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Motivated by applications in areas such as cloud computing and information technol-
ogy services, we consider GI/GI/1 queueing systems under workloads (arrival and service
processes) that vary according to one discrete time scale and under controls (server capac-
ity) that vary according to another discrete time scale. We take a stochastic optimal
control approach and formulate the corresponding optimal dynamic control problem as
a stochastic dynamic program. Under general assumptions for the queueing system, we
derive structural properties for the optimal dynamic control policy, establishing that the
optimal policy can be obtained through a sequence of convex programs. We also derive
fluid and diffusion approximations for the problem and propose analytical and computa-
tional approaches in these settings. Computational experiments demonstrate the benefits
of our theoretical results over standard heuristics.

1. INTRODUCTION

We consider a general capacity management and planning problem motivated by applica-
tions in diverse fields such as cloud computing, information technology services delivery,
and modern energy management. In these applications, a high volume of demand arrives at
the system and it is required that the system serves this demand in a timely fashion accord-
ing to some form of service level agreement (SLA) guarantee. For this purpose, resource
capacity has to be allocated to meet the demand and satisfy these guarantees. In addition,
there are several important common features that have been observed in these applications
that will have significant impact on the performance of the system, such as

• Time-varying demand,
• Timing of control,
• Server speed selection, and
• Server failure and departure.

The combination of these problem features results in a general class of very complex resource
capacity management and planning problems.
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A realistic model should accommodate the statistical patterns of the demand as it
varies over time. It is also quite common in many of these systems that the time-varying
workloads exhibit periodic or cyclic patterns. Seasonal effects and product cycles are some
of the typical examples. In many cases, different forms and sources of periodicities can be
mixed to create very complex behaviors; for example, seasonality, which is usually tangled
with account cycles, might be coupled with the introduction of new products, and thus
with product cycles. Hence, it is necessary to consider the time between shifts of statistical
patterns of the demand to be random, where there is uncertainty in both the magnitude
and direction of the pattern shifts.

It is unrealistic to assume that capacity decision can be made at the same time scale
as the demand arrival; namely, we should not expect the service capacity to react in real
time to any anomalies and changes in the demand, which would otherwise result unnec-
essarily in prohibitive costs. Meanwhile, the time scale at which control is applied should
be short enough to affect the performance that will be measured against the SLA guaran-
tees. Therefore, in addition to physical constraints for applying control, the right balance
between operational cost and SLA penalties should also be included in the time scale
for control.

Modern servers can be tuned to operate at different speeds. Different costs, largely
related to different levels of energy consumptions, will be incurred at different speeds. At the
same time, the servers will have different performance outcomes. While managing a large-
scale data center of servers, it will be beneficial to have the option of being able to accelerate
and slow down the speed at which each server operates for both cost and performance
purposes, since it is widely known that the network performance is not necessarily monotonic
with respect to the service rate of individual servers.

It is not uncommon in typical large-scale data centers that servers might leave the
system under consideration for various reasons [14]. This includes servers being relo-
cated to run other applications, being temporarily unavailable due to maintenance or
upgrade, or being gone purely due to physical failure. It has been observed that such
exodus of resource capacity can happen at a rather stable rate and that the impact
of these effects on the performance of the system is not negligible. Hence, it is reason-
able to assume that the server capacity decays at a particular rate over control periods,
which aggregates the different server departure and/or failure phenomenon mentioned
above, and thus allows the capacity planning process to factor these effects in its decision
process.

The backbone of our mathematical model is a general queueing system under a Markov-
modulated demand process. As we mentioned above, the demand model needs to be
tractable but versatile enough to accommodate the randomness in both the time interval
between the demand pattern shifts as well as the pattern shifts themselves. A continuous-
time Markov chain model is employed to capture these characterizations of the demand
pattern shifts. Although we fix the time scale of our control periods, the SLA and opera-
tional cost will be factored in the objective function, which is an indirect way of determining
the timing of the control. This way, the optimal control policy will include the time scale
of the control. In the first part of the paper, we use a single server model with controllable
service rate to capture features such as time-varying demand, control scaling, and server
failure. Some of these features are modeled approximately, but we believe our mathematical
model is capturing fundamental trade-offs that provide key insights while making it possible
to solve a very complex stochastic dynamic program. In the second part of the paper, we
discuss how our theoretical results can be extended to multi-server queues, which can model
these features more precisely, and more importantly, is capable of modeling the server at
different speeds.
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1.1. Related Work

Time-varying stochastic systems have been employed quite frequently as a model for study-
ing system performance. For queues and queueing networks with time-varying inputs, there
is an extensive literature devoted to their asymptotic performance; see, for example, [10,15].
The control of time-varying systems is studied in the area of inventory management; see,
for example, [2,13]. The optimal control of an Erlang loss system is studied in [1], where
structural properties of the optimal solution as well as asymptotically optimal heuristic
policies are obtained. It is worth emphasizing that queueing control is exercised only at
discrete time periods in the present paper. We refer to [7,12] and further references therein
for work in which server capacity can be adjusted at all times.

More recently, different online algorithms have been developed for a general class of
resource allocation problems that are somewhat related to those considered in this paper;
see, for example, [5,9]. An optimal control approach is developed in [6] for the case when
different resources have to be utilized to fulfill a common demand.

1.2. Our Contributions

We develop a general model with some important fundamental features.

• We provide a general and unified capacity planning model, based on a stochastic
optimal control approach with general assumptions on the arrival and service pat-
terns of the demand. Our approach also considers features such as the timing of
control, server speeds, and server failure and/or departure.

• Under these very general assumptions, we derive important structural properties for
the stochastic optimal control problem. More specifically, we show that the value
function is concave with respect to the capacity (service rate), and hence can be
obtained through a sequence of convex programming problems. These structural
properties allow us to compute the optimal policy for problem sizes of interest, and
also lead to some critical-point threshold optimal control policies as surrogates for
larger-sized problems.

• For the general model, we also derive forms of fluid and diffusion approximations
for the stochastic optimal control problem, which enable us to derive easy-to-
implement heuristic policies. The performance of the systems under heuristic policies
are investigated via computational experiments.

