique u ∈ C∞(M,R) such that θ = euθ0.
We may then use the canonical Fréchet space structure (and corresponding complete
distance function) of C∞(M,R). Precisely, for every u ∈ C∞(M,R), λ ∈ Λ and
k ∈ N ∪ {0} we set

pλ,k(u) = sup
x∈U k

∑
|α|≤k

|Dαu(x)|,

pk(u) =
∑
λ∈Λ

pλ,k(u), |u|C∞ =

∞∑
k=0

1

2k

pk(u)

1 + pk(u)
.

If θ0 ∈ P+ is a fixed contact form then we set

d ′(θ1, θ2) = |u1 − u2|C∞ , θ1, θ2 ∈ P+,

where ui ∈ C∞(M,R) are given by θi = euiθ0 for any i ∈ {1, 2}. The definition of d ′

doesn’t depend upon the choice of θ0 ∈ P+.

Lemma 1 (P+, d ′) is a complete metric space.

Proof Let {θν}ν≥1 be a Cauchy sequence in (P+, d ′). If uν ∈ C∞(M,R) is the
function determined by θν = euνθ0 then (by the very definition of d ′) {uν}ν≥1 is
a Cauchy sequence in C∞(M,R). Here C∞(M,R) is organized as a Fréchet space by
the (countable, separating) family of seminorms

{
pk : k ∈ N∪ {0}

}
. Hence there is
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u ∈ C∞(M,R) such that |uν − u|C∞ → 0 as ν →∞. Finally if θ = euθ0 ∈ P+ then
d ′(θν , θ)→ 0 as ν →∞.

Let S(H) ⊂ H(M)∗ ⊗ H(M)∗ be the subbundle of all bilinear symmetric forms
on H(M). For every G ∈ C∞

(
S(H)

)
, k ∈ Z, k ≥ 0, and λ ∈ Λ we set

|G|λ,k = sup
x∈Uλ

∑
|α|≤k

2n∑
a,b=1

|DαGab(x)|,

|G|k =
∑
λ∈Λ

|G|λ,k, |G|C∞ =

∞∑
k=0

1

2k

|G|k
1 + |G|k

,

where Gab = G(Xa,Xb) ∈ C∞(Vλ,R). Moreover we set

ρ ′H(G1,G2) = |G1 − G2|C∞ , G1,G2 ∈ C∞
(

S(H)
)
.

Lemma 2
{
| · |k : k ∈ N ∪ {0}

}
is a countable separating family of seminorms

organizing X = C∞
(

S(H)
)

as a Fréchet space. In particular (X, ρ ′H) is a complete
metric space.

Proof For each k ∈ N ∪ {0} and N ∈ N we set

(2) V (k,N) = {G ∈ X : |G|k < 1/N}.

Let B be the collection of all finite intersections of sets (2). Then B is (cf., e.g., [11,
Theorem 1.37, p. 27]) a convex balanced local base for a topology τ on X that makes X

into a locally convex space such that every seminorm | · |k is continuous and a set E ⊂
X is bounded if and only if every | · |k is bounded on E. The topology τ is compatible
with the distance function ρ ′H . Let {Gm}m≥1 ⊂ X be a Cauchy sequence relative
to ρ ′H . Thus, for every fixed k ∈ N ∪ {0} and N ∈ N one has Gm − Gp ∈ V (k,N) for
m, p sufficiently large. Consequently

|Dα(Gm)ab(x)− Dα(Gp)ab(x)| < 1/N,

x ∈ U λ, λ ∈ Λ, |α| ≤ k, 1 ≤ a, b ≤ 2n.

It follows that each sequence {Dα(Gm)ab}m≥1 converges uniformly on U λ to a func-
tion Gα

ab. In particular for α = 0 one has (Gm)ab(x)→ G0
ab(x) as m→∞, uniformly

in x ∈ U λ. If λ, λ ′ ∈ Λ are such that Uλ ∩Uλ ′ 6= ∅ and

X ′b = Aa
bXa, A ≡ [Aa

b] : Uλ ∩Uλ ′ → GL(2n,R),

is a local transformation of the frame in H(M) then

(Gm) ′ab = Ac
aAd

b(Gm)cd on Uλ ∩Uλ ′
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so that (for m → ∞) G ′0ab = Ac
aAd

bG0
cd on Uλ ∩Uλ ′ . Thus G0

ab ∈ C∞(Uλ) glue up
to a (globally defined) bilinear symmetric form G0 on H(M) and Gm → G0 in X as
m→∞.

