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Abstract

This study compares the design practices and performance of ChatGPT 4.0, a large language model
(LLM), against graduate engineering students in a 48-h prototyping hackathon, based on a dataset
comprising more than 100 prototypes. The LLM participated by instructing two participants who
executed its instructions and provided objective feedback, generated ideas autonomously and
made all design decisions without human intervention. The LLM exhibited similar prototyping
practices to human participants and finished second among six teams, successfully designing and
providing building instructions for functional prototypes. The LLM’s concept generation capabil-
ities were particularly strong. However, the LLM prematurely abandoned promising concepts
when facing minor difficulties, added unnecessary complexity to designs, and experienced design
fixation. Communication between the LLM and participants was challenging due to vague or
unclear descriptions, and the LLM had difficulty maintaining continuity and relevance in answers.
Based on these findings, six recommendations for implementing an LLM like ChatGPT in the
design process are proposed, including leveraging it for ideation, ensuring human oversight for key
decisions, implementing iterative feedback loops, prompting it to consider alternatives, and
assigning specific and manageable tasks at a subsystem level.

Introduction

The design process is often intricate, nuanced, and ambiguous, demanding both technical
expertise and creativity, as well as strategic thinking and collaborative effort. This complex
interplay of skills and knowledge has traditionally been the domain of human designers (Vestad
etal,, 2019), whose capacity to navigate design challenges has defined the field. However, recent
years have seen a significant shift, driven by the evolving capabilities of artificial intelligence
(AI) and natural language processing, notably through large language model (LLM)-based
chatbots like ChatGPT and similar generative Als. These advancements have started redefining
engineering design boundaries by introducing new potential for idea generation and concept
development (Salikutluk et al., 2023), streamlining workflows, and identifying potential issues
early in the development cycle (Tholander and Jonsson, 2023). The emergence and use of LLMs
in design are proposed to significantly impact the design process, necessitating an augmentation
of the designer (Thoring et al., 2023). Despite this, a significant gap still exists regarding current
LLM’s performance capabilities (Tholander and Jonsson, 2023) and how they affect today’s
design processes. Furthermore, as the use of LLMs becomes increasingly integrated into design
teams, their ability to assist with creating prototypes that effectively communicate design intent
will be crucial for successful collaboration.

Based on this gap, the scope of this article is to design and conduct an experiment to evaluate
the applicability and quality of decisions made by current LLM systems in the context of a
prototyping hackathon. By comparing the design practices and performance of human
designers to those of an LLM, specifically ChatGPT 4.0, this study aims to provide insights
into the potential use and limitations of LLMs in the engineering design process. The study
compares the performance of five graduate mechanical engineering student teams against a
team solely instructed by ChatGPT in a 48-h hackathon to design and build an NERF dart
launcher.

This study explores the intersection of generative Al and traditional design practices,
highlighting both the potential of Al in engineering design and the need to recognize its
current limitations. By understanding these strengths and constraints, we can create a more
effective synergy between human designers and A, informing the future of engineering design
practices.
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Background

Engineering design is a systematic, often iterative, process that
transforms concepts and requirements into functional products
or systems. It involves multiple stages, including problem defin-
ition, conceptual design, detailed design, prototyping, testing, and
refinement (Ulrich and Eppinger, 2012). Prototyping, the act of
creating tangible representations of design ideas, is a fundamental
aspect of the engineering design process (Wall et al., 1992). Proto-
types serve as filters and manifest design ideas (Lim et al., 2008),
allowing designers to evaluate and refine specific aspects of their
designs (Houde and Hill, 1997). They are often characterized by
approximating one or more features of a new product or system
(Otto and Wood, 2001), enabling designers to rapidly explore and
test ideas, identify promising solutions, and create iterations of their
designs (Dow et al., 2009; Camburn et al., 2017).

Incorporating functionality early is critical for effective proto-
typing (Jensen and Steinert, 2020). Functional prototypes provide
valuable insights into the feasibility and performance of designs,
enabling informed decision-making and reducing the risk of costly
redesigns later in the development process (Elverum and Welo,
2014; Ege et al., 2024a).

Effective communication and collaboration among design team
members and stakeholders are essential for successful design out-
comes. Prototypes serve as boundary objects, bridging the gap
between disciplines and expertise (Carlile, 2002; Lauff et al,
2020). By creating shared representations of design ideas, proto-
types facilitate alignment, understanding, and decision-making
(Schrage, 1996; Lauff et al., 2018).

Multiple prototyping strategies and best-practice recommenda-
tions have been documented in the literature (Camburn et al., 2017;
Menold et al., 2017; Ege et al., 2024a), highlighting the importance
of prototyping early and with intent (Houde and Hill, 1997), to
answer specific design questions (Otto and Wood, 2001) and to
choose fitting fabrication processes at the correct stages of devel-
opment (Viswanathan and Linsey, 2013).

LLMs such as generative pretrained transformers (GPTs) are Al
systems designed to process and generate human-like text based on
vast amounts of data. LLMs can perform a range of tasks including
natural language understanding, content generation, and respond-
ing to complex queries (Wang et al., 2023). Recent advancements in
LLMs have made them capable of engaging in dialogue, assisting
with decision-making, and supporting creative processes, making
them potentially valuable tools for prototyping.

When LLMs are not utilized, engineering design is typically
driven by human expertise, creativity, and collaboration (Vestad
et al,, 2019). Engineers rely on their knowledge and experience to
develop solutions through brainstorming, iterative prototyping,
and testing. In traditional settings, design teams manually generate
and evaluate multiple concepts, often relying on simulations, cal-
culations, and prototypes to refine designs (Camburn et al., 2017).
This process can be time-consuming and labor-intensive. Tasks
such as data collection, documentation, and repetitive calculations
can divert time and resources away from higher-level decision-
making and innovation. Further, the creative aspect of engineering
design remains solely in the hands of human designers. However,
this traditional approach is often limited by cognitive biases
(Purcell and Gero, 1996), constrained by the team’s experience,
and may overlook viable solutions that an AI could potentially
offer.

Recent research has begun exploring the integration of LLMs in
engineering design, focusing on how these AI systems can augment
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human capabilities. By utilizing advanced algorithms and large
datasets, generative Al systems can revolutionize how engineers
approach design problems (Thoring et al., 2023), by streamlining
workflows and identifying potential issues early in the development
cycle (Tholander and Jonsson, 2023). It has opened up new possi-
bilities for engineers to focus on creative problem-solving and high-
level decision-making, leaving time-consuming and repetitive
tasks, such as data acquisition or generating documentation, to
Al systems (“The Next Wave of Intelligent Design Automation,”
2018; Lai et al., 2023).

Multiple studies have highlighted difficulties with integrating
current LLMs in the design process, particularly in understanding
complex design contexts and performing hardware-related tasks,
signifying a need for further development and refinement
(Tholander and Jonsson, 2023; Wang et al., 2023).

Its use is also limited by uncertainty regarding the accuracy and
performance when used, for example, for calculations (Tiro, 2023),
illustrated by a survey showing that 63% of the asked engineers
mistrust ChatGPT (Maclachlan et al., 2024). Hu et al. (2023)
showed that LLMs can be used to acquire targeted knowledge from
a variety of domains, but highlighted that prompts strongly affect
the quality of knowledge acquired.