The rest of the paper is organized as follows. Section 2 presents the detailed mathematical
model of the queueing system. Structural properties of the general problem are derived in
Section 3. Fluid and diffusion approximations together with a heuristic analysis and related
computational experiments are considered in Section 4. A discussion of a generalized model
is presented in Section 5, and the paper concludes with a summary in Section 6.

2. MODEL AND FORMULATION

Consider a GI/GI/1 queue over a time horizon of length L under time-varying workloads
and time-varying control of the service rate, with L finite or infinite. The arrival and service
processes vary according to an exogenous discrete time scale from one workload period to
the next, indexed by m = 1, . . . ,M , where workload periods have length Tw. The control of
the single-server service rate varies according to an independent decision-making discrete
time scale from one control period to the next, indexed by n = 1, . . . , N , where control
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periods have length Tc. The period lengths Tw and Tc can be determininstic or random
variables; to simplify the exposition, we focus on the case where Tc is determininstic. We
use the notation GIm/GIm/1n to refer to this general class of queueing systems.

Let {Am(t); t ≥ 0} denote the arrival process for workload period m over the time inter-
val [twm−1, t

w
m), where Am(t) := sup{k : Am(k) ≤ t} with finite rate λm, Am(k) :=

∑k
�=1 a

(�)
m ,

Am(0) := 0, the random variable a
(k)
m is the interarrival time between the (k − 1)st and kth

customer in workload period m, k ≥ 1, and a
(0)
m := 0, all defined on the same probabil-

ity space. Similarly, let {Sm(t); t ≥ 0} denote the service process for workload period m

over the time interval [twm−1, t
w
m), where Sm(t) := sup{k : Sm(k) ≤ t}, Sm(k) :=

∑k
�=1 s

(�)
m ,

Sm(0) := 0, and the random variable s
(k)
m is the service demand for the kth customer in work-

load period m, k ≥ 1, all defined on the same probability space. Further, let μn denote the
service rate of the GIm/Gm/1n queue in control period n over the time interval [tcn−1, t

c
n).

Then the service time of the kth customer from workload period m served in control period
n is given by s

(k)
m /μn.

The dynamics of the time-varying workload is governed by a sequence of Markov-
modulated processes with transition probability matrices Pm = [Pm,jj′ ] and an initial
probability vector α = (α1, . . . , αJ ), for m = 1, . . . , M and j, j′ = 1, . . . , J < ∞. More
specifically, the workload starts period m = 1 in state j with probability αj , remains in
state j for the duration of the period of length Tw, and then transitions at the end of period
m = 1 to state j′ with probability P1,jj′ , for all j, j′ = 1, . . . , J . These workload dynamics
continue for all subsequent periods m = 2, . . . ,M starting in any state j where the workload
remains in state j for the duration of the period of length Tw and then transitions to state
j′ with probability Pm,jj′ at the end of period m.

The objective of our stochastic optimal control problem formulation is to determine
the service rates μn for every control period n = 1, . . . , N that maximize net-benefit in
expectation over the entire time horizon of length L = N · Tc, subject to model inputs and
constraints. Let Wn denote the amount of workload remaining in the queue at the begin-
ning of control period n, {Dn(t); t ≥ 0} denote the workload process over the time interval
[tcn−1, t

c
n), Dn denote the aggregate amount of workload arriving during control period n,

and Bn denote the proportion of time the server is busy over the interval [tcn−1, t
c
n). The

quantity Wn and the sequence of previous service rate decisions μn′ , n′ = 1, . . . , n − 1,
are known with certainty at the start of control period n. In addition, the stochastic
process {Dn(t); t ≥ 0} is probabilistically characterized by the sequence of arrival and
service processes {Am(t); t ≥ 0} and {Sm(t); t ≥ 0} over the time interval [tcn−1, t

c
n), the

random variable Dn is probabilistically characterized by {Dn(t); t ≥ 0}, and the random
variable Bn is probabilistically characterized by and dependent upon Wn, {Dn(t); t ≥ 0}
and the control decision μn. The dynamics of the workload over the control periods take
the form

Wn + 1 = Wn + Dn − μnBnTc, (1)

where we assume there is no server idle time between any two control periods unless all the
workload has been served.

Our objective function is based on the expected total discounted net-benefit over the
entire time horizon, with discount factor β, in which rewards are gained for the completion
of workload within each control period as a function R(μn, Bn, Tc), costs are incurred for the
service-rate capacity deployed for each control period as a function C(μn, Tc), and penalties
are incurred for server idleness and workload delay within each control period as a function
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PI(μn, Bn, Tc) and PD(Wn,Dn, μn, Bn, Tc), respectively. We consider the reward and cost
functions to be respectively given by

R(μn, Bn, Tc) = rμnBnTc, C(μn, Tc) = cμnTc,

with revenue rate r ≥ 0 and cost rate c ≥ 0. Similarly, we consider the penalty functions to
be given by

PI(μn, Bn, Tc) = pIμn(1 − Bn)Tc,

PD(Wn,Dn, μn, Bn, Tc) = pD(Wn + Dn − μnBnTc),

with idle and delay penalty rates pI ≥ 0 and pD ≥ 0, respectively.
Define the service rate vector μ := (μ1, . . . , μN ). We then have the following general

stochastic dynamic program formulation of our stochastic optimal control problem over the
time horizon of length L = N · Tc:

max
µ

E

[
N∑

n=1

e−β(n−1)

(
rμnBnTc − cμnTc − pIμn(1 − Bn)Tc − pD(Wn + Dn − μnBnTc)

)]

(2)

s.t. μ ≥ 0, (3)

where β is the discount factor and the expectation is over the probability space (Ω,F , P)
of the GIm/GIm/1n queue. The service rate vector μ comprises the decision variables over
the time horizon that we seek to obtain, with all other variables as input parameters.

3. GENERAL SOLUTION

In this section, we consider our main results for the general solution of the stochastic
dynamic program (2) and (3). We start with structural properties of the optimal dynamic
control policy and establish that the general solution can be obtained through a sequence
of convex programs. We then turn to consider a surrogate problem of the original stochastic
dynamic program and establish that it is equipped with a critical-value (threshold) optimal
dynamic control policy.