For each point x ∈ M, let P(H)x be the set of all symmetric positive definite bilin-
ear forms on H(M)x. We endow S(H)x with the anti-reflexive partial order relation

ϕ < ψ ⇐⇒ ψ − ϕ ∈ P(H)x, ϕ, ψ ∈ S(H)x.

Next let ρ ′ ′x : P(H)x × P(H)x → [0,+∞) be given by

ρ ′ ′x (ϕ,ψ) = inf{δ > 0 : exp(−δ)ϕ < ψ < exp(δ)ϕ}

for any ϕ,ψ ∈ P(H)x.

Lemma 3 ρ ′ ′x is a distance function on P(H)x.

Proof As e−δϕ < ψ < eδϕ is equivalent to e−δψ < ϕ < eδψ, it follows that ρ ′ ′x is
symmetric. To prove the triangle inequality we assume that ρ ′ ′x (ϕ,ψ) > ρ ′ ′x (ϕ, χ) +
ρ ′ ′(χ, ψ) for some ϕ,ψ, χ ∈ P(H)x. Then

ρ ′ ′x (ϕ,ψ)− ρ ′ ′x (ϕ, χ) > inf{δ > 0 : exp(−δ)χ < ψ < exp(δ)χ},

hence there is δ2 > 0 such that e−δ2χ < ψ < eδ2χ and ρ ′ ′x (ϕ,ψ) − ρ ′ ′x (ϕ, χ) > δ2.
Similarly,

ρ ′ ′x (ϕ,ψ)− δ2 > inf{δ > 0 : exp(−δ)ϕ < χ < exp(δ)ϕ}

yields the existence of a number δ1 > 0 such that e−δ1ϕ < χ < eδ1ϕ and ρ ′ ′x (ϕ,ψ)−
δ2 > δ1. Let us set δ ≡ δ1 + δ2. The inequalities written so far show that e−δϕ < ψ <
eδϕ and ρ ′ ′x (ϕ,ψ) > δ, a contradiction. Finally, let us assume that ρ ′ ′x (ϕ,ψ) = 0, so
that for any k ∈ N,

inf{δ > 0 : exp(−δ)ϕ < ψ < exp(δ)ϕ} < 1/k

i.e., there is δk > 0 such that e−δkϕ < ψ < eδkϕ and δk < 1/k. Thus limk→∞ δk = 0
and ψ − e−δkϕ ∈ P(H)x shows (by passing to the limit with k → ∞ in ψ(v, v) −
e−δkϕ(v, v) > 0, v ∈ H(M)x \ {0}) that ϕ < ψ. Similarly eδkϕ − ψ ∈ P(H)x yields
ψ < ϕ in the limit, and we may conclude that ϕ = ψ. Vice versa, if ϕ ∈ P(H)x then

{δ > 0 : (1− e−δ)ϕ, (eδ − 1)ϕ ∈ P(H)x} = (0,+∞),

hence ρ ′ ′x (ϕ,ϕ) = 0.

Lemma 4

(i)
(

P(H)x, ρ
′ ′
x

)
is a complete metric space.
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18 A. Aribi, S. Dragomir, and A. El Soufi

(ii) Let {ϕ j} j∈N ⊂ P(H)x such that lim j→∞ ϕ j = ϕ ∈ P(H)x in the ρ ′ ′x -topology.
Then lim j→∞ ϕ j(v,w) = ϕ(v,w) for any v,w ∈ H(M)x.