At present, the primary application of LLMs in engineering
design is concentrated in the conceptual or preliminary stages,
where it assists with tasks such as idea generation and design space
exploration (Hwang, 2022; Khanolkar et al., 2023) or for require-
ment elicitation (Ataei et al., 2024), preceding the physical realiza-
tion of prototypes. Al-assisted brainwriting and brainstorming, for
instance, have shown promise in enhancing creativity and gener-
ating novel ideas (Filippi, 2023; Haase and Hanel, 2023; Salikutluk
et al.,, 2023) and facilitating extensive stakeholder engagement in
large-scale design projects (Dortheimer et al., 2024). Moreover, the
use of LLMs has been perceived as helpful when solving complex
engineering problems (Memmert et al., 2023; Xu et al., 2024b),
demonstrating its potential to identify multiple solutions, facilitate
iteration, and accelerate the design process (Oh et al., 2019). It has
also shown promise in applications like structural optimization and
materials choice (Regenwetter et al., 2022), and to be a valuable
assistant in creative processes (Haase and Hanel, 2023) by provid-
ing new perspectives (Liao et al., 2020) and facilitating effective
design processes (Chen et al., 2019; Lai et al., 2023; Xu et al., 2024a).

While human—AlI collaborations have been investigated in solv-
ing complex and evolving engineering digital problems, for
instance, by generating design proposals (Xu et al.,, 2024a), the
effectiveness of LLMs like ChatGPT in physical realization tasks
demanding domain-specific knowledge remains uncertain (Ege
et al, 2024c). This uncertainty underscores a gap regarding the
practical application of LLMs in design, especially when technical
expertise is essential (Tholander and Jonsson, 2023). Furthermore,
although human—AT hybrid teams can adapt to unexpected design
changes as well as human teams, they may encounter challenges in
coordination and communication (Xu et al., 2024b), which is
considered key for successful prototyping outcomes (Lauff et al.,
2020).

The successful integration of LLMs in engineering design neces-
sitates reassessing traditional design practices and shifting from
human—computer interactions to human—computer teams (Xu,
2019; Olsson and Viidnidnen, 2021). This transition requires a
thorough understanding of the strengths and limitations of both
human designers and Al systems, as well as the development of
effective collaboration strategies.
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To fully utilize the potential of LLMs in engineering design,
further research is essential to optimize human—AI collaboration
and address the challenges associated with the practical implemen-
tation of these technologies (Mountstephens and Teo, 2020; Thor-
ing et al, 2023). This includes developing more advanced AI
systems to better understand and navigate complex design contexts,
creating intuitive interfaces for seamless designer—AlI interaction,
and establishing best practices for integrating LLMs into existing
design workflows. Further, its alignment with established proto-
typing strategies and impact on practical, real-world design pro-
cesses following the initial ideation stage remains largely
unexplored. This gap underscores the necessity for empirical
research to evaluate the prototyping capabilities of LLMs within
an engineering design context, allowing for a comparison of per-
formance between humans and AL

Methods

The following sections describe the experimental setup and data
analysis methods along with key characteristics of the TrollLabs
Open hackathon. The full dataset, including all rules and con-
straints governing the experiment, has been made publicly available
(Ege et al., 2024b) and is described in further detail in a comple-
mentary data article (Ege et al., 2024b). For researchers interested in
replicating the study, the data article provides a comprehensive
breakdown of the experimental rules and conditions.

Experiment setup

Data were generated by running a prototyping hackathon for
engineering design students in a university makerspace. The main
objective of the hackathon was to design and prototype a free-
standing device that can fire an NERF dart as far as possible. The
challenge lasted 48 h, with participants receiving the task and rules
at the beginning and conducting a final performance test of their
designs at the end. The rules specified that teams were limited to
one attempt for the final test. They were also supplied a brand new
NERE dart for the test to mitigate alterations. Participants were free
to spend their time and resources as they saw best. Teams had a
limited budget of around 30 USD but were free to scavenge parts
and materials found in the university makerspace where the chal-
lenge was conducted. They also had access to familiar prototyping
manufacturing tools such as three-dimensional (3D) printers, laser
cutters, mechatronics, and CNCs. A gift card of 1000 NOK (~93
USD at the time of writing) was awarded to the challenge winner.

A control group of five teams (Teams 1-5), each with two
control participants, participated in the hackathon. Demographics
and relevant experience of the participants are provided in Table 1,

Table 1. Participants demographics (F: female; M: male)

Work
Team Age Gender (M, F) Education experience
Team 1 23.5(0.71) 1,1 4(0) 2 (0)
Team 2 24.5 (0.71) 2,0 4(0) 1(0)
Team 3 24 (0) 2,0 4(0) 1(0)
Team 4 25.5 (2.12) 2,0 4 (0) 0.5 (0.71)
Team 5 23 (0) 2,0 4(0) 0.5 (0.71)
Team 6 (ChatGPT) 25 (0) 2,0 5(0) 1(0)
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showing similar ages, relevant experience, and education across
teams. The standard deviations for age, years of relevant education,
and years of relevant work experience are in brackets. Education
was defined as the number of years with relevant education. Rele-
vant work experience was defined as the number of years each
participant had worked in the industry, either before or during
studies, summer internships, and so on. The 10 control partici-
pants, all fifth-year graduate students in mechanical engineering,
were selectively invited to participate due to their active involve-
ment in writing their master’s thesis in the research group in which
this study was conducted. This measure was taken to ensure rele-
vant expertise in the field of engineering design and familiarity with
the facilities/equipment used during the study.

An additional team, Team 6 (ChatGPT), competed alongside
the control teams. Team 6 (ChatGPT) consisted of two newly
graduated master’s students, now in PhD student positions in the
same research group as the control teams. Unlike the self-directed
control teams, Team 6 (ChatGPT) was entirely controlled by the
LLM ChatGPT. In this setup, all ideas, concepts, strategies, and
actions undertaken by Team 6 (ChatGPT) were autonomously
generated by the Al without human intervention or guidance. To
mitigate biased behaviors, the control participants were unaware
that ChatGPT was instructing one of the teams. The participants
primarily engaged with the ChatGPT 4.0 version available in
October 18-19, 2023. However, upon reaching the maximum
prompt limit at the end of the first day, the team switched to
ChatGPT 3.5, continuing the conversation in the same chat session
to navigate around the prompt restriction. At the beginning of the
second day, the team reverted to the ChatGPT 4.0 model, limiting
the use of ChatGPT 3.5 to a few prompts out of the total 97 inter-
actions.

