
Ergod. Th. & Dynam. Sys. (1982), 2, 263-300
Printed in Great Britain

Accuracy of Kepler approximation for
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Car, disois-je en moi-meme, cette masse etant moindre que la notre, il faut que
la sphere de son activite ait aussi moins d'etendue, et que, par consequent, j'aie
senti plus tard la force de son centre.

Cyrano de Bergerac. Histoire Comique des Etats et Empires de la Lune. 1657

1. The statement of the problem
In the study of the motion of a particle 9 with negligible mass in the gravitational
field created by other bodies (for example, the motion of the comet within the
Solar system) it is natural to decompose its trajectory into regular and singular parts.

For the regular parts, when the distances between & and the other bodies are
sufficiently large (we will not specify this for a while), the equation of the motion
can be written in the form

^ i = F(x,t) (1.1)

where F is a 'good' function (i.e. continuous, analytical, etc.). The gravitational
nature of the force field manifests itself in the fact that the mass of the particle 9
does not enter into (1.1). If, for example, the other bodies of the system can be
regarded as the mass points whose motion is known, then

(1.2)

where m, is the mass and x,{t) is the position vector of the /'th body.
On the singular parts of the trajectory the particle 9 approaches a body of the

system. This is the case we are interested in. Having in mind the 'comet' interpreta-
tion, we shall call the chosen body $ 'Jupiter' and assume that it can be regarded
as a point with mass m# and position vector x$(t). The function x#(t) also satisfies
an equation of the form (1.1), where F describes the influence of all bodies including
9 and / . As for the equation of motion of 0>, it contains an additional singular
term corresponding to Jupiter's attraction. Thus

at \x -Xf\t)\
(1.3)
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264 V. M. Alexeyev & Yu. S. Osipov

From now on we will assume that the trajectory of Jupiter is known. Passing on
to the Jove-centred coordinate system

q=x-x,(t) (1.4)

we have the equation

where

<p(q, t)=

LEMMA 1. / / the inequalities

, t)-F{x<f{t), t).

d2F

Wax dx — »-ii 7 r:p=*-i2
Wdx dt\\

dx#

~dt

(1.5)

(1.6)

(1.7)

are satisfied in the domain

then for \q\r£r, tel the perturbation (1.6) satisfies

\<p{q,t)\*C0\q\, fri^Cu
WdqW

where C2 = Cuv+ C\2 and C0 = C\.

(1.8)

The straightforward proof is omitted. We shall henceforth consider equations of
the form (1.5) with <p satisfying (1.8).

A special case of these equations is the classical restricted three-body problem.
If the mass and length units are chosen so that the sum of the masses of the sun
and Jupiter as well as the gravitational constant are equal to 1, then the motion
of the 'comet' is described by the equation

d2x

dt2"

or, in the jove-centred system, by

dt2

(l-n)(x-xQ(t))

pit) q+pit)
\q+pitf

(1.9)

where pit) = x#it)-xe{t) is the position vector of Jupiter relative to the sun.
If Jupiter has an elliptic orbit, then p (f) is periodic and, in this important special

case, the estimates (1.8) for the perturbation (1.9) can be specified exactly.

LEMMA 2. Let

Then the function

<U, -00<?<+00.

q+pit) }
\q+pit)\3\

https://doi.org/10.1017/S0143385700001619 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001619


Kepler approximation for fly-by orbits 265

obeys the estimates (1.8) with

r 1 2-e 2 t, 6-6e+2e
2

Po (1-e) Po(l-e) Po (1-e)

This assertion will not be used in the following so we omit its proof.

2. Informal description of the result. Contiguous topics
The aim of this paper is to determine the size of a neighbourhood of Jupiter within
which the fly-by orbits of the comet can be approximated by Kepler osculating
hyperbolic orbits with an appropriate accuracy. Such a neighbourhood deserves
the name 'sphere of Kepler's asymptotics'. Its radius depends not only on Jupiter's
mass ti. and on the properties of the external perturbating field but also on the
relative energy of the comet. We have found conditions which allow us to show
that the external (with respect to the Jupiter-comet system) perturbing field causes
uniformly small perturbations in the osculating elements of the comet as well as
in the derivatives of the current elements with respect to the initial ones. For
perturbations obeying the estimates (1.8), the above variables uniformly approach
zero provided that rfiJ-*O and fi?/e -»0 where r denotes the radius of the sphere
and e -> 0 is the estimate from below for the initial values of the relative energy of
the comet. If we permit s -» 0, then the relative energy h_and the angular momentum
c should be normalized being replaced by log h and y/lhc.