Proof (i) Let {ϕ j} j∈N ⊂ P(H)x be a Cauchy sequence in the ρ ′ ′x -topology, i.e., for
any ε > 0 there is jε ∈ N such that ρ ′ ′x (ϕ j+p, ϕ j) > ε for any j ≥ jε and any
p = 1, 2, . . . . Hence there is δε > 0 such that e−δεϕ j < ϕ j+p < eδεϕ j and δε < ε.
Consequently

| logϕ j+p(v, v)− logϕ j(v, v)| < δε < ε

for any v ∈ H(M)x \ {0}. Therefore if

ξ j ≡
(

logϕ j(v, v), . . . , logϕ j(v, v)
)
∈ R2n

then {ξ j} j∈N is a Cauchy sequence in R2n. Let then ξ = lim j→∞ ξ j and let

ϕ : H(M)x ×H(M)x → R

be the bilinear form given by ϕ(v, v) = exp(ξa) for any v ∈ H(M)x \ {0} followed by
polarization. Here ξ = (ξ1, . . . , ξ2n). Then ϕ ∈ P(H)x and lim j→∞ ϕ j = ϕ in the
ρ ′ ′x -topology.

(ii) If ϕ j → ϕ as j → ∞ then logϕ j(v, v) → logϕ(v, v) as j → ∞, for any
v ∈ H(M)x \ {0}. Then lim j→∞ ϕ j(v, v) = ϕ(v, v) uniformly in v and statement (ii)
follows by polarization.

As M is compact we may set

ρ ′ ′H (G1,G2) = sup
x∈M

ρ ′ ′x (G1,x,G2,x),

ρH(G1,G2) = ρ ′H(G1,G2) + ρ ′ ′H (G1,G2), G1,G2 ∈MH .

Also let d be the distance function on P+ given by

d(θ1, θ2) = d ′(θ1, θ2) + ρ ′ ′H (Gθ1 ,Gθ2 ), θ1, θ2 ∈ P+.

Proposition 1

(i) (MH , ρH) is a complete metric space.
(ii) The map θ ∈ P+ 7→ Gθ ∈MH of (P+, d) into (MH , ρH) is continuous.
(iii) (P+, d) is a complete metric space.

Proof (i) Let {G j} j≥1 be a Cauchy sequence in (MH , ρH). Then {G j} j≥1 is a Cauchy
sequence in both (X, ρ ′H) and (MH , ρ

′ ′
H ). Yet (X, ρ ′H) is complete (by Lemma 2). Thus

ρ ′H(G j ,G)→ 0 as j →∞ for some G ∈ X. In particular

lim
j→∞

G j,x(v,w) = Gx(v,w)

https://doi.org/10.4153/CMB-2012-026-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2012-026-9


On the Continuity of the Eigenvalues of a Sublaplacian 19

for every x ∈ M and v,w ∈ H(M)x. On the other hand, as {G j} j≥1 is Cauchy in
(MH , ρ

′ ′
H ), for every ε > 0 there is Nε ≥ 1 such that

ρ ′ ′x (Gi,x,G j,x) ≤ ρ ′ ′H (Gi ,G j) < ε

for every i, j ≥ Nε and x ∈ M. Thus {G j,x} j≥1 is Cauchy in the complete (by
Lemma 4) metric space

(
P(H)x, ρ

′ ′
x

)
so that ρ ′ ′x (G j,x, ϕ) → 0 as j → ∞ for some

ϕ ∈ P(H)x. Then (by (iii) in Lemma 4) lim j→∞ G j,x(v,w) = ϕ(v,w) for every
v,w ∈ H(M)x, hence Gx = ϕ, yielding G ∈MH .

(ii) Let {θν}ν≥1 ⊂ P+ such that d(θν , θ) → 0 for ν → ∞ for some θ ∈ P+. If
θν = euνθ0 and θ = euθ0, then |uν − u|C∞ → 0 as ν → ∞. Then Gθν = euνGθ0

and Gθ = euGθ0 . Since Dαuν → Dαu as ν → ∞, uniformly on U λ, for any λ ∈ Λ,
|α| ≤ k, and k ∈ N ∪ {0}, it follows that Dα(Gθν )ab → Dα(Gθ)ab as ν → ∞,
uniformly on U λ for any 1 ≤ a, b ≤ 2n. Hence Gθν → Gθ in X so that (by the very
definition of d and ρH) ρH(Gθν ,Gθ)→ 0.