Team 6 (ChatGPT) was directed to be as objective as possible
and follow the LLM’s suggestions to the best of their ability.
Although aiming for the LLM to operate autonomously, the results
of the experiment are inevitably influenced by how the participants
interacted with the LLM. Different ways of prompting, interpreting
responses, and seeking clarifications lead to varied outcomes. To
minimize this variability, the participants were advised to maintain
objectivity and request clarifications from the LLM when encoun-
tering uncertainty or ambiguity. Additionally, an initial prompt was
carefully constructed to define ChatGPT’s role and engagement in
the hackathon. This prompt provided clear instructions and
boundaries in an effort to mitigate human subjectivity and give
the LLM more autonomy in ideating, making decisions, and devel-
oping concrete actions for the human participants to execute.
Further, participants used a single conversation window to interact
with the LLM. Beyond this, no additional guidelines or structured
procedures were imposed on designing prompts. The initial prompt
was as follows:

Hello ChatGPT, we’re participating in a 48-hour prototyping hackathon,
and want you to be making all decisions and coming up with all solutions
for our team. We will act as your arms and feet throughout the challenge,
meaning you will make all the decisions, and we build what you come up
with. We are in a well-equipped makerspace/fablab.

We are not allowed to come up with suggestions or subjective input, so
please call us out if we do and ignore it. We want you to first come up with as
many possible solution concepts as you can, and then decide where we start.
Always give us clear instructions on what to build and how to test. For the
remainder of the challenge, we want to create a feedback loop where we
provide you with information on how the prototype worked, if and why it
failed, and how well it performed. Please ask us for necessary information
throughout the challenge, such as how much time we have left. In the
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following prompt, you will be supplied with the rules and objective of the
challenge.

Prototypes developed during the hackathon and their associated
attribute data were captured using the online tool Pro2booth
(Giunta et al,, 2022), a system designed to facilitate real-time
documentation of prototypes throughout the design process. Pro2-
booth is based on Protobooth (Erichsen et al., 2021) and operates by
allowing participants to capture critical information about each
prototype they develop. This information includes descriptions of
the prototypes; the domain (whether physical or digital); associated
media (e.g., images, videos, CAD files); the purpose of the prototype
(as defined by Camburn’s prototyping purposes [Camburn et al.,
2017]); and the time required to create it (focused on the active,
hands-on work, excluding waiting periods, such as for 3D print-
ing). The interaction with Pro2booth was facilitated through a
website, where participants could create prototypes and input
attribute data via text boxes or select options from dropdown
menus, ensuring standardized and consistent documentation
throughout the hackathon. Pro2booth uses a graph database sys-
tem to organize its data, where users, prototypes, and projects are
represented as nodes, and relationships between these elements
(such as users linked to prototypes or prototypes linked to projects)
are captured as edges.

To encourage participants to capture prototypes in Pro2booth,
the challenge incorporated a reward system in which points were
rewarded based on the number of entries submitted by each team.
These points were combined with performance-based scores to
determine the hackathon winner. However, only the performance
scores are considered for this study. Before the challenge, partici-
pants received a comprehensive introduction to Pro2booth and
the definitions used within the software to ensure consistent
interpretations by all. Furthermore, the definitions were readily
accessible in the drop-down menus of the software during the
prototype uploading process, serving as a quick reference for
participants.

Upon completion of the hackathon, the chat generated by Team
6 (ChatGPT) was saved and exported as a .txt file for further
analysis. The teams’ performance was decided according to the
challenge rules, in which each team had one attempt to fire an
NEREF dart as far as possible. Each team’s prototype was positioned
at a starting line and fired, and the hackathon organizers measured
the distance manually.

Data analysis

Data analysis is based on the captured dataset comprising
116 prototypes, a copy of the chat between Team 6 (ChatGPT)
and ChatGPT containing 97 prompts and responses, and the
performance of each team’s final design (i.e., the distance it was
able to shoot an NERF dart).

A review of different concepts tested for dart propulsion across
teams revealed three main recurring concepts: pneumatic, spring-
loaded, and elastics-based launchers. Pneumatic-based prototypes
involved pressurizing a canister with air that, when released, would
propel the dart forward. Spring-based prototypes were any proto-
type where a compressed spring was used to propel the dart.
Similarly, elastic-powered prototypes used viscoelastic materials,
such as rubber bands, silicone, latex, and so on, for propulsion. The
“other” category contains prototypes not fitting in the previously
described categories and contains, among others, concepts utilizing
helium balloons, opposite-spinning motors, and paper airplanes for
propulsion.
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Chat log analysis

Chat log analysis involves systematically examining the communi-
cation between participants and ChatGPT to gain insights into the
types of interactions that occurred during the hackathon. This
method is important for understanding the specific ways in which
ChatGPT contributed to the team’s design process. By coding the
chat logs, different types of prompts and responses, such as idea
generation, decision-making, and problem-solving, can be categor-
ized, providing a structured way to evaluate the LLM’s role in the
project.

The chat log was coded by inductively deriving codes from the
chat based on grounded theory (Glaser and Strauss, 1999). Codes
were devised by uploading the chat log text to ChatGPT and asking
it to propose relevant categories for coding the chat content. It
proposed the following six categories that were cross-checked by
the authors before being used for analysis: (1) Idea Generation and
Conceptualization; (2) Feedback and Iteration; (3) Instructions and
Guidance; (4) Questions and Clarifications; (5) Decision-making;
and (6) Problem-solving and Troubleshooting. The codes were
further defined by the authors as follows:

o Idea Generation and Conceptualization: When the prompt intro-
duces a new general idea or concept.

o Feedback and Iteration: When a result is given and feedback is
given on that result. OR when instructions to iterate are provided.

o Instruction and Guidance: Any prompt that describes a specific
step on how to move forward on an idea or concept.

o Questions and Clarifications: When a question is asked or
answered to clarify a previous prompt or idea.

« Decision-making: When a decision is made.

« Problem-solving and Troubleshooting: When a specific problem
is given.

These categories were selected because they represent key activ-
ities and characteristics of prototyping processes. Idea Generation
and Conceptualization aligns with the early stages of design when
new ideas are formulated. Feedback and Iteration captures the
iterative nature of prototyping, where ideas are refined based on
performance or evaluation. Instructions and Guidance represents
the tactical steps needed to advance the prototype, while Questions
and Clarifications involves resolving ambiguities in the design
process. Decision-making reflects the selection of ideas or direc-
tions, and Problem-solving and Troubleshooting addresses specific
challenges encountered during the prototyping process.

The chat was deductively coded using structural coding against
the codes above, in which prompts were coded to enable content
analysis. One of the authors manually assigned codes to each
prompt and subsequent answer from ChatGPT. Prompts contain-
ing multiple themes were given multiple codes. Table 2 provides
examples of prompts along with corresponding codes to illustrate
the coding scheme used.

Results
Design practices of teams

Figure 1 illustrates how each team transitioned between various
concepts over time, with each pivot marked in relation to a specific
prototype. The timeline showcases the evolution of ideas and strategies
adopted by the teams throughout the hackathon, indicating similar
conceptual choices between control teams and Team 6 (ChatGPT).
Interestingly, Team 6 (ChatGPT) prototyped solutions to each of the
three main recurring concepts but not outside of these.
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Table 2. Prompt examples with corresponding codes

Prompt By Code

Instructions and
Guidance

We want you to first come up
with as many possible
solution concepts as you
can, and then decide where
we start

Participants

ChatGPT Idea Generation

and Conceptualization

Given the constraints and the
objective, we’ll need to
consider a few key aspects
(...) Potential Mechanisms:
1. Elastic Launchers (...) 2.
Spring-loaded (...)