A similar problem was solved by Perko [8] and, later and in a rather general
form, by Guillaume [7] in the framework of the so-called Breakwell-Perko's
matching theory [6]. In short, this consists of the following. Let the planetoid's
trajectory in the restricted three-body problem pass the vicinity of Jupiter. One
constructs the asymptotic approximations for two of its parts: the inner one, which
lies within some ^-neighbourhood of Jupiter, and the outer one, which lies outside
of a somewhat smaller 0(5)-neighbourhood. As approximations, one takes several
terms of the asymptotic expansion with respect to /A, where the first term corresponds
in the case of the outer expansion to the Kepler orbit focused at the Sun, and in
the case of the inner one to the Kepler hyperbolic orbit focused at Jupiter. One
picks the value of 5 to make the degree of approximation for both expansions on
the common part. For the inner part which is of interest to us, Guillaume has
constructed an asymptotic approximation which is valid in a 5-neighbourhood of
Jupiter where

It follows from his arguments that the true orbit is asymptotically close to the
hyperbolic one which osculates at the perijove provided

This agrees with our result mentioned above. However Guillaume's estimates hold
only for trajectories whose 'collision parameter' d (in other words, the distance
between the focus and the asymptote of hyperbola) occurs in the interval
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Such a restriction does not allow us to determine the sphere of Kepler's asymptotics
properly, i.e. to decide which neighbourhood of Jupiter in the configuration space
is such that everywhere within it the perturbed trajectories (having a fixed Jacobi
constant for instance) can be treated as Keplerian orbits with a uniformly small
error. Breakwell-Perko's theory deals in general with individual trajectories. There-
fore, in particular, it does not provide any possibility of estimating the equations
of variation of the perturbation of their solutions or, equivalently, the perturbation
of the derivative of the current elements with respect to the initial ones.

In this paper we consider the equations of motion, which have been put into
normal form by an appropriate choice of osculating elements. It gives us the
possibility of estimating the perturbation both of the elements and of their deriva-
tives for the entire trajectory within a certain sphere which has positive energy.t
This estimate is concealed in the bowels of the basic theorem while its formulation
involves not only estimates for the solutions of the equation of variation, but also
the estimates for the derivatives of the scattering mapping (the mapping 'in-out'
for the sphere of Kepler's asymptotics). Such a replacement implies the necessity
of eliminating trajectories which just brush by the sphere since the derivative of
mapping in question has a singularity at the points where the trajectories touch
the sphere. We should note that the simple but important idea to pass from the
usual coordinates to the osculating elements when considering the equations of
variations has been suggested to us by the paper of V. N. Borodovski [2].

Several different 'gravitational spheres' have been introduced by different authors
(see e.g. [5, p. 536]). When fj. -*0 these spheres have the following radii: ju* in the
case of the 'gravity sphere', ^ in the case of the 'sphere of action', (x.* in the case
of 'Hill's sphere' and the 'sphere of influence'. According to what has been said
the sphere of Kepler's asymptotics is close to the latter two. In connection with
this it should be mentioned that M. D. Kislik [4] has proposed measuring the
perturbation in terms of the difference between the heliocentric osculating elements
of the true orbit leaving Jupiter's vicinity and the approximate one. He has shown
that the 'sphere of influence' should be used in order to minimize the mean error.
However, to a considerable extent his arguments are based on results of the
numerical integration. Some additional remarks, relating the spheres of radii /x'
and fj,5 will be given in § 10.

3. The definitions and the formulation of basic theorem
To formulate the basic theorem we shall pass for convenience to the reduced
coordinates and time by setting

q=liQ, v = V, dt = ,xdT. (3.1)

In these variables the unperturbed equation takes the form

d2Q Q
dT2 |O|3

t The same methods are applicable for the estimation of higher derivatives.