3.1. Structural Properties

For any control period n and any non-negative service rate μn, the expected discounted
net-benefit can be rewritten as

E

[
e−β(n−1)

{
(r + pI + pD)μnBnTc − (c + pI)μnTc − pD(Wn + Dn)

}]
.

Let Jn(Wn) be the value function for maximizing the expected discounted net-benefit of
the stochastic dynamic program of interest over the time horizon from control period n
to control period N with Wn workload in the queue at the start of control period n.
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Then we can formulate our stochastic dynamic program in terms of the Bellman optimality
equations

Jn(Wn) := max
μn

Un(μn,Wn), (4)

Un(μn,Wn) := E
[
(r + pI + pD)μnBnTc

− (c + pI)μnTc − pD(Wn + Dn) + e−βJn+1(Wn+1)
]
, (5)

where we assume JN+1(WN+1) = 0 and a discount factor β. It is important to note that
the probabilistic characterization of the random variable Dn is based on the stochastic
process {Dn(t); t ≥ 0}, which in turn is probabilistically characterized by the sequence of
time-varying workload processes {Am(t); t ≥ 0} and {Sm(t); t ≥ 0} over the time interval
[tcn−1, t

c
n).

One of the most interesting and important quantities in the Bellman optimality equa-
tions is μnBn. We next present the following key monotonicity result for this quantity under
the general stochastic dynamic control model.

Lemma 3.1: For each control period n = 1, . . . , N , μnBn is increasing and concave with
respect to μn almost surely.

Proof: Note that μnBnTc represents the amount of work that is served within each control
period n. It is easy to see that μnBn is a piecewise linear function of μn that consists of two
elements, the first having positive slope and the second element having slope zero. Hence,
as Tc is a constant, it naturally follows that μnBn is increasing and concave with respect
to μn almost surely. �

Since the expectation operator preserves monotonicity and concavity, we also have the
following result.

Lemma 3.2: For each control period n = 1, . . . , N , E[μnBn] is increasing and concave with
respect to μn.

By similar arguments, we obtain another key monotonicity result.

Lemma 3.3: For each control period n = 1, . . . , N , μnBn is linear with respect to Wn when
μnBn < Tc.

Recall that the random variable Bn depends on the stochastic process {Dn(t); t ≥ 0}
and the control decision μn, and that the process {Dn(t); t ≥ 0} depends on the sequence
of arrival and service processes {Am(t); t ≥ 0} and {Sm(t); t ≥ 0} over the time interval
[tcn−1, t

c
n). Hence, generally speaking, there are important implications with respect to both

performance and cost management for the server to be busy throughout the entire period.
A more detailed analysis that includes such effects is beyond the scope of this paper,
and therefore we assume that the decision variable μn will always be taken from the set
in which μnBn < Tc is guaranteed. Then, from Lemma 3.3, μnBn is always linear with
respect to Wn.

We now can present our first main result of this section for the finite-horizon version of
the stochastic optimal control problem.

Theorem 3.1: For each control period n = 1, 2, . . . , N < ∞, there exists a finite service-rate
capacity allocation that realizes the global optimal solution of the problem (4), (5) starting at
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control period n with a given initial workload Wn, and this optimal solution is the service-rate
capacity planning policy that employs the service-rate capacity μ∗

n where μ∗
n is the smallest

service-rate capacity assignment that maximizes Un(μn,Wn).

Proof: The proof proceeds by induction where we first consider the basis step n = N .
Suppose that the remaining workload is WN at the beginning of the last control period
and that the total amount of workload to arrive over the last control period is given by
DN . Then, from Lemma 3.3, we know that UN (μN ,WN ) is concave in μN . In addition, it
is obvious that

lim
μN→∞UN (μN ,WN ) = −∞.

We therefore conclude that a finite optimal service-rate capacity μN can be obtained
through the solution of a corresponding convex program. By definition, for control period
N − 1, we also know that

UN−1(μ,W ) ≥ UN (μ,W )

for any pair (μ,W ). It then follows that

JN−1(W ) ≥ JN (W ) ≥ 0

for any feasible W .
Next, as part of the induction step, suppose the above statements are true for n + 1

and consider the problem starting at control period n. We then have the following four
induction-step properties:

• Un+1(μn+1,Wn+1) is concave in μn+1;
• limμn+1→∞ Un+1(μn+1,Wn+1) = −∞;
• Jn+1(W ) ≥ Jn+2(W ) for any W ≥ 0.

Now, for each sample path in control period n, consider Un+1(μn+1,Wn+1) as a function of
μnBn, from which it is readily verified that the decision variable μn is a convex function
of μnBn and thus −μn is a concave function of μnBn. Meanwhile, Wn+1 is a linear function of
μnBn with negative drift. Moreover, since μn is taken from the set in which μnBn < Tc is
guaranteed, Jn+1(Wn+1) is increasing and linear in Wn+1. Combining all these properties,
we conclude that Jn+1(Wn+1) is a concave function of μnBn. Since the expectation operator
preserves concavity, a corresponding convex program can be employed to obtain the optimal
solution.

Furthermore, from the perspective of the stochastic dynamic program with respect to
μn, we have

lim
μn→∞Un(μn,Wn) = −∞.

We therefore conclude there is a finite optimal service-rate capacity μn that corresponds
to the solution of the convex program for control period n. From (5) and the fact that
Jn+1(W ) ≥ Jn+2(W ), we have

Un(μ,W ) ≥ Un+1(μ,W )

for any pair (μ,W ) and thus we conclude

Jn(W ) ≥ Jn+1(W ) ≥ 0

for any W ≥ 0, completing the proof. �

https://doi.org/10.1017/S0269964816000103 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000103


STOCHASTIC OPTIMAL DYNAMIC CONTROL 477

We next establish our second main result of this section for the infinite-horizon version
of the stochastic optimal control problem. To this end, let us denote by UN

n (μn,Wn) and
JN

n (Wn) the Bellman optimality equations in (4) and (5) with finite N .