Questions and
Clarification

Can you summarize what we
should do in one prompt?
Do not refer to previous
prompts.

Participants

How should we make the dart
stay in the correct position
when tilting the mechanism
at a good launch angle?

Participants  Problem-solving and

Troubleshooting

For adding weight while ChatGPT
ensuring the dart remains

stable and aerodynamic

during flight, the best

approach is to use a bolt

(..)

Since you’ve determined that
the best results occur when
(...), it’s time to fine-tune
your design for optimal
performance by (...)

Decision-making

ChatGPT Feedback and Iteration

Table 3 provides an overview of the amount and types of
prototypes each team made. It shows how many prototypes each
made within two domains, physical or digital, the rationale behind
creating each prototype, and how long it took to produce each
prototype. Physical and digital prototypes were defined as made up
of atoms or by 1s and Os, respectively. Prototype rationales follow

the definition by Camburn et al. (2017) and were as follows:
“Refinement is the process of gradually improving a design. (...)
Communication is the process of sharing information about the
design and its potential use within the design team and to users. (...)
Exploration is the process of seeking out new design concepts. (...)
Active learning is the process of gaining new knowledge about the
design space or relevant phenomena.” The production time was
captured as time intervals, for example, 1-3 h or 3-5 h, with the
mid-band used to calculate an approximate total production time
for each team. The average time was obtained by dividing the total
production time by the prototype count.

Figure 2 shows the prototyping practices of teams regarding
prototype domains, rationales, production time, and when in the
hackathon they were made. Different colors correspond to different
rationales and the width of each prototype entry to the time it took
to make, ranging from 10 min to 5 h.

The table and timeline show Team 1 mainly focusing on refine-
ment prototypes, accounting for seven out of the nine prototypes
they made. Following two exploration prototypes on Day 1, the
team only made refinement prototypes, indicating that they, after
the first day, decided on a concept and iterated on it for the
remainder of the challenge. All of Team 1’s prototypes were phys-
ical, with an average production time of 1.1 h. Team 1 made the
fewest prototypes out of any teams.

Team 2 made a combination of 10 physical and 3 digital proto-
types, with the latter all being made on the final day. Like other
teams, Team 2 mainly pivoted between making refinement and
exploration prototypes, but unlike Team 1, it kept making explor-
ation prototypes throughout Day 2. Similar to Team 1, prototypes
took an average of 1.2 h to make.

Team 3 made 16 physical prototypes, where 8 were refinement
prototypes, 2 were active learning, and 7 were exploration proto-
types. Team 3 had the highest production time across teamsat 17.5 h,
but the average for each prototype is similar to Teams 1 and 2. Team
3 never spent more than 3 h making one prototype, distinguishing it
from Teams 1, 2, and 4. The team made exploration and active
learning prototypes on Days 1 and 2, and refinement on the final day.

Team 4 made 14 physical prototypes, 12 of which were refine-
ment prototypes. As for Team 1, this indicates that the team spent
considerable time on one or a few main concepts. The average

Concept Evolution

Other

Elastics

Spring-based

Pneumatics

— Team 1
—— Team 2
—— Team 3
—— Team 4
—— Team 5

)
f

mmmm Team 6 (ChatGPT)

o
wv

Figure 1. Concept evolution.
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Prototypes Rationale Production time (h)
Team Total t Physical Digital Refinement Communication Active learning Exploration Total Average Longest
Team 1 9 9 0 7 0 0 2 10.3 1.1 35
Team 2 13 10 3 8 0 0 5 15.8 1.2 3-5
Team 3 16 16 0 7 0 2 7 17.5 11 1-3
Team 4 14 14 0 13 0 2 1 7.1 0.5 35
Team 5 22 21 1 12 1 0 5 5.0 0.2 0.5
Team 6 (ChatGPT) 15 15 0 8 0 0 7 11.0 0.7 1-3
Digital
Team 1 .
Physical | NN N 1 N .
Team 2 Digital im —
Physical M| AR 0 | I
T 3 Digital
eam Physical EENEEN N NN BN NN N N N N N S S —
Digital
Team 4 Physical 1108 . TEEE] O —
. Refinement
Digital 1
Team 5 Physical 1H1R1I gininmn MWl InEENI . Communication
. Active learning
Digital .
Team 6 (ChatGPT) _9'" B sooration
( )Phy5|cal Emul AN NI
1 |
Day 1 Day 2

Figure 2. Prototyping timelines.

production time was lower than that of other teams, with an average
of 30 min per prototype.

Team 5 made the most prototypes of any team, with 21 physical
and one digital prototype. Twelve were refinement prototypes, five
were exploration prototypes, and one was a communication proto-
type. Team 5 spent the least time prototyping and their prototypes
took, on average, shorter to make than all other teams, at an average
of just over 10 min. The team never spent more than 30 min on a
prototype.

Team 6 (ChatGPT) exhibited similar practices to Team 3. The
team made 15 physical prototypes and, like most other teams,
primarily alternated between two types of prototypes: refinement
and exploration. Like Team 3, Team 6 (ChatGPT) did not make
prototypes that took longer than 3 h to finish and averaged 0.7 h per
prototype. Unlike the other teams, Team 6 (ChatGPT) made an
exploration prototype on the final day.
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Summary of the LLM’s prototyping process and final design

Key interactions and decision points during the hackathon are
illustrated in Figure 3, showing inputs (given to the LLM) and
outputs (answers from the LLM). Following the initial prompt,
which provided the LLM with details about the participants’ roles
and their own, the participants briefed the LLM on the hackathon’s
objective and rules. The LLM detailed essential design elements and
suggested various NERF launching mechanisms. It advised the
team members to search the lab for available materials, like springs
and elastic bands, to help choose a concept for prototyping. After
performing a 15-min search, the participants reported back to the
LLM, which then proposed five design concepts based on the
available materials. Ultimately, it recommended a pneumatic
launcher as the most promising approach and provided building
instructions.
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Figure 3. Timeline of key interactions (from Ege et al., 2024d).

When the participants encountered difficulties finding a suitable
coupler to connect the bike pump to the initially suggested pressure
vessel, they prompted “The bike pump is broken and there are no
suitable couplers to the ball valve. The pressure vessel has a 6 mm
tube and the ball valve is 1 1/4 inch. What to do next?” the LLM
answered, “Alright, given the challenges with the pneumatic
launcher, we might want to pivot to another mechanism.” and
shifted its recommendation to a spring-based launcher concept
before providing a new, detailed guide for prototyping.

Following this change in direction, the participants and the LLM
exchanged messages to clarify the construction of the envisioned
design. At the request of the participants, the LLM broke down the
prototyping process into more manageable, clearly defined tasks,
specifically covering the spring compression and propulsion mech-
anism.