(3.2)
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or
dQ „ dV Q dt

dT~r' dT~ |O|3' dT~^

Formulae (3.3) define the vector field X in the phase space M = (R3\{0})xR3xR.
We concentrate our attention on the region of hyperbolic motion

r\1 1

which is invariant with respect to the unperturbed phase flow defined in M by the
field X.

In the same phase space there is defined the perturbed vector field X given by

The perturbing term <£ is associated to the function <p in (1.5) by the equality

<D(Q, t,n) = tupif-Q, t, II.) = n<p(q, t, /a). (3.6)

If ip satisfies (1.8), then, as is easily seen

^i, f£Un2C2\Q\. (3.7)
|| of II

Following the general plan sketched above, we shall study the behaviour of the
perturbed trajectories within a certain ball |Q|<i? in configuration space. The
theorem formulated below determines the conditions sufficient for the i?-ball to
be 'of Kepler's asymptotics'.

Let us consider two hypersurfaces in phase space:

i = {(Q, V,t)eJto\\Q\=R,±(Q, V)>0}. (3.8)
R

The phase flows generated in M by the fields X and X define Poincare mappings
from a certain subset of £ R into £R- TO investigate them we shall pass to the
osculating elements.

We plan to use the traditional osculating elements such as the longitude of the
ascending node, pericentre argument, etc. This leads to the appearance of sin-
gularities caused by the choice of coordinates and not by the physical nature of
the problem. This may be justified by our desire to operate in the unique coordinate
system which gives parallelizability of phase space. V. I. Arnol'd cautioned about
making this mistake saying that 'analysts are apt to treat all bundles as Cartesian
products and all manifolds are parallelizable ones'. As a phase space, it is natural
to consider the completion of Ji0 with points which correspond to collision. The
abstract manifold obtained, Tt, as we shall see soon, is non-parallelizable. To avoid
the aforementioned mistake and at the same time not to burden ourselves with
passing to local coordinates, we shall always regard the manifold 3W as situated in
Euclidean space (which may be naturally chosen as U9). Without other specifications,
we shall extend the various objects defined on 3ft to its neighbourhood in the
ambient space by means of the formulae describing them. For example, to solve
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the equations of variation for the vector field defined on 3ft, we will extend them
to a neighbourhood of 3ft and solve the usual system of linear differential equations.

We will call the following dimensional manifold the manifold of osculating
elements (we should add 'hyperbolic')

3ft = (& V, t) = {(ft, ft, ft), Sf, t) e R x U3 x R3 x R x R| Iftl = 1, <ft, ft) = 0}. (3.9)

It is worth emphasizing that 3ft is nothing else than

R x T § 2 x R x R .

Using the formulae (see any textbook on celestial mechanics, e.g. [3, pp. 435-438])

M 2 1
k = 2 ~\Q\' C = [Q'V^> f' = iV'\-O,V]]-Q/\O\ (3.10)

for the reduced energy, angular momentum and Laplace's vector, we construct the
mapping <r:Jto-*3Jl from the region of hyperbolic motion in phase space to the
manifold of osculating elements:

ft = log h is the 'normalized' energy;

ft = -J2hc is the 'normalized' angular momentum;

ft = cj = / / | / | is the direction toward the pericentre; (3.11)

% = Arsh (—Jlh\Q\(V, co)) is the hyperbolic eccentric anomaly;

t = t is the physical unreduced time.

The orbit is defined uniquely by

^ = (ft, ft, ft),
whereas % marks the position of the point on it. We shall sometimes use

for the 'geometric' coordinates of a point belonging to 3ft.
The mapping o- induces a diffeomorphism of Mo onto

3ft' = 3ft\(IRx{O}xlR3x{O}x[R) (3.12)

(the points of 3ft where c = 0 and % = 0 correspond to the attracting centre Q = 0).
The inverse mapping a~l :3ft1-*Mo is described by the formulae ([3, p. 510])

Q = — (e -ch 8f)w + - L sh ff[c, to],
2h V2A

t = t

where

(3.14)

The tangent mapping Tcr: TM0 -* TW takes the vector fields X, X into vector
fields on 3ft\ £ is the first integral for the unperturbed motion, whereas the eccentric
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anomaly varies according to