Theorem 3.2: Letting N → ∞, the sequences {UN
1 } and {JN

1 } converge pointwise to limits
U∞

1 and J∞
1 , respectively. Furthermore, J∞

1 (W ) is convex in W , U∞
1 is concave in μ, and

lim
μ→∞U∞

1 (μ,W ) = −∞.

Hence, there exists a finite service-rate capacity vector that realizes the global optimal solu-
tion of the infinite-horizon problem (4), (5), and this optimal solution is the service-rate
capacity planning policy that employs the service-rate capacity μ∗

n where μ∗
n is the smallest

service-rate capacity assignment that maximizes U∞
1 (μ,W ).

Proof: The statements concerning the limits U∞
1 and J∞

1 , as well as the properties of
U∞

1 and J∞
1 , directly follow from Theorem 3.1 provided there exists a finite non-decreasing

function J (W ) such that
JN

1 (W ) ≤ J (W )

for all N . From the induction step of Theorem 3.1, we know there exists a finite non-
decreasing function U(μ,W ) such that

UN
1 (μ,W ) ≤ U(μ,W )

for all N . Replacing the right-hand side of (4) with U(μ,W ) and applying the induction
arguments of Theorem 3.1 to this revised stochastic optimization problem reveals the exis-
tence of a finite non-decreasing function J (W ) such that JN

1 (W ) ≤ J (W ) for all N . This
together with the convex programming arguments of Theorem 3.1 complete the proof. �

In Theorems 3.1 and 3.2 we establish crucial structural properties of the optimal solution
for our stochastic dynamic program (2), (3) in the case of finite and infinite time horizons,
respectively. The original stochastic dynamic program is an extremely difficult problem to
solve and these structural properties are important from a theoretical perspective, as well as
for developing corresponding stochastic optimal control policies in practice. In particular, we
have established second-order monotonicity properties for the value function of the stochas-
tic dynamic program (4), (5), and have ensured that the stochastic optimal control policy
which solves this dynamic program can be obtained through the solutions of a sequence
of convex programs. Clearly, these convex program solutions take into account the proba-
bilistic characterization and dependence of the random variable Bn through {Dn(t); t ≥ 0}
and μn, and the probabilistic characterization and dependence of the stochastic process
{Dn(t); t ≥ 0} through {Am(t); t ≥ 0} and {Sm(t); t ≥ 0} over [tcn−1, t

c
n).

We note that, within the context of our general results, the stochastic optimal control
policy tends to not leave Wn either very high or very low. Hence, upon solving the convex
programs for appropriately selected discrete values of Wn, then only a relatively small
amount of possible values would need to be considered for each control period. This in
turn can be used to significantly reduce the computational effort needed for computing the
sequence of convex programs as part of a stochastic optimal control policy in practice.

Since the stochastic optimal control policy for each control period n as the optimal solu-
tions of a sequence of convex programs depends on the initial condition Wn in a non-linear
fashion, one should not expect the optimal solution to be of a critical-value (threshold) type,
which is often sought after in many stochastic dynamic programming problems. This further
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speaks to the difficulty of the general stochastic dynamic program (2), (3), even with steps
taken to reduce the computational effort required. Hence, to address these complexities, we
next turn to a surrogate problem of the original stochastic dynamic program.

3.2. A Surrogate Problem

We consider in this section an approximation to the stochastic dynamic programming prob-
lem (2), (3) in which the dependence of the convex programming on Wn is assumed to be
linear. Such a surrogate problem is identified with the goal that the corresponding stochastic
optimal dynamic control policy will be of a critical-value (threshold) type. Indeed, we will
establish that this surrogate problem is equipped with a threshold optimal dynamic control
policy, together with establishing performance bounds on the corresponding approximate
solution relative to the original stochastic dynamic programming solution.

Specifically, the approximation we consider here consists of revising the Bellman
optimality equations as follows

J̃n(Wn) := max
μn

Ũn(μn,Wn), (6)

Ũn(μn,Wn) := E
[
(r + pI + pD)(Wn + μnB̃nTc)

− (c + pI)μnTc − pD(Wn + Dn) + e−βnJ̃n+1(Wn+1)
]
, (7)

where we assume J̃N+1(WN+1) = 0 and denote by μnB̃nTc the work that would be served
assuming there is no initial workload in the system and the service-rate capacity is μn; that
is, we decouple the overall workload from Wn at the start of the control period and from the
arrivals within the control period. The per-period control decision of this approximation is
physically equivalent to a system in which there is an infinitely fast server available to serve
all of the initial workload at the beginning of the control period.

Observe that, in the case of (6), (7), the stochastic dynamic program depends on Wn

only linearly, which allows us to establish that there is a critical-value (threshold) type of
optimal control policy for the revised stochastic dynamic program. Namely, as a result of
the first term in the expectation of (7), for each control period n we only need to solve
one convex programming problem independent of Wn in order to determine the optimal
service-rate capacity policy. Meanwhile, for any μn, we certainly know that

Wn + μnB̃nTc ≥ μnBnTc.

From the setup of the problem, we also have

μnBnTc ≥ Wn, μnBnTc ≥ μnB̃nTc.

It then follows that

1
2
(Wn + μnB̃nTc) ≤ μnBnTc ≤ Wn + μnB̃nTc,

which in turn implies

1
2
J̃n(Wn) ≤ Jn(Wn) ≤ J̃n(Wn). (8)

The above arguments directly lead to the following approximation of the solution of
our general stochastic dynamic program (2), (3) and its performance bounds.
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Theorem 3.3: Under mild conditions on revisions to the original Bellman optimality equa-
tions, there exists an optimal control policy of the corresponding stochastic dynamic program
that is of a critical-value (threshold) type which can be computed through (6) and (7). In
addition, this optimal control policy has the performance guarantee given in (8).

4. APPROXIMATE SOLUTIONS

In this section we consider various approximate solutions of the stochastic dynamic program
(2), (3) primarily within a single workload period m. We start with a heuristic analysis,
including comparisons of system performance under heuristic policies with respect to opti-
mal solutions. We then derive forms of fluid and diffusion approximations for the general
stochastic optimal control problem. Lastly, we present the results of computational exper-
iments that investigate some of the properties identified herein; this includes exploring a
highly dynamic workload scenario.