Feedback on the initial working prototype revealed a shooting
distance of 5 m and prompted a discussion on the setup’s config-
uration. The LLM then outlined potential enhancements and, upon
request, supplied a specific action plan for optimization. The dia-
logue continued with requests for clarifications and updates on the
dart’s positioning and the spring compression. The LLM proposed
a solenoid release mechanism. However, testing showed a much
stronger electrical actuator was necessary. When prompted, the
LLM responded by listing various alternatives and recommended
utilizing a geared DC motor, along with an action plan for further
prototyping.

Subsequent iterations focused on refining the launcher based
on the LLM’s optimization suggestions, such as adding weight
and enhancing the platform holding the prototype. These modi-
fications led to a reported shooting distance of 12 m. Efforts to
increase distance included creating a free-standing platform and
various adjustments to the launcher’s components. However,
these changes resulted in a reduced shooting distance, prompting
the LLM to recommend solutions for overcoming this setback
and further optimization strategies. Further enhancements began
to yield diminishing returns, suggesting that performance had
plateaued.

At this juncture, the study organizers decided that the partici-
pants should express interest in exploring alternative concepts to
further investigate the LLM’s capabilities with additional designs.
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Hence, the LLM proposed a pivot to an elastic band-powered
launcher, complete with a new action plan for prototyping.

This shift led to the creation of a launcher that achieved a 10-m
range. The team was then focused on developing a free-standing
structure and a remote trigger mechanism. Although this mechan-
ism was successful, it introduced accuracy issues, with the dart not
shooting straight. The LLM suggested adjustments but, ultimately,
the dart’s misdirection persisted, culminating in a detailed strategy
to rectify the problem. Ultimately, due to the latest elastic band-
powered prototype’s directional issues, and the end of the hacka-
thon nearing, the team decided to revert to the more reliable spring-
based launcher, which consistently fired in the intended direction.
This decision solidified the spring-based launcher as the final
design choice, as depicted in Figure 4.

The final design integrates a compression spring housed within
an aluminum tube, affixed to a stable platform. The base of the tube
is supported by a wooden block for stability. A thin string passes
through a hole in the back piece of wood and the spring itself,
allowing for spring compression when it is drawn backward. A
trigger pin slotted through a hole in the aluminum tube locks the
compressed spring. The pin is linked to a geared DC motor powered
by a 9-V battery via a fishing line that, when activated, winds the
fishing line around its shaft, thus pulling the pin out and launching
the dart. Additionally, the launcher is attached to a vertical support
with a pivoting mechanism, enabling precise angle adjustments for
the launch.

Performance of the final designs

Figure 5 shows the final prototypes developed by the control
teams. Team 1’s design utilized an empty fire extinguisher con-
taining compressed air connected to a metal tube, where the NERF
was placed using a rubber tube. The metal tube was fixed to a
frame for precise angle adjustments to optimize the NERFs tra-
jectory. Team 2 decided on a spring-loaded mechanism in which a
spring was compressed inside an aluminum tube to store energy.
The NERF was placed in the same tube, and it was shot when the
spring was released. A DC motor pulled a string attached to the
pin holding the compressed spring to fire the design. Team 3
utilized a plastic bottle connected to a foot pump to build pressure.
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Figure 4. Final design of Team 6 (ChatGPT) with arrows indicating key components.
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Figure 5. Final designs of control teams.

The plastic bottle was connected to a long barrel in which the
NERF was loaded. A solenoid valve was used to release pressure
and fire the NERF. The prototype was mounted to a laser-cut
tripod to control the trajectory. Team 4 utilized elastic bands
connected to a paper airplane in which the NERF was placed.
An adjustable platform controlled the trajectory, and two small
pipes guided the paper plane when shot. Team 5 made a slingshot
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Team 5

consisting of balloons connected to a beam. The NERF was placed
in a leather pouch connected to the balloons, propelling it as they
were stretched and released.

The performance of each team’s final design with regard to the
distance it could fire an NERF dart and the rank of each team are
shown in Table 4. It also shows the average length across teams.
Team 3 won the challenge, managing to fire the NERF 37 m, more
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Table 4. Performance of teams and rank

Team Length (m) Rank
Team 1 6.56 4
Team 2 8.07 3
Team 3 37.66 1
Team 4 5.06 5
Team 5 0.06 6
Team 6 (ChatGPT) 14.8 2
Average 12.0

than 60% longer than the next team. Team 6 (ChatGPT) finished
second, firing its NERF 14.8 m, surpassing the average distance
fired across teams by almost 3 m. Team 2 finished third, shooting
the NERF 8.1 m, and Team 1 finished fourth with a 6.6 m shot.
Teams 4 and 5 shot 5.1 and 0.1 m, respectively, finishing in the fifth
and sixth places.

Chat analysis

The result of performing content analysis of the chat log is visualized
in Figure 6. The 97 prompts in the chat were assigned 108 codes, of
which 87 entries were assigned one code, 9 were assigned 2 codes, and
1 was assigned 3 codes. The most predominant categories in the chat

were “Instruction and Guidance” (33 counts) and “Problem-solving
and Troubleshooting” (22 counts), followed by “Questions and
Clarifications” (20 counts). The three categories most frequently
assigned to ChatGPT were “Instruction and Guidance,” account-
ing for 31 of the 78 categories assigned to ChatGPT, 11 counts of
“Idea Generation and Conceptualization,” and 9 counts of “Decision-
making.” Dominant categories assigned to participants were “Prob-
lem-solving and Troubleshooting,” accounting for 21 of 53 codes for
the team, 16 counts of “Questions and Clarifications,” and 10 counts
of “Feedback and Iteration.” The two “Instruction and Guidance”
instances from participants occurred when ChatGPT requested a
brainstorming session, which conflicted with the experiment’s rule
that all decision-making be left to the LLM. In response, partici-
pants reminded ChatGPT to adhere to its role and not ask for
brainstorming again. The instance of the participant prompting
“Decision-making” stems from when the organizers instructed the
participants to prompt a pivot from the LLM when their performance
of iterations on the spring-based design plateaued.

Discussion
Comparing design practices

In analyzing the prototyping practices of participants, it is clear that
most teams share comparable characteristics. Teams made similar
quantities of prototypes, mainly pivoting between exploration and
refinement prototypes, with refinement prototypes most frequently
used toward the end of the hackathon. Teams reported making
higher amounts of prototypes on the first and final day. Fast-
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Figure 6. Distribution of code assignments between ChatGPT and participants.

https://doi.org/10.1017/50890060425000010 Published online by Cambridge University Press


https://doi.org/10.1017/S0890060425000010

10

produced prototypes mainly occurred on the first day, signifying
low complexity and rapid iterations. In contrast, longer production
times were more frequent on the final day, signifying more time-
consuming optimization efforts. These characteristics align well
with the practices previously reported in similar events (Ege
et al., 2024a). Notably, Team 6 (ChatGPT)s’ approach closely
mirrored that of the most successful control team, leading to
the key finding: (KF 1) The LLM shows similar prototyping
practices to humans, particularly concerning the amount and
type of prototypes made, aligning closely with the practices of the
winning team.