^ ' - -h8F-S) (3.15)1 ^~(2h)i
(see [3, p. 510]) which implies

V2/i
Hence,

so that

(3.16)

d£ <m Jih dt
d¥=0> d¥=W dY=

d 4. 3

Multiplying this vector field by the function |Q|/V2ft, we obtain the field

^ d [ M | Q | d

d% J2h dt'

which may be continuously extended to all of 3JJ. This multiplication is equivalent
to the time scaling

dT = ~dr. (3.18)
V2ft

By comparing (3.18) and (3.17) we see that, in the unperturbed motion, T and <£
coincide up to a choice of reference time.

It will be shown in the next section (lemma 3) that the perturbed vector field
(\Q\/^2h)Ta(X) may also be extended to the field $ which is defined on all of
Wl. In the perturbed problem, T and % cease to coincide. One may express this
fact by saying that the eccentric anomaly splits into a dynamical (T) and a geometrical
{%) anomaly.

As follows from (3.14), the hypersurfaces £ R are taken by a into

(3.19)

The Poincare mappings from £ R into £ R along the trajectories of X, X are taken
into the Poincare mappings S, S along the trajectories of X, S. The extension of
the vector fields from ffl to 3ft corresponds to the regularization of collisions with
the attracting centre, and the T introduced by (3.18) is nothing other than the
'regularizing' parameter of Thiele (traditionally attributed to Sundman).

The mapping S along the unperturbed trajectories is defined on all of

) , t) = U sh % - 9)\lR jf J) (3.20)
and 5(©R) = @R. AS for the perturbed mapping S, it may turn out that it is not
well defined for the small energies h because a trajectory may pass to the negative
energy region and remain within the ball |Q|</? forever. For this reason we
introduce the subset

| (3.21)
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Moreover, the estimates of the derivatives grow with no limit near the points
where the trajectories touch the surface of section ©«(e). So one must exclude
from consideration any trajectory with a small entrance angle into the /?-ball by
introducing another subset

<5i(e,K) = {(€,V,t)e<5i(e)\\cos(\r, Q)\>K}.

Now we are ready to formulate the basic theorem.

THEOREM. Let the function <p(q, t, /A) in the differential equation

describing the perturbed Kepler problem be C1 with respect to q and t, and also satisfy
the condition

(3.22)T^q.f.JUco, 1^ (q, t, /J| ̂
dq II 113? II

in the ball \q | < nR for all t.
Then there exist 8 > 0 and C> 0 such that the inequality

holds for some e > 0, K € (0,1) and implies the existence of a Poincare mapping

along the trajectories of the perturbed phase flow. This also gives an estimate of the
deviation from the unperturbed Poincare mapping.

in the subset <S>R(S, K) <= SR(E ) in the following way:

\\dt~

K 2h

at' \2h'

dJlJJl
dt~ dt~ 4

Remark. We have required that (3.22) hold for an infinite time interval in order
to simplify the exposition though it would be sufficient to require it for a time
interval of approximate length (2/x/V2e)/? which is that necessary to pass through
the K-ball.
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4. LEMMAS

First of all we give an explicit expression for the perturbed vector field $ on the
manifold of osculating elements. We shall drop all tildes in this section.

LEMMA 3 (The equations in the osculating elements). The differential equations in
the reduced coordinates

transform into

dh !

dr

dc (e
dr

da) i

dr

Shi

2ft

ch
(2

[et

d(J
dT~}

?-l)
ft)i
:h£-
(2ft )1

c h ^

' V2ft

(e-chi

1) (<t>, 0)

e

Q dt

c, a,],

(4.1)

(4.2)

[C,CJ]

(echg-1)
(2ft)2 '

ch 8f - 1

(4.3)

dr

When passing to the (£, ̂ , f) coordinates, the pair of equations (4.2) are replaced
by the equivalent ones:

dgi _ d log ft _ 1 dh
~ ^ft dr'

(4.4)
. 1 dh ,—. dc
= ^=—c+*J2h—.

dr dr

•<[c,a,],<l>>. (4.5)

dr

d4Thc

Remark. In the following we shall also need the equation
\de_ = _(e2-\)
e dr

This will be obtained in the proof of the lemma:

Proof. We differentiate formulae (3.10) which describe ft, c, / as functions of the
reduced coordinates with respect to the reduced time T. In compliance with equation
(4.1) we have
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Using (3.13) we obtain h and c

< v * ) ( * ) + < a

(4.6)

•£ = IQ, * ] = ̂ - (e - c h «)[w, <D] + - = s h S[[c, to], <&].
^T 2/i V2/

Let us consider the equation for w. In order to obtain dco/dT we have to compute

777 — and eliminate its co-component. We carry out the calculations by recalling

that I/I = e and that c = [co, [c, w]] (because o f c l w and |w| = 1). We have
1 si-f 1

^Aw{i,{c,a>})[c,ol>}{i,<o) + Q(V,S>)$>{V,Q)). (4.7)

Then (3.13) implies that

Eliminating the w-component in (4.7) and using (3.13) again we have

du> [c, &>]._ s h %> ,. ,, , ,
_ /*. ..\—.— (d>-{(}), „>)<.>)

\ 1
ff[c,w]. (4.9)

dT e

1/ 1 shff, „. chff/r -, - , \ 1

Furthermore, the w-component of j—r -— is nothing but - ——. So from (4.7), using
I/I dT e dl

(3.13) and (4.8), we have

1 de 1

e dT e
1 (e-chff)f 1 shf S^-I / r (b\\ ~(<b \esh%

2h e 1 yJ2h \O\ **' |O| ' ' J ' eV2fc"

(4.10)

Before deriving the equation for %, it is convenient to pass to the time T in the
equations for h, c, a>. Multiplying the pair of equations (4.6), the equations (4.9)
and (4.10) by \Q\/y/2h we obtain (4.2) and the first of the equations (4.3) from
the lemma and, after collecting the similar terms, the equation (4.5).

We differentiate the equality

sh ff = -^

defining ff (cf. (3.11)) with respect to T:
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Rearranging the terms and passing to the time T, we find

273

(4.11)

Here the sum of the first two terms is equal, of course, to ch <£. The third, fourth
and fifth terms are equal respectively to:

1

•4~2~h~

dh 1-ch2 ch £ sh :<*,[c,a>]>,

e
2 c h 2 ^ - :

L
W2/l

+ ch c, to], [c,

Summing up these expressions, cancelling ch "S, and collecting similar terms we
obtain the second equation of (4.3); the third is obvious. This completes the proof
of the lemma. In the proof we showed that, in particular, the vector field $ defined
by (4.4), (4.3) is regular on the whole manifold 3Ji.

Now our next goal is to estimate the right-hand sides of the equations (4.2)-(4.5)
in terms of the energy h and of the modulus of position vector \Q\. From (3.14)
and the definition of w, we obtain estimates for the elementary expressions entering
into the equations under discussion:

ech % =l+2h\Q\ e < l -

e

Jlhc V2/ic
(4.12)

= 1.

LEMMA 4. (The estimates for the right-hand side of equations in the osculating
elements.) The following estimates are valid for the right-hand sides of the equations

(a)

(b)

(c)

dh

dr

dc

dr

-2h\Q\),

< 2

2h

(1 + 2/ilQl)2

(2/1)1

(l+2/ilQ|)2

(2/i)2
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(d)

(e)

V. M. Alexeyev & Yu. S. Osipov

, ( l + 2ft|Q|)2

dr
— 1

dr

~d7

dr
(g)

of the entire system

(ft)

as well as for 3£ — 3t = pr,^()(3£ —36)

and

(2ft)2

(l + 2ft|Ql)
'' (2A)i

(2ft)2 '
d+2ft|O|)2

(2ft r

-2ft|O|)2

• 1 * 1

(4.13)

(/) <2-
e dr

Proof. The estimates (a )-(c),(e) are more or less obvious consequences of equations
(4.2), (4.3), the formulae (3.13), (3.14) and the estimates (4.12). When obtaining
(d), one should take into account the inequality

and when obtaining (/) the inequality

Also, (ft), (/) are consequences of (c), {d), (/), (g).
Analogous estimates for the equations of variation which correspond to the

system (4.4), (4.3) are far more cumbersome. To avoid a tedious calculation we
make one observation.