(iii) If {θν}ν≥1 is a Cauchy sequence in (P+, d) then {uν}ν≥1 is Cauchy in (P+, d ′)
as well. Yet (by Lemma 1) (P+, d ′) is complete, hence d ′(θν , θ) → 0 for some
θ ∈ P+. Then, as a byproduct of the proof of statement (ii), one has Gθν → Gθ in
X. Finally, verbatim repetition of the arguments in the proof of statement (i) yields
ρ ′ ′H (Gθν ,Gθ)→ 0 so that d(θν , θ)→ 0.

4 A Max-Mini Principle

For each k ∈ N ∪ {0} we consider a (k + 1)-dimensional real subspace Lk+1 ⊂
C∞(M,R) and set

Λθ(Lk+1) = sup
{ ‖∇H f ‖2

L2

‖ f ‖2
L2

: f ∈ Lk+1 \ {0}
}
.

Here

‖ f ‖L2 =

(∫
M

f 2Ψθ

) 1
2

, ‖X‖L2 =

(∫
M

gθ(X,X)Ψθ

) 1
2

,

for any f ∈ C∞(M,R) and any X ∈ X(M). Let {uν}ν≥0 ⊂ C∞(M,R) be a complete
orthonormal system relative to the L2 inner product ( f , g)L2 =

∫
M f gΨθ such that

uν ∈ Eigen
(

∆b;λν(θ)
)

for every ν ≥ 0. If f ∈ C∞(M,R) then f =
∑∞

ν=0 aν( f )uν
(L2 convergence) for some aν( f ) ∈ R. Let L0

k+1 be the subspace of C∞(M,R) spanned
by {uν : 0 ≤ ν ≤ k}. Let (∇H)∗ be the formal adjoint of∇H , i.e.,

(∇H f ,X)L2 =
(

f , (∇H)∗X
)

L2

for any f ∈ C∞(M,R) and X ∈ C∞
(

H(M)
)

. Mere integration by parts shows that

(∇H)∗X = − div(X), X ∈ C∞
(

H(M)
)
,

implying, by (1), the useful identity

(3) ‖∇H f ‖2
L2 = ( f ,∆b f )L2 , f ∈ C∞(M,R).
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Let f ∈ L0
k+1 \ {0} so that f =

∑k
ν=0 aνuν for some aν ∈ R. Then, by (3),

‖∇H f ‖2
L2 =

k∑
ν=0

a2
νλν(θ) ≤ λk(θ)

k∑
ν=0

a2
ν = λk(θ)‖ f ‖2

L2

hence

(4) Λθ(L0
k+1) ≤ λk(θ).

Our purpose in this section is to establish the following.

Proposition 2 Let M be a compact strictly pseudoconvex CR manifold and θ ∈ P+ a
positively oriented contact form. Then

λk(θ) = inf
Lk+1

Λθ(Lk+1)

where the infimum is taken over all subspaces Lk+1 ⊂ C∞(M,R) with dimR Lk+1 =
k + 1.

So far, by (4), λk(θ) ≥ Λθ(L0
k+1) ≥ infLk+1 Λθ(Lk+1). The proof of Proposition 2

is by contradiction. We assume that λk(θ) > infLk+1 Λθ(Lk+1), i.e., there is a (k + 1)-
dimensional subspace Lk+1 ⊂ C∞(M,R) such that Λθ(Lk+1) < λk(θ). Then Λθ(Lk+1)
is finite and

‖ f ‖2
L2 Λθ(Lk+1) ≥ ‖∇H f ‖2

L2 , f ∈ Lk+1.

Then, by (3),
∞∑
ν=0

aν( f )2Λθ(Lk+1) ≥
∞∑
ν=0

λν(θ)aν( f )2,

so that

(5)
∑

Λθ(Lk+1)≥Λν (θ)

aν( f )2[Λθ(Lk+1)−λν(θ)] ≥
∑

Λθ(Lk+1)<λν (θ)

aν( f )2[λν(θ)−Λθ(Lk+1)].

Let Φ : Lk+1 → C∞(M,R) be the linear map given by

Φ( f ) =

m∑
ν=0

aν( f )uν , f ∈ Lk+1,

where m = max{ν ≥ 0 : λν(θ) ≤ Λθ(Lk+1)}. Note that 0 ≤ m ≤ k − 1 (by the
contradiction assumption). We claim that

(6) Ker(Φ) 6= (0).