Prototyping and final design

Upon receiving the initial prompt and a list of available materials,
the LLM suggested a list of five possible working principles, all of
which sounded like reasonable ideas of how to propel a foam dart.
Its first suggestion was to make a Pneumatic launcher, mirroring
the decision of the best-performing control team. The list also
contained a spring-based concept in which a spring is compressed
and released behind a piston, pushing air before it to propel the dart.
This is analogous to how most commercial NERF dart shooters
work. Further, the LLM proposed concepts outside the three main
concepts previously described, including a slingshot design, a
gravity-driven mechanism, and a centrifugal force-based design,
all of which have the potential to propel a dart, although it chose not
to pursue these further through physical realization. This leads to
the key finding: (KF 2) The LLM shows promising capabilities for
concept generation by describing various reasonable working
principles.

The results illustrated in Figure 1 indicate that the LLM did not
produce highly creative outputs, as it mirrored the conceptual
choices of the control teams, focusing on three main recurring
concepts. While GPT initially generated a diverse list of ideas
during the brainstorming phase, it ultimately chose to prototype
solutions only for the more common concepts, leaving other, more
unconventional ideas unexplored. LLMs are trained on vast data-
sets and, as a result, generate outputs that align with the patterns
and structures present in their training data. While the LLM
simulates creativity by suggesting a broad range of ideas, its
decision-making seems to favor familiar concepts that are
grounded in common knowledge, that is, the “safe” option. Con-
sequently, it may prioritize solutions that align with established
patterns rather than pursuing more novel or unconventional ideas.

Unlike the winning team, the Al abandoned the pneumatics
concept after one iteration because the valve participants initially
found did not fit. Despite participants having access to equipment
common in makerspaces/fab labs, such as 3D printers and CNC
machines (that the LLM suggested using in other instances), the
LLM recommended pivoting without thoroughly exploring alter-
native solutions, only reasoning, “Alright, given the challenges with
the pneumatic launcher, we might want to pivot to another
mechanism.” This observation leads to the key finding: (KF 3)
The LLM can interpret feedback as a failure rather than a
challenge, leading it to abandon promising concepts prema-
turely, potentially affecting its problem-solving process and depth
of exploration of concepts. This is perhaps unlike what an experi-
enced human designer would do, as they would leverage a setback
as alearning opportunity (Lande and Leifer, 2009; Lauff et al., 2018)
and draw on previous skill-based and implicit knowledge and past
experiences to consider multiple solutions to arising problems
(Vestad et al., 2019).
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Although prematurely abandoning a promising concept that
was used by the best-performing team, the LLM did, in fact,
successfully propose a working design. From idea generation to
building multiple iterations and solving emerging problems, the
LLM equipped its human team members with building instructions
that ended up with a prototype that could reliably fire NERF darts,
leading to the key finding: (KF 4) The LLM was able to design a
physical, functional prototype to perform a simple task with the
same working principle as commercially available solutions for the
same task. This finding is further strengthened by some of the
emerging problems it was able to understand and overcome. For
example, an early prototype had a problem where a spring was
compressed between two bars, leading the participants to prompt:
“When constructing the mechanism with two bars and a spring in
between, we noticed that the spring bends outwards and does not
stay straight under compression.” The LLM correctly identified this
as spring buckling, answering “The bending of the spring under
compression is a phenomenon known as ‘buckling’. It’s a common
issue, especially with longer springs. To counteract this, we’ll need
to guide and constrain the spring during compression” and adding
“Place a cylindrical tube around the outside of the spring. The
internal diameter of this tube should be slightly larger than the
external diameter of the spring. This tube will act as a guide,
ensuring the spring compresses straight down.”

Although many design decisions seem to have solid reasoning
behind them, we question the decision to use a push-button-
activated DC motor to pull the firing pin instead of manually
pulling it. Similarly, the LLM, at one point, suggested motorizing
the spring compression instead of manually pulling back a spring,
which would add complexity without improvements or additional
benefits. This leads to the following key insight: (KF 5) The LLM
risks adding unnecessary complexity to its designs. The partici-
pants even expressed to the organizers that they were embarrassed
over what they were prototyping, as they understood that these
were unnecessary and bad ideas, and particularly that they could
not explain to the other teams that the ideas were not theirs.
However, it is noteworthy that Team 2 used the same firing mech-
anism and working principle for propulsion, indicating that
although more complex than necessary, the added complexity is
similar to that of a human team. As teams built prototypes in the
same space, it is uncertain whether Team 2 made the same design
decision independently or was influenced by seeing Team
6 (ChatGPT) design theirs, but it illustrates that the LLM concludes
similarly to that of human teams.

Comparing final designs and performance

When comparing final designs across teams, the LLM’s design was
similar to other teams’ designs. Like Teams 2 and 4, the LLM opted
for a Spring-based launcher. Its design was the best performing
among the spring-based launchers and was only beaten by Team 3’s
pneumatic launcher. This led to the key insight: (KF 6) The LLMs’
design capabilities proved competitive against fifth-year engin-
eering students by finishing second among six teams.

It is necessary to state that a significant factor contributing to the
poor performance of some teams was the weather conditions
during the outdoor test. Cold temperatures affected the viscoelastic
tubing and silicone in Teams 1 and 5’s designs, leading to poor
performance. The LLM, however, refined its prototype through
multiple iterations to achieve high reliability while competing
under the same conditions, in contrast to the teams performing
poorly during the final test. The LLM, at one point, even suggested
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contingency planning, indicating that it was preparing for unex-
pected events during the final test.

Chat analysis and observations

The communication between the LLM and the participants pre-
sented notable challenges, highlighted by a significant portion of
the prompts — 20 out of 97 — being categorized as “Questions and
Clarification.” The initial design concepts shared by the LLM were
often vague despite explicit instructions for the LLM to make all
design decisions. For example, the LLM’s guidance on creating a
spring-based launcher mechanism was too general. It required
further prompting for clarification, illustrated by the answer,
“Design a mechanism where the spring can be compressed and
then released to launch the dart.” It took 18 exchanges before the
initial prototype reached a stage where it could be tested, a delay
attributed to initial design flaws that went unnoticed by the LLM
until they were gradually addressed with new iterations. This
experience reveals the LLM’s limitations in guiding the transi-
tion from broad concepts to addressing specific subsystem
issues.

The initial dialogue concerning the spring-based launcher
focused on a mechanism for propelling the dart by physically
hitting it using what the LLM described as a “moving block.” It
did not consider a mechanism to push air behind the dart. In
subsequent interactions, the concept evolved to include “an air-
tight piston,” indicating a significant mid-process shift in the design
principle. This shift necessitated additional prompts to clarify and
refine a specific design not initially explained to the participants. At
one point, the LLM also asked the participants to “Use ropes or
wires, attached to the moving block and running through pulleys at
the top of the frame, to assist in pulling the block upwards (...) ,”
without mentioning anything about pulleys before that point. This
leads to the key finding: (KF 7) The LLM is unable to communi-
cate design intent effectively, necessitating time-consuming dis-
cussion to comprehend instructions. An analysis of the interaction
patterns further demonstrates the disconnect. Prompts from par-
ticipants seeking solutions to problems often resulted in conceptual
ideas rather than direct guidance. To obtain detailed “Instructions
and Guidance,” participants had to navigate through a cycle of
“Questions and Clarifications.” This pattern suggests that while the
LLM provided detailed, step-by-step instructions for well-defined,
narrow queries, it tended to revert to ideation in response to
broader conceptual prompts. The effectiveness of the communica-
tion seemed to hinge on the questions’ specificity. General inquiries
often led the LLM into a creative ideation mode, even when
practical solutions were sought. This tendency might be beneficial
for collaborative purposes but proved challenging with the LLM
acting as the team lead, necessitating additional prompts to elicit
detailed descriptions.