The system (4.4), (4.3) may be written in the form

di
dr

'eh

where the operator-valued function A (£) and the /^-valued function
represented as polynomials of several elementary expressions.

Definition. We shall call the function

p (£) = %, sh V, ech%,e sh %, e, - ,
e , w,

(4.14)

may be
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a pseudopolynomial of the class &% if, in the first place, P% is a polynomial, i.e.

Pa(au . . . , a5, 06, 07, 08, yg) = « ! , • • . , « i , . . . , Y9, • • • , J9>

where

ai a5) 06, yge R; 04,08e R3,

and where each Lv is a polylinear function of its \v\ = v\ + - • - + v9 arguments.
Moreover, in the second place, the degrees v satisfy the conditions

(i) v\ + ^2 + ^3 + V4 + vs s N;

(ii) 2>9 = cr.

(The representation p(f) in the form of a pseudopolynomial is not unique, of course.)
As we shall see, the functions A(£), B(£) in (4.14) are pseudopolynomials of the

classes 0*2, &\ respectively. The following lemma allows us to estimate the
pseudopolynomials and their derivatives in a simple way.

LEMMA 5. (The estimates of pseudopolynomials and their derivatives.) Let p(£) be a
pseudopolynomial of class 5P". Then for all £ e { ( £ i , . . . ,£4) = (log ft, Jlhc, a>,
%)\h>0,ceU3,(oeR3, |w| = l, % en} we have

2h\Q\)N

(a)

(b)

(c)

(d)

(e)

(2h)°

(2h)°

dp_

H2

dp_

2h\Q\)
N

2h\Q\)N

(2h)°

2h\Q\)N

(4.15)

Prao/. We consider some pairs of inequalities (/ = 1 , . . . , 4)

Italia+2fc|<?i)

\df-j\\

ll0.Ni

where / = ! , . . . , 5

0 for ^ ^

ifor^O

where ;'= 6, 7, 8 x(i,]') =

lfor^.,0
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where x(g,i)='

Ofor^-0

lfor^O.

The first inequality in each pair is just (4.12). Each second inequality is a con-
sequence of (4.12).

Explanation is perhaps needed for the estimation of d^7/d^2- The operator

1/ (-J2hc)®{*J2h'c)\
- l i d 2

has one eigenvalue 1/e with an eigenvector which is co-linear to c and a double
eigenvalue 1/e with eigenvectors which are orthogonal to c, so the norm of d/34/d£2

does not exceed 1.
Thus

d
v(au .. . ,au . . . ,(36,. . . ,fi6,.. . ,y9,. . . ,yg)

i V r^' II H+ I vt— HI"ill
Wd^W

• • • as

Substituting here the calculated values of x, we obtain the estimates (4.15) (b)-(e).
The estimate (a) is obvious.

Remark. When considering p (£) as a function of A, c, w, i? we have

2h\Q\f d
* {2hT+l '

We had passed to the normalized elements because of this and also because of our
desire to have the estimates of the right-hand side of the equations in osculating
elements (compare in (4.14) the estimates (a), (b) with (c), (d) and (/), (g) with
(c), (<*)).

LEMMA 6 (The estimates for the right-hand side of equations of variation and others).
The functions A(i), Q(g), |<?(£)|, B(g) are the pseudopolynomials of the classes &\,
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'} , 0>1, 0*2, respectively and there hold the estimates

(b) = 28.11
(2h r

(2ft )§

Frao/. To verify that the above functions are of the indicated classes, one should
rewrite the expressions (4.4), (4.3), (3.13), (3.14) in the form of polynomials in a,
P, y and count the corresponding degrees. We obtain (a) in a manner similar to
(4.13/i). We estimate (b) via

i
•",;" = l

We estimate the derivatives of each component A,, with respect to $2, £* by means
of lemma 5 and in turn with respect to f i, £3 by means of lemma 4 to achieve less
generous estimates. We use the fact that the polynomials under consideration are
homogeneous with respect to £1( £9 and that the estimates in lemma 4 have been
obtained at the expense of an estimate of polynomial coefficients in £i and £3

monomials.
We obtain the other estimates by direct computation and by use of (4.12) and

the estimate

e \ e

As we have seen, the estimates of the right-hand side for both the equation of
elements and the equations of variation contain the expression (l + 2ft|Q|)2 with
a a 1 only. So the following lemma plays a basic role in the sequel, being, in
particular, the main tool of the so-called 'continuous induction' (see §§ 5, 6). The
assumptions we formulate below, i.e. that the comet retains its hyperbolic character
within an /?-ball and others on the magnitude of osculating elements' variations
during this motion, are the a priori assumptions.