4.1. Heuristic Analysis

Let us begin by conducting a heuristic analysis with the goal of obtaining some qualitative
properties of the stochastic dynamic program (2), (3). For simplicity, we assume the discount
factor β = 0 throughout this section.

First, we provide an equivalent representation of the objective function (2). From (1),
we directly have

μnBnTc = Wn + Dn − Wn+1, (9)

which allows one to express Bn in terms of Wn and Wn+1. Then we can rewrite the objective
function (2) using (9) to obtain

P({µn}) = E

[
N∑

n=1

[rµnBnTc − cµnTc − pIµn(1 − Bn)Tc − pDWn+1]

]
(10)

= E

[
N∑

n=1

[(r + pI)(Wn + Dn − Wn+1) − (c + pI)µnTc − pDWn+1]

]
(11)

= E

[
(r + pI)

N∑
n=1

Dn − (c + pI)Tc

N∑
n=1

µn − pD

N∑
n=1

Wn + (r + pI + pD)(W1 − WN+1)

]
.

(12)

Note that the first term in (12) corresponds to the exogenous demand process over which
we have no control. Moreover, for a well controlled system and moderately large N , the
last term in (12) is of constant order and therefore does not play a significant role from
a qualitative standpoint. Hence, maximizing the expected profit P({μn}) is equivalent to
minimizing

min
μn

E

[
(c + pI)Tc

N∑
n=1

μn + pD

N∑
n=1

Wn

]
. (13)

In other words, one wants to strike a balance between the sequence of controls {μn} and
the sequence of workloads {Wn} relative to the corresponding costs and penalties. As is
clear from (9), Wn+1 is non-increasing in μn for a fixed demand process. However, even for
a fixed Dn and μn, there is significant variability in Wn+1 depending on the arrival pattern
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of the customers. Furthermore, the exact cost implications are complicated by the idleness
cost since capacity in excess of the unknown and uncertain demand is penalized both at the
nominal procurement cost rate c and also at the idleness rate pI.

Two intuitive control policies will be analyzed to shed light on some fundamental
relationships for the problem. We first consider an on-off policy that alternates between
setting μn = 0 for successive periods n = 1, . . . , K, and then setting μK+1 = μ (for some
constant μ). In this case, no capacity or idleness costs are incurred for the K periods of
inaction with the sole penalty based on accumulated work, thus rendering

E

[
K∑

n=1

Wn

]
= KE[D1] + (K − 1)E[D2] + · · · + E[DK ] ≈ K2

E[D1],

which grows quadratically in the length of the off -period (assuming E[Dn] is constant over
the K periods). However, even if we choose the constant on-capacity μ = WK+1 in order
to clear all the backlog, the expected revenue is rKE[D1] and the sole expected production
cost (since there are no capacity and idle costs) is cμnT = cKE[D1]. This together with the
expected delay penalty above results in the following expression for expected profit over the
K + 1 periods

[(r − c)K − pDK2]E[D1];

we will later show that this expected profit can be significantly improved upon. Roughly
speaking, the insight is that if we make μn too small so as to consistently leave a fraction
of the demand unfulfilled, then the backlog grows quadratically in the number of periods,
whereas any possible profit accruable by clearing that backlog at a future time will only
grow linearly in the same number of periods.

Next, we consider an off-line policy that assumes to know the actual values taken by
the random demands Dn in advance but not the arrival pattern. It is reasonable in this case
to set

μoffline
n =

Dn

Tc

with the goal of clearing the demand within the period in which it arrives; but owing to
the uncertain arrival times of the demand, there is a non-trivial probability that Wn �= 0
and Bn < 1 so that we incur additional backlog and idleness penalties. The performance of
this off-line policy can be better understood by studying a related M/G/1 queueing system
where, instead of assuming the actual offered demand is known, we assume knowledge of
the first two moments of the service demand random variable S. We will then show how
one can determine the optimal capacity μ that balances all revenue and costs.

Recall the objective function (10) which is the expected value of profit. Consider the case
where we do not partition the planning horizon into periods and instead want to maximize
profit for an M/G/1 queueing system with Poisson arrivals at rate λ, independent and
identically distributed (i.i.d.) service demands Sn drawn from a general distribution, and
constant server speed/capacity set at μ. To maintain stability, we assume the system load
ρ = λE[S]/μ < 1. The average workload (or work in system) is known to be [16]

E[W ] =
λE[S2]

2μ2(1 − ρ)
.
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We then can express the expected profit per unit time as a function of the capacity μ by

P(μ) = rλE[S] − cμ − pI(1 − ρ)μ − pD
λE[S2]

2μ2(1 − ρ)

= (r + pI)λE[S] − (c + pI)μ − pD
λE[S2]

2μ(μ − λE[S])
. (14)

Note that the backlog penalty pD is a crucial parameter since it helps determine how much
service one should provision over and above the bare minimum amount of λE[S].

It is clear that the first term in (14) is a constant, and therefore in order to maximize
expected profit we want to minimize the function

f(μ) = (c + pI)μ + pD
λE[S2]

2μ(μ − λE[S])

over μ > λE[S]. Such a minimizer exists because f(μ) → ∞ both as μ ↓ λE[S] and μ → ∞.
Differentiating with respect to μ, we derive

f ′(μ) = (c + pI) − pDλE[S2]
2

2μ − λE[S]
μ2(μ − λE[S])2

;

and then upon setting the derivative to zero we obtain

2(c + pI)
pDλE[S2]

=
2μ − λE[S]

μ2(μ − λE[S])2
. (15)

Solving the non-linear Eq. (15) renders the optimal capacity μ∗
MG1. In Section 4.4, we

will consider the special case when the service times are i.i.d. Exp(θ) whereupon E[S] =
1/θ, E[S2] = 2/θ2.

Now, we turn to consider lazy processing and workload-based policies. The following
heuristic provides a lower bound to the optimal profit: In each period, set the processing
rate to be

μlazy
n =

Wn

Tc
.