The participants also noticed the LLM’s tendency to overlook
previously given information. Despite being informed that the
participants would not contribute suggestions, it still implied the
need for a brainstorming session among them. Similarly, the LLM
recurrently failed to remember the team’s size, suggesting multiple-
member strategies even though it had been made clear that the team
consisted of only two people. This necessitated frequent reminders
from the participants about key details of their setup, as evidenced
when it suggested, “If you have multiple team members, consider
brainstorming and collaborating to generate fresh ideas or approaches.
Sometimes, a new perspective can lead to breakthroughs”; thus, also
forgetting the objective role of the participants in which they were not
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allowed to provide their perspectives and suggestions. This pattern
leads to the key finding: (KF 8) The LLM faces challenges maintain-
ing continuity and relevance in responses to the project’s specific
context.

Much like a novice designer, ChatGPT clings to one concept and
is reluctant to try something else (Purcell and Gero, 1996), illus-
trated by the answer: “If you've iterated through multiple design
improvements and observed that the increase in launch distance
has plateaued, it’s a good indication that you’ve reached a point of
diminishing returns in terms of design changes. At this stage, here
are some suggestions for what you can do next,” followed by a list of
actions including more testing, optimizing the launch, improving
the aerodynamics of the dart (which clearly goes against the chal-
lenge rules), practicing, and contingency planning. Only after
explicitly stating that: “We have now iterated based on your feed-
back and observed that we have reached a plateau in performance.
We are interested in testing one more of the original ideas. What do
you suggest?,” ChatGPT was willing to pivot to a different mech-
anism. At this point, the team had spent a considerable amount of
time optimizing the previous design, with little time left to build and
test the new concept. These observations lead to the key insight:
(KF 9) ChatGPT experiences and is limited by design fixation,
both regarding not wanting to abandon a working concept and
specific details provided in prompts (e.g., the list of the available
materials curated at the start of the hackathon). When planning
the study and testing different initial prompts, it became clear that
the LLM often fixated on specific details in the prompts. For
example, when providing the LLM with manufacturing capabilities
available to the participants, it would often fixate on the last
machine on the list. If that happened to be a 3D printer, the LLM
would suggest 3D printing each prototype going forward. Likewise,
if the last machine were a laser cutter, it would suggest laser-cutting
prototypes. This necessitated the general description of “fab
lab/makerspace” in the prompt instead of listing all manufacturing
capabilities. Notably, the LLM asked participants to curate a list of
available materials but never asked what manufacturing capabilities
were available to them.

Recommendations for using current LLM for engineering design

This study intentionally utilized the LLM in an extreme capacity as
the sole decision-maker in an engineering design process, a scenario
that cannot be advocated for practical applications. The purpose
was rather to objectively benchmark the strengths and weaknesses
of current LLMs against human capabilities. Based on the obser-
vations and insights from the participants, it is clear that the results
of using it could have been drastically improved through minimal
critical thinking by them. Based on the findings of our study, we
offer the following recommendations for effectively integrating
current LLMs into the design process:

1. Leverage the LLM for ideation, but guide with human over-
sight: Utilize its capability to generate a broad spectrum of
concepts during the ideation phase to enhance creativity and
explore a wider range of initial ideas. Human designers should
provide oversight to evaluate the feasibility and relevance of
these ideas. LLM-generated suggestions can lead to innovative
concepts; however, without critical human judgment, they may
lack practicality or alignment with project goals. Therefore, the
ideation process should always involve human filtering and
refinement to ensure viable outputs. LLMs offer breadth but
humans ensure depth and applicability.
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2. Maintain human decision-making oversight: LLMs can sug-
gest abandoning certain promising ideas too early due to biases
or fixation. Human decision-makers must intervene to ensure
promising ideas are not prematurely discarded. This requires
human evaluation at key decision points, particularly to coun-
teract the LLM’s potential design fixation and ensure that the
most innovative and feasible ideas are pursued.

3. Implement iterative feedback loops with the LLM: Iterative
feedback is a standard practice in design, but with LLMs, it
becomes even more critical. LLMs generate outputs based on
the input provided, and without regular feedback, their sugges-
tions can diverge from the original design intent or become
overly complex. Continuous feedback ensures the LLM stays
aligned with design goals and refines its outputs in a way that
mirrors the evolving design process.

4. Use structured prompts and custom templates for consist-
ency: Streamline communication with the LLM through tailored
prompts and templates, making instructions clearer and easier
to follow, and reducing the occurrence of vague or off-target
responses. This ensures more consistent, relevant outputs that
align with design goals.

5. Explicitly prompt the LLM to consider alternatives: Design
fixation is a common challenge in any design process, but LLMs
seem particularly prone to focusing on the most immediate or
conventional solutions. To counteract this, designers must expli-
citly prompt the LLM to explore alternative approaches and
avoid narrowing its focus prematurely. This strategy encourages
the LLM to generate a wider array of solutions and helps prevent
it from becoming fixated on suboptimal ideas.

6. Assign specific tasks at the subsystem level: Direct the LLM to
focus on detailed explanations and solutions for specific project
parts to enhance clarity and avoid vague or unhelpful responses.
This method also helps when aiming to solve complex problems,
as these become more manageable when broken down into
smaller, more focused tasks. By addressing each subsystem indi-
vidually, LLMs can provide more detailed and actionable outputs,
contributing to the resolution of larger, more intricate design
challenges. This approach allows designers to integrate these
subsystem solutions into a cohesive, optimized final deliverable.

Limitations and consideration

The study is limited by investigating the distinctive setting of a
hackathon, with its specific characterizations that may not fully
represent the larger range of design and prototyping processes found
in professional and educational settings. However, hackathons have
been shown to mirror key aspects of design (Goudswaard et al., 2022;
Ege et al, 2024a) and, thus, appropriate for studying design pro-
cesses. Nonetheless, the insights gained are contextualized within this
distinctive setting and extrapolating these results to other design
contexts should be done with caution.

This study focused exclusively on prototyping for a single task —
an NERF firing device — thereby constraining the breadth of
insights into how the LLM might perform with different tasks. This
specificity potentially limits the transferability of our findings to
other cases. However, design challenges often involve multi-
objective criteria where trade-offs between competing factors, such
as performance, resource constraints, usability, and manufactur-
ability, must be considered. Scaling the experiment to include such
multi-objective tasks would require adapting the approach to
accommodate a broader set of evaluation metrics.
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Team 6 (ChatGPT) had 1 year more experience than control
teams, a factor that could potentially influence outcomes. Choos-
ing slightly more experienced participants for the team was a
measure taken to ensure they had the abilities necessary to use all
the available equipment and skills to perform the instructions of
the LLM. Measures were taken to balance the experience gap, as
the team was instructed to act objectively and not to contribute
ideas or insights, thus neutralizing any differences. Further,
participants’ backgrounds in mechanical engineering may have
inadvertently influenced the nature of the prompts given to the
LLM, potentially introducing a bias. For instance, inquiries about
the fit tolerances between parts may not typify questions from a
novice, suggesting some experienced-based bias in participants’
prompts.