LEMMA 7 (The estimation of a typical integral). Let a solution of the system (4.2),
(4.3) be defined on a closed interval [T~, T + ] and satisfy for some e0, h, R, K the
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following inequalities

(a)

(b)

(c)

(d)

(e)

Then for a a 1 we have

V, M. Alexeyev & Yu. S. Osipov

d% 1
—•—

0<h(r)

h(r)sh
|^^/_\| ^> n
\ \ ^ \ i )\ — i \

«(T) « W ^
e e

+• 2/t (T)IO(T)I)0 ' dr s 2/c (1 +eo)(l H

Proof. Changing the independent variable in the integral and applying (a), (b), we
have

f

Now, if we first decompose the integrand into the product (l + 2/t|Q|)a~1 x
(\ + 2h\Q\), and then majorize the first factor with regard to (c), and (d) by a
constant and use the definition of |Q|, we have

eo)

a-1 f

Let us introduce the notation e = maxT-STST+ e(r):

We have

f^ < - a-l.f*'

The condition {e) implies e < >ce ~, e < Ke + and, therefore,

c(ch ^ + + ch g~)«=K(e+ ch ^ + + c" ch

We apply the definition of |Q| and conditions (c), (d):
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in order to finish the proof of the lemma:

+ 1h (T)|O(r)|r dr < (1 + eo)(l + 2hR T'X2K (1 + 2hR)
rT+

5. Beginning of the basic theorem's proof: The existence ofPoincare's mapping
Let a point p~ = (£7, £2, a>~, %~, O belong to ©R(E). We fix the positive constants
£0 and £1, £2 < 1 whose values we shall specify below and denote by

a tube, or rather a layer, in the manifold of osculating elements, depending on p~.
In compliance with (4.13(d)) and (3.7), if P(T) = {£I(T), £2(T), « (T ) , %{T), t(r)}
belongs to this set, then we have the inequalities

h (5.1)
e (5.2)

or
o(tr.\ o~C\ 4-o-"\ 1-1-^.

(5.3)
e(T2) e (1 —£2) 1*~£2

(for n , T2 such that p(xi), p{r2)e G), and

: (2h? '* ' -
Thus, if

2(- -j ( r r = + £ ) C0/u,2i?^r—^— (5.4)

then
d^^l g° =

 1 (55)
^T l + £ 0 l + £o

Hence, while the trajectory stays in G, the eccentric anomaly increases monotoni-
cally.

Because of (4.8) and (3.18)

\Q\' V 2A'dT

Therefore the sign of d\Q\/dr coincides with the sign of %.
According to the definition of ©i(e) one has at all points on this set

\Q\=R and ^ = -L<Q, V)<0.
dr V2/1

Hence %~<0 and, moreover, |O|</? for T>T~, sufficiently close to T~. Since the
first two inequalities which appear in the definition of G hold strictly, the point
p(r) belongs to G for r which are greater than r~ and sufficiently close to it. The
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right-hand side of the system (4.14) is bounded on G due to lemma 4 since h is
separated from zero and so either the trajectory remains within int G for all T > T ~
or else p(r)edG for some T>T~ and p(r)e int <7 for r e (T~,T).