Such a lazy processing approach is particularly attractive because it eliminates the need
to estimate the time-varying characteristics of the demand by simply processing work with
a delay of one period. Within this setting, we guarantee that the server never idles and
hence Bn = 1; moreover, all the work that arrives in a period is left unprocessed so that
Wn+1 = Dn. The objective function (11) also simplifies (since there is no idling cost) to

P lazy = E

[
(r − c − pD)

N∑
n=1

Wn + pD(W1 − WN+1)

]
.

Assuming the system starts empty we have W1 = 0 and the objective function reduces
further to

P lazy = (r − c − pD)
N−1∑
n=1

E[Dn] − pDE[DN ]. (16)

The lazy processing approach suggests the following parametric family of policies with
multiplicative factor α > 0:

μn =
αWn

Tc
= αμlazy

n .
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For 0 ≤ α ≤ 1, it is still true that Bn = 1 and hence Wn+1 = (1 − α)Wn + Dn. We therefore
have

Pα = E

[
N∑

n=1

[(r + pI)(Wn + Dn − Wn+1) − (c + pI)μnTc − pDWn+1]

]

= E

[
N∑

n=1

(α(r − c)Wn − pDWn+1)

]

= E

[
(α(r − c) − pD)

N∑
n=1

Wn − pDWN+1

]
.

It is not difficult to show that E[Wn] ≈ 1
αE[Dn] and thus we have

Pα ≈
(
r − c − pD

α

) N∑
n=1

E[Dn] − pD

α
E[DN+1]. (17)

Upon comparing this with (16), we observe that the α < 1 provides worse expected profit
than α = 1.

It is a difficult problem to ascertain the optimal α∗ for the family of lazy multiplicative
policies, in part because it is hard to characterize how α∗ depends on the model parameters
such as c and pD. We have considered so far in this section two kinds of policies: (1) a
workload-based policy and (2) an M/G/1-based policy. Both have their respective benefits:
The workload-based policies do not need to estimate the statistics of the demand process
and are self-regulating but at the expense of an added backlog penalty; whereas the M/G/1-
based policy tries to use process statistics and estimates to set the right capacity that stays
fixed over a large number of consecutive periods but at the expense of reduced flexibility
and an added penalty due to excess capacity when the instantaneous load is low. We believe
that the optimal policy is able to use a hybrid setting for capacity that depends on both Wn

and an estimate of expected demand over the next period, for example μn = Wn

Tc
+ αμ∗

MG1

with α smaller than 1.

4.2. Fluid Model Analysis

We next investigate the more formal fluid model approximation (e.g., see [3]), again con-
sidering the stochastic dynamic program over a single workload period m. We assume the
demand Dn in each control period n is a deterministic quantity, arriving at constant speed
Dn/Tc. Let μ∗

n(w) denote the optimal policy (i.e., the optimal capacity level to set) for
control period n when w units of workload is observed at the beginning of the period. For
the fluid model, μ∗

n(w) ∈ [0, μ̄n(w)] where μ̄n(w) := (w + Dn)/Tc; that is, the server speed
that is needed to process the sum of the starting workload and the newly arriving workload.

Define I1 := (−∞,−(N − 1)pD], In := (−(N − n + 1)pD,−(N − n)pD] for n = 2, . . . ,
N − 1, and IN := (−pD,∞). The following theorem characterizes the structure of the
optimal policy in the fluid model approximation.

Theorem 4.1: If r − c ∈ I1, then μ∗
k(w) = 0 for all k; If r − c ∈ IN , then μ∗

k(w) = μ̄k(w)
for all k; If r − c ∈ In for some n = 2, . . . , N − 1, then μ∗

k(w) = μ̄k(w) for all k ≤ n, and
μ∗

k(w) = 0 for all k ≥ n + 1.
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Proof: To simplify the presentation, we provide the details of the proof for a two control-
period problem. The proof for problems with more control periods follows similarly. The
one-period-to-go optimal value function reads

JN (w) = −pD(w + DN ) + max
μ∈[0,μ̄N (w)]

μ[(r + pD − c)Tc], (18)

and hence

μ∗
N (w) =

{
μ̄N (w), if r − c > −pD,

0, if r − c ≤ −pD.
(19)

Upon substituting (19) into (18), we have

JN (w) =

{
(r − c) (w + DN ), if r − c > −pD,

−pD(w + DN ), if r − c ≤ −pD.
(20)

Now consider the two-period-to-go optimal value function, which after some term manipu-
lation yields

JN−1(w) = z(DN−1 + DN + w) − pD(w + DN−1)

+ max
μ∈[0,μ̄N−1(w)]

[μ((r + pD − c)Tc − zTc)], (21)

where z := max{r − c,−pD}. The optimal solution then can be broken down into three
cases.

1. If z = r − c or r − c > −pD, we have that μ∗
N−1(w) = μ̄N−1(w) and

JN−1(w) = (r − c) [w + DN−1 + DN ]. (22)

2. If z = −pD (or equivalently r − c ≤ −pD) and in the meantime r − c > −2pD, we
also have that μ∗

N−1(w) = μ̄N−1(w) and

JN−1(w) = (r − c) [w + DN−1] − pDDN . (23)

3. If r − c ≤ −2pD, we have that μ∗
N−1(w) = 0 and

JN−1(w) = −2pD[w + DN−1] − pDDN . (24)

�

In words, Theorem 4.1 states that depending into which of the In intervals the quantity
r − c falls, the optimal policy is to always deplete the workload to zero until a certain
control period and then set the capacity level to zero thereafter. The key quantity r − c can
be naturally viewed as a profitability index of the system.

The structure of the optimal policy in the fluid model approximation suggests that
a good policy for the original stochastic dynamic program is to set the capacity level for
control period n such that the expected remaining workload at the end of the period is
equal to some target level w∗

n, with w∗
1 ≥ w∗

2 ≥ w∗
3 ≥ . . . ≥ w∗

N . Note that for the fluid
model approximation some of the w∗

n are simply zero, according to Theorem 4.1.
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The above insights from the fluid model approximation inspires the following
control policy:

1. At the beginning of control period 1, observe the current workload w and solve

min
(μ1,...,μn)

(c + pI)Tc

N∑
n=1

μn + pD

N∑
n=1

wn + (r + pI + pD)wn+1 (25)

s.t. wn = wn−1 − μnTc, n = 1, 2, . . . , N (26)

w0 = w (27)

2. Set the server speed to the optimal μ1 that results from solving the above linear
program.

3. At the beginning of control period 2, repeat the above two steps by treating it as
the beginning of an (N − 1)-period problem.