The reliance on participants’ objectivity is a further limitation.
While the LLM provided reasonable ideas and directions, the
physical realization and implementation of these concepts required
human intervention, which introduces variability in decision-
making and problem-solving. The degree of human engagement,
including the phrasing of follow-up prompts or seeking clarifications,
may have influenced the model’s outputs and thus shaped the
outcomes. The LLM’s inability to effectively express design intent,
introducing ambiguity and vagueness, might skew results due to
interpretation from the participants. Participants attempted to miti-
gate this by seeking clarification from the LLM throughout the
hackathon, yet this interactive process may itself influence the out-
comes. Ultimately, while the goal was for the LLM to operate autono-
mously, human interaction played an unavoidable role, making it
possible that different participants or different interaction styles could
have produced varied outcomes. This highlights that the experiment
not only assessed the LLM’s capabilities but also indirectly the influ-
ence of human—LLM interaction on design outcomes.

The replicability of the study may be compromised by the evolving
nature of the LLM used. Results obtained on October 18 and 19, 2023,
might not be replicated in subsequent uses due to updates and changes
to the model. LLMs, including the models used in this study, are
nondeterministic by nature. This means that the same prompt may
yield different outputs each time it is submitted. This characteristic
poses challenges for replicability in design tasks, as identical inputs may
not consistently generate identical results, especially as LLMs evolve.
Moreover, the models themselves are continually updated, often
incorporating new data and improved algorithms. As a result, both
the version of the LLM used and the underlying dataset may change
over time, making it difficult to replicate the exact conditions of this
study in the future. The nondeterministic nature of LLMs introduces
an additional layer of complexity when evaluating their performance in
engineering design. While this study reflects the capabilities of LLMs as
they existed at the time of the research, the rapid evolution of these
technologies means that findings related to their limitations — such as
difficulties with maintaining context, short attention spans, or logical
reasoning — may not hold true as models improve.

Further work

The authors recommend further investigation of the recommenda-
tions presented in this article for design-related tasks. Although the
limitations placed on the participants were necessary to elicit the
strengths and weaknesses of the LLM itself, they are not realistic in
real-world design situations. Real-world applications would likely
require LLM:s to function as part of a human—AI hybrid team rather
than leading the process. Future research should systematically
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investigate how LLMs can serve as design support tools, offering
insights and suggestions while working in tandem with human
designers.

To systematically study the performance of LLMs as design
support, a structured methodology can be developed, focusing on
several key areas:

« Collaboration: Future experiments should explore how LLMs
perform when integrated as team members, providing support in
ideation, problem-solving, or generating alternatives, while
human designers retain decision-making control. This setup
would allow for an evaluation of how well LLMs contribute to
a team’s creativity and problem-solving capabilities, without
being the sole driver of the design process.

o Performance of LLMs as design support: Future research should
systematically evaluate the performance of LLMs as collaborative
tools in the design process. This can be measured through several
performance metrics, including time efficiency, design quality, and
problem-solving capabilities. Key performance indicators could
include the LLM’s ability to generate functional solutions, suggest
innovative ideas, and assist in optimizing design iterations. Add-
itionally, performance can be assessed by analyzing how effectively
the LLM helps reduce the cognitive load on human designers by
handling routine tasks or complex computations. By tracking
improvements in overall design performance and the speed of
iteration cycles, researchers can better understand the role LLMs
play in accelerating and enhancing the engineering design process.

o Multi-objective task: A future study could task the LLM with
balancing multiple criteria during the design process to investi-
gate the impact of multiple objects that more accurately mirror
industrial practices. For instance, instead of optimizing solely for
the distance an NERF dart can be fired, the LLM could also consider
factors like cost, durability, ease of use, and even the aesthetics of the
final design. To enable this, a structured framework would be
necessary, where the LLM is provided with weighted criteria or a
hierarchy of objectives. The LLM could then generate design
solutions by optimizing for combinations of these factors.

« Role of visual and parametric outputs: Investigating Al-
generated visual outputs (e.g., CAD models) in conjunction with
written instructions could provide new insights into how LLMs
can assist in producing usable designs. Combining parametric
design approaches with Al-generated CAD models could further
enhance usability and lead to intuitive human—ATI interactions,
particularly in the context of engineering design.

« Industry expert evaluation: A study involving industry experts
performing a design task, with one group instructed to use
ChatGPT, would provide valuable insights into how AI tools
integrate into professional workflows. By observing the perform-
ance of experienced designers who are familiar with industry
standards and constraints, researchers can better assess the prac-
tical utility of LLMs in real-world settings. This setup is particu-
larly relevant because it mirrors industrial practices more closely,
where time, cost, and product viability are crucial. Moreover,
paying experts ensures a level of engagement and commitment
that can lead to more accurate assessments of ChatGPT’s ability
to contribute meaningfully to high-stakes, professional design
environments.

These approaches will help build a body of knowledge on how to
effectively integrate LLMs into real-world design workflows, ultim-
ately allowing for practical and well-functioning human—AI
cooperation. Future studies that use similar experimental setups
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with different LLM versions or evolving datasets would be valuable
in validating and strengthening the findings of this study. Repli-
cating this research across various iterations of LLMs and datasets
can provide more robust insights into the consistency of LLM
behavior over time and across versions. Additionally, by conducting
comparative studies with other models and use cases, researchers can
better understand how these limitations might shift or be resolved as
the technology evolves.

Conclusion

This study has compared the design practices and performance of
an LLM, specifically ChatGPT 4.0, against fifth-year engineering
students in a prototyping hackathon. It provides nine key findings,
such as showing that the LLM had similar prototyping practices to
human participants and proved competitive against them by fin-
ishing second among six teams. The LLM successfully provided
building instructions to realize a physical, functional prototype and
solved concrete and physical obstacles along the way. The concept
generation capabilities of the LLM were particularly good. Among
the limitations of the LLM is that it prematurely gave up on
concepts when meeting what the authors perceived as minor dif-
ficulties and added unnecessary complexity to some of the designs.
Communication between the LLM and participants was also chal-
lenging, as it often gave vague, too general, or unclear descriptions
and had trouble maintaining continuity and relevance in answers
due to forgetting previously given information. The LLM also
experienced design fixation by continuing the iterations of one
concept even though returns diminished instead of pivoting and
trying alternative solutions. Based on these findings, we propose
six recommendations for implementing current LLMs like
ChatGPT in the design process, including leveraging it for idea-
tion, ensuring human decision-making oversight, implementing
iterative feedback loops, explicitly prompting it to consider
alternatives, and assigning the LLM-specific tasks at a subsystem
level.
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