Of course (6) is only true within the contradiction loop. The statement follows from
dimR Φ(Lk+1) ≤ m + 1 ≤ k < k + 1 (hence Φ cannot be injective). Using (6), let
f0 ∈ Lk+1 such that Φ( f0) = 0 and f0 6= 0. Then aν( f0) = 0 for any 0 ≤ ν ≤ m,
i.e., whenever Λθ(Lk+1) ≥ λν(θ). Applying (5) to f = f0 yields aν( f0) = 0 whenever
Λθ(Lk+1) < λν(θ). Thus f0 = 0, a contradiction.
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5 Continuity of Eigenvalues

The scope of this section is to establish the following.

Theorem 1 Let M be a compact strictly pseudoconvex CR manifold. If δ > 0 and
θ, θ̂ ∈ P+ are two contact forms on M such that d(θ, θ̂) < δ then e−δλk(θ) ≤ λk(θ̂) ≤
eδλk(θ) for any k ≥ 0.

Proof For any x ∈ M

δ > inf{ε > 0 : e−εGθ,x < Gθ̂,x < eεGθ,x}

i.e., there is 0 < ε < δ such that Gθ̂,x − e−εGθ,x ∈ P(H)x and eεGθ,x − Gθ̂,x ∈ P(H)x.

There is a unique u ∈ C∞(M,R) such that θ̂ = euθ. Consequently

(7) θ̂ ∧ (dθ̂)n = e(n+1)uθ ∧ (dθ)n.

On the other hand e−δGθ,x(v, v) < Gθ̂,x(v, v) < eδGθ,x(v, v) for any v ∈ H(M)x \ {0}
implies |u| < δ. Then for every f ∈ C∞(M), by (7),

(8) e−(n+1)δ

∫
M

f 2Ψθ ≤
∫

M
f 2Ψθ̂ ≤ e(n+1)δ

∫
M

f 2Ψθ.

Moreover,

(9) ∇̂H f = e−u∇H f ,

where ∇̂H f is the horizontal gradient of f with respect to θ̂. Thus, by (9), ‖∇̂H f ‖2
θ̂

=

e−u‖∇H f ‖2
θ < eδ‖∇H f ‖2

θ so that, by (7),

e−(n+2)δ

∫
M
‖∇H f ‖2

θΨθ ≤
∫

M
‖∇̂H f ‖2

θ̂
Ψθ̂ ≤ e(n+2)δ

∫
M
‖∇H f ‖2

θΨθ.

Finally, by (8)–(9),

e−δ
‖∇H f ‖2

L2

‖ f ‖2
L2

≤
∫

M ‖∇̂
h f ‖2

θ̂
Ψθ̂∫

M f 2Ψθ̂

≤ eδ
‖∇H f ‖2

L2

‖ f ‖2
L2

,

so that (by the Max-Mini principle)

(10) e−δλk(θ) ≤ λk(θ̂) ≤ eδλk(θ).

Theorem 1 is proved. Corollary 1 follows from (10).
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6 Spectra of ∆b and �

Let Fθ be the Fefferman metric of (M, θ) and � the corresponding wave operator (the
Laplace–Beltrami operator of

(
C(M), Fθ

)
). We set M = C(M) for simplicity. Let g

be a fixed Riemannian metric on M. The space S(M) of all symmetric tensor fields
may be identified with the space of all fields of endomorphisms of T(M) which are
symmetric with respect to g, i.e., for each h ∈ S(M) let h̃ ∈ C∞

(
End

(
T(M)

))
be

given by
g(h̃X,Y ) = h(X,Y ), X,Y ∈ X(M).