4. Continue the above three steps until the end.

Note that the linear program objective function (25) is motivated by the equivalent expres-
sion for the N -period objective function (12), in which the non-controllable terms are
dropped from (25). Moreover, the recursion (26) is simply a linear approximation that
relates the workload to the capacity level. By resolving the linear program that aims to
achieve a desirable target workload path at each control period, the above policy exercises
good control on the evolution of the stochastic system.

4.3. Diffusion Approximation

Now, since the system state at each control period over a single workload period can be
viewed as the time-Tc workload of a G/G/1 queue, we consider the use of the diffusion
approximation result for the workload process of a G/G/1 queue (see [4]) to derive an
explicit approximating expression for the transition probability of the stochastic dynamic
program. Let 1/λ denote the mean interarrival time, 1/μ the mean service time, and c2

a

(c2
s) the squared coefficient of variation for the interarrival (service) times. Define ρ := λ/μ.

Then the following approximation holds

P[Wn+1 > y|Wn = w, μn = μ] ≈ P[W̃ (Tc(1 − ρ)2) > y(1 − ρ)],

where W̃ (·) is a reflected Brownian motion with initial level w(1 − ρ), drift -1 and variance
(c2

a + c2
s)μ

−1. Furthermore, using the time dependent distribution of the reflected Brownian
motion (see [8]), we have

P[Wn+1 > y|Wn = w, μn = μ] ≈Φ

(
−(y − w)(1 − ρ) − Tc(1 − ρ)2√

(c2
a + c2

s)μ−1 · (1 − ρ)
√

Tc

)

− e
− 2y(1−ρ)

(c2a+c2s)μ−1 Φ

(
−(y + w)(1 − ρ) + Tc(1 − ρ)2√

(c2
a + c2

s)μ−1 · (1 − ρ)
√

Tc

)
, (28)

which serves as the action-dependent transition probability function of the continuous-state-
space, continuous-action-space Markov decision process at hand. Specifically, due to the
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value function expression in Section 3 and relation (9), the diffusion-approximated dynamic
programming recursion boils down to

μ∗
n(w) = arg max

μ

{
− (r + pI + pD)Eμ[Wn+1|Wn = w, μn = μ]

− (c + pI)Tcμ + Eμ[Jn+1(Wn+1)|Wn = w, μn = μ]
}

, (29)

subject to (28). This can be solved by first discretizing the state and/or action space and
then using the value iteration method.

4.4. Computational Experiments

We end this section by presenting the results of computational experiments that quantita-
tively investigate some of the results and properties derived above. To ground the discussion,
we make a few basic assumptions. First, we assume r > c since this setting represents a real-
istic situation where the system is capable of earning a positive profit. Second, motivated
by (13) and the discussion preceding it, we fix c = 1 and pI = 1 and study the performance
of control policies as a function of changes in pD; roughly speaking, the performance of the
system is a function of the ratio (c + pI)/pD and therefore only pD needs to be varied. We
set Tc = 1 and the number of control periods to be N = 100. Further we consider a system
with low arrival rate, that is, λ = λ� = 1, and another with a high arrival rate, that is,
λ = λh = 5. As mentioned in Section 4.1, we will solve (15) to obtain μ∗

MG1 by assuming
that service demands are i.i.d. Exp(θ) whereupon E[S] = 1/θ, E[S2] = 2/θ2. Without loss
of generality, we set θ = 1 and therefore E[S] = 1 and E[S2] = 2. As in Section 4.1 we set
the discount factor β = 0 for simplicity.

Before proceeding to describe our computational results, we briefly summarize some
of the key insights derived earlier in this section. At the end of Section 4.1, we consider a
heuristic control policy that depends on a linear combination of Wn, the backlog workload at
the beginning of a period, and some estimate of the expected demand that will be realized in
the period, such as μMG1. Our fluid analysis in Section 4.2 confirms this insight. Specifically,
when r > c, Theorem 4.1 recommends that the system always drain fluid at a rate

μfluid
n =

Wn + E[Dn]
Tc

=
Wn

Tc
+ λE[S],

given that r − c always belongs to the interval IN by assumption. In essence, our heuristic
control policy is an affine decision rule that only depends on the current workload (as
opposed to the whole sequence of past workloads) and an affine term that can be chosen to
be proportional to some estimate of anticipated demand such as λE[S] or μ∗

MG1.
For our first set of computational results, we focus on the low arrival rate case where

λ = λl = 1. Figure 1 depicts the expected profit curves as a function of α for three different
values of pD = 1, 5, 10. As expected, the expected profit reduces with an increased backlog
penalty; further the value of α that maximizes profit increases with pD. This latter trend is
depicted in Figure 2 where we consider the best value of α as a function of pD = 1, . . . , 10.
Observe that α∗ = 0 as long as pD ≤ c + pI, which corresponds to our intuition above that
in this case the capacity maintenance and idleness costs dominate the backlog penalty and
hence a purely workload-based policy renders optimal expected profits within this family
of linear decision rules. Note also that α appears to grow linearly in pD once pD > c + pI.
It is worth pointing out that α allows one to balance between choosing a server with high
average utilization or with low average workload. Hence, we observe in Figure 3 that while
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Figure 1. Expected profit as a function of α for λ = λl = 1.

Figure 2. Optimal α as a function of pD for λ = λl = 1.

increasing α leads to a system with decreasing average workload and hence a lower backlog
penalty, it also leads to the server idling more and thus incurring a higher idling penalty.

Next, we consider the high arrival rate case where λ = λh = 5. We observe that a non-
zero α always appears to provide the highest expected profit as illustrated in Figures 4
and 5. The dependence between α∗ and pD, however, still appears to follow a fairly linear
trend as shown in Figure 5.