From now on we assume that M is compact. Then M is compact as well (as M is
the total space of a principal bundle with compact base and compact fibres) and we
endow S(M) with the distance function

d∞g (h1, h2) = sup
z∈M

[trace(ϕ2
z )]1/2, h1, h2 ∈ S(M),

where ϕ = h̃1 − h̃2 and ϕ2
z = ϕz ◦ ϕz. The set Lor(M) of all Lorentz metrics on M is

an open set of
(

S(M), d∞g
)

and for any pair g1, g2 of Riemannian metrics on M the
distance functions dg1 and dg2 are uniformly equivalent (cf., e.g., [10, p. 49]). We shall
use the topology induced by d∞g on Lor(M) (and therefore on C ⊂ Lor(M)). By a
result of [8], the sublaplacian ∆b of (M, θ) is the pushforward of the wave operator,
i.e., π∗� = ∆b. In particular σ(∆b) ⊂ σ(�). Thus each λk : P+ → R may be
thought of as a function λ↑k : C → R such that λ↑k ◦ F = λk for every k ≥ 0, where
F : P+ → C is the map given by F(θ) = Fθ for every θ ∈ P+. As another consequence
of Theorem 1 we establish the following.

Corollary 2 Let M be a compact strictly pseudoconvex CR manifold and let g be an
arbitrary Riemannian metric on M = C(M). Let θ0 ∈ P+ be a fixed contact form and
P++ = {euθ0 : u ∈ C∞(M,R), u > 0}. If C+ = {Fθ : θ ∈ P++} then for every
k ∈ N ∪ {0} the function λ↑k : C+ → R is continuous relative to the d∞g -topology.

Proof Let θi ∈ P+, i ∈ {1, 2}, and let us set ϕ = F̃θ1− F̃θ2 . Let {Ep : 1 ≤ p ≤ 2n+2}
be a local g-orthonormal frame on T(M), defined on the open set U ⊂M. Then

trace(ϕ2) =

2n+2∑
p=1

g(ϕ2Ep, Ep) =
∑

p

{Fθ1 (ϕEp, Ep)− Fθ2 (ϕEp, Ep)}

on U. On the other hand if ϕEp = ϕ
q
pEq then ϕq

p = F(θ1)(Ep, Eq) − F(θ2)(Ep, Eq)
hence

(11) trace(ϕ2) = (eu1◦π − eu2◦π)2‖Fθ0‖2
g ,

where ui ∈ C∞(M,R) is given by θi = euiθ0 and ‖Fθ0‖g is the norm of Fθ0 as a
(0, 2)-tensor field on M with respect to g. Then, by (11),

d∞g (Fθ1 , Fθ2 ) = sup
M

|eu1◦π − eu2◦π| ‖Fθ0‖g .
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As M is compact, a = infz∈M ‖Fθ0‖g,z > 0. Indeed, by compactness, a = ‖Fθ0‖g,z0

for some z0 ∈ M. If a = 0 then Fθ0,z0 = 0, a contradiction (as Fθ0 is Lorentzian, and
hence nondegenerate). Let ε > 0 such that d∞g (Fθ1 , Fθ2 ) < ε. Then |eu1 − eu2 | < ε/a
everywhere on M. As both u1 > 0 and u2 > 0 it follows that |u1−u2| < log(1 + ε/a).
Indeed eu1 − eu2 < ε/a is equivalent to eu1−u2 < 1 + (ε/a)e−u2 hence (as u2 > 0)

u1 − u2 < log[1 + (ε/a)e−u2 ] < log(1 + ε/a).

Therefore

(1 + ε/a)−1Gθ1,x(v, v) < Gθ2,x(v, v) < (1 + ε/a)Gθ1,x(v, v)

for any v ∈ H(M)x \ {0} and any x ∈ M. Consequently ρ ′ ′H (Gθ1 ,Gθ2 ) < log(1 + ε/a).
The arguments in Section 5 then yield

(1 + ε/a)−1λ↑k (Fθ1 ) ≤ λ↑k (Fθ2 ) ≤ (1 + ε/a)λ↑k (Fθ1 )

and Corollary 2 follows. The problem of the behavior of λ↑k : C→ R is open. So does
the more general problem of the behavior of the spectrum of the wave operator on M

with respect to a change of F ∈ Lor(M). Further work (cf. [1]) on the behavior of
σ(∆b) under analytic 1-parameter deformations {θ(t)}t∈R of a given contact form
θ0 ∈ P+ builds on the Riemannian counterpart in [6] and the functional analysis
results in [7].
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