Finally, we consider a case where the demand arrival rate alternates between λ = λl = 1
in every odd numbered control period and λ = λh = 5 in every even numbered control
period. We further suppose that the system operator has some indication of this highly
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Figure 3. Average utilization and average workload as a function of α for λ = λl = 1.

Figure 4. Expected profit as a function of α for λ = λh = 5.

variable workload pattern so that a fluid-model control policy can be implemented; namely,
the capacity settings

μn =
Wn

Tc
+ αλl

are chosen for n odd, while the capacity settings

μn =
Wn

Tc
+ αλh

are chosen for n even. We compare this fluid-model control policy with a control policy
setting that depends purely on an estimate of expected demand, namely

μn = λl, when n odd; μn = λh, when n even.
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Figure 5. Optimal α as a function of pD for λ = λh = 5.

Figure 6. Expected profit as a function of α for alternating λ using a linear decision rule.

Note that both of these control approaches are similar in spirit to the off-line policy discussed
in Section 4.1 since we assume some knowledge of future demand.

Through this last computational experiment, we seek to investigate the importance of
employing a linear decision rule wherein the capacity depends on the backlogged demand
from the previous period. With such a highly variable load, it is almost futile to try and
calculate the required capacity based solely on an estimate of expected demand. Figures 6
and 7 demonstrate the stark difference between the two policies: Whereas the fluid-model
control policy is able to maintain expected profit within a reasonable range over all values
of α, expected profit under the demand-based control policy exhibits a large sensitivity to
the correct choice of α. Moreover, the expected profit for this latter policy is also lower than
that accrued when using the linear decision rule.
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Figure 7. Optimal α as a function of pD for alternating λ with expected demand policy.

5. GENERALIZED MODELS

To elucidate the exposition in earlier sections, we chose to postpone the inclusion of certain
problem features, mentioned in the introduction, from our original general stochastic model,
optimization formulation and optimal solution. We now discuss how these problem features
can be addressed as part of and incorporated in our analysis and results of earlier sections.

One of the features that was not included in our earlier analysis concerns the failure
and/or departure of the servers. In this case, for each control period n, if the service-rate
capacity is set to a certain level μn at the beginning of the control period, then the realized
service-rate capacity will vary over time within the interval [tcn−1, t

c
n) according to μn(t).

To this end, we consider both an additive model and a multiplicative model for μn(t)
as follows:

• additive model: μn(t) = μn − η(t − (n − 1)Tc), for t ∈ [tcn−1, t
c
n);

• multiplicative model: μn(t) = μne−γ(t−(n−1)Tc), for t ∈ [tcn−1, t
c
n);

where η > 0 and γ > 0 are two fixed parameters. It is then readily verified that the structural
properties we derived in Section 3 continue to hold and that the computational results to
obtain both the general and surrogate problem solutions are easily adapted to that of the
corresponding GIm/GIm/1n queues with time-varying service rates.

On the other hand, to faithfully model the detailed dynamics of server failures and
departures, it is essential to consider a multi-server model. Doing so also allows us to
incorporate the phenomenon that a server can operate at different speeds together with
addressing the corresponding cost/benefit trade-offs in such a queueing system. Suppose
that, for each control period n, we need to determine a vector Xn that consists of the number
of servers operating at each of the speed levels s = 1, 2, . . . , SL. The objective function of
our stochastic dynamic programs can then be revised accordingly. As a specific example,
we can replace the objective (13) by

min
Xn

Tc

N∑
n=1

SL∑
s=1

(pI + cs)Xn,s + pD

N∑
n=1

Wn,
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where the cost factor c is replaced by a vector {cs} that reflects the different costs incurred
for operating servers at different speed levels. Note that Wn, n = 1, 2, . . . , N , will follow
the much more complex dynamics of a multi-server queueing system with different speed
levels for each server and where each server has an independent clock to follow for its
failure and departure from the system. However, even in such very complex instances of our
general stochastic dynamic programs, the corresponding optimal solutions continue to enjoy
the general structural properties we derived earlier in the paper. We note, however, that
detailed fluid and diffusion approximations of such systems require sophisticated studies of
multi-server queues with time-varying service rates, which is the subject of future work.

6. CONCLUSIONS

In this paper, we considered a general class of stochastic dynamic control problems for
a queueing system with time-varying Markov-modulated arrival and service processes
(indexed by m) and time-varying control of the service rates of the system (indexed by n).
Briefly reiterating the contributions of our study, we formulated a stochastic dynamic con-
trol problem for maximizing the expected total discounted net-benefit under very general
assumptions on the customer arrivals and service distributions. For this general formula-
tion, we established fundamentally important structural properties of the optimal solution,
including the second-order monotonicity of some key performance metrics as well as results
on the concavity of the objective function for our net-benefit maximization problem. These
results reduced the calculation of the value function to a sequence of convex programming
problems, which in turn allows the computation of the value functions for various real-world
problem sizes of practical interest. Although larger-sized problems still face a prohibitively
difficult task of computing the value function due to the inherent curse of dimensionality, the
structural properties established in this paper (e.g., concavity) make it possible to employ
various additional techniques, such as those from approximate dynamic programming, to
compute approximate optimal solutions; refer to, for example, [11]. Furthermore, making
use of the derived structural properties, we also demonstrated that there is a critical-value
(threshold) type of approximate optimal control policy that can be fairly easily computed
together with certain performance guarantees.

We also investigated different options for approximations within a single workload
period m. The first class of approximations consists of several parameterized control policies
that are commonly used in real applications, along with some observations of system behav-
iors under such heuristics. Both theoretical and computational results have been obtained
on the performance of the system under these control policies. Furthermore, we investigate
both fluid and diffusion approximations that in general have been successfully applied in
the analysis and control of complex queueing systems and networks. The optimal solution
for the fluid model is obtained, which suggests a certain targeted level for the expected
remaining workload; a heuristic control policy based on these observations is evaluated in
our computational experiments. A diffusion approximation provides a further refinement of
these models and bridges the differences between the heuristics and the exact solutions. Var-
ious computational experiments were conducted, demonstrating and quantifying our results
and related observations.
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