We shall show that the first possibility does not occur. In fact, let us take £?i >0
sufficiently large to satisfy the inequality

Now, if \h'-h~\<eih~ and |g"|>^i then at the point p'= (fi, g'2, at', V, t') we
have the inequality

Thus p'£G for arbitrary g'2, co', t'. This implies that \%{T)\<%I in G. By virtue of
(5.5) we may also conclude that the trajectory stays in G during the interval AT
whose length does not exceed 2 i \ ( l 4- e0)-

Now we shall find conditions which guarantee that the trajectory meets the part
of the boundary of G where |C?(f)| = R, so that the trajectory entering the R-bal\
will necessarily leave it. Thus we have to exclude two possibilities:

\h(f) — h~\ = e\h~ and |e(f) = e~| = e2e~

for which purpose lemma 7 will be of use.
The requirement that the trajectory segment [T~, T] belongs to the region G, or,

in other words, the requirement that |(?|</?, together with (5.1) and (5.3), shows
that the above lemma applies and gives the following estimates for \h{f)-h~\ and
\e(f)-e~\. Using (4.13a), the inequality (3.7) and lemma 7, we obtain

Hence, if we choose st to satisfy

8-
1 - 6 2 1—

then the inequality

is valid.
According to the assumption (5.2) one has
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and, therefore

e(r) _ i log
e(f)

Te
de_

dr
dr.

As above, but using (4.13/) instead of (4.13a), one may obtain the following estimate

de (1 + 62) / l + £
dr 1 — £2 \1— £

which implies that \e(f) — e~\<E2e~ as long as

(l+6o)

f i
J T - e

l - e 2 M - e i / \2h

Comparing the inequalities (5.4), (5.8), (5.10), we find that

1~e iV

,5 .9 ,

(5.10)

/1-ei i\ l - £ 2 ]
j (1 + £2)

2J
<min

which proves the existence of the Poincare mapping <2R(E )-•©«. Specifying the
values of e,- one may make this condition more explicit. For example, if we let

£ 0 = 1 7 , £ l — £ 2 = 4 (5 .11)

then we get the condition

1 - ' - • ' - • ( 5 . 1 2 )

6. Continuation of the proof of the theorem: The estimates for the perturbation of the
Poincare mapping
For the point (£~, t~) of entry into the /{-ball, we will denote the parameters
characterizing the point of exit from the /?-ball for the unperturbed trajectory by
i+, Q+, t+, T+ and by £+, Q+, t+, r+ for the perturbed one. It is clear that

ei) (1-£2)

h+ = h , e+ = e , %+-% =T+-T .

From now on we assume that the condition (5.12) is fulfilled and £; are fixed in
accordance with (5.11). The following estimates may be obtained by the same
reasoning as in (5.7), (5.9), i.e. by virtue of lemmas 4, 7:

(6.1)

(6.2)

(6.3)

~ + R) C0H
2R;
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i 1
29.421-—

\2n

C0/x2£;

(6.4)

(6.5)

(6.6)

(6.7)

The quantities %+-W+ and t+ -t+ should be estimated in a different way, since
£ and t are not fixed along the unperturbed trajectory. Although it does not appear
in the theorem, the estimate for %+ — %+ will be derived, as we intend to exploit
these results later.

We denote by %R(T) the value of the eccentric anomaly when an orbit leaves the
R-bal\ at time T. It is obvious that gR(r~) = g + , gR(f+) = §+. The element ? R ( T )
is associated with the other ones by the relation

l+2h(r)R
° R{T)~ e(r) '

The difference ch ̂ R ( r ) -ch ^ + may be evaluated

T < T <

_n 2 * «!i»w«i*k ,6.8)
JT- L e(a) da e e da\

and estimated by

,MZRC dh_

da
da +

l + 2hR Cr

I - de_
da

da.

Using (6.3), (6.7) and e = e~(l-e2) (see (5.2)) we find

|ch
e (.1-62)

(\ + 2h~R) 1 + ei

e l-e2

Enlarging the factor 2R in the first term up to

l±£i1 9 . 6 1 (JL+ iA coi,
2R.

l - e 2 \2h I

>2R

and summing, we obtain

.39(
\2n C0fi

2R

1 1 \ 2

= ch£~48.39(—+R] Cofi
2R (6.9)
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or

V^-i (6.10)

Because ch %R (T) - ch g + = sh %\%R (r) - g+) holds for some £', which lies between
g+ and #R(T) and because %+ and %R(T) have the same signs, (6.9) implies

48.3
y+,«R(T) |sh s |

This estimate leaves much to be desired for small % when

(6.11)

that is for trajectories which just barely meet the i?-ball with small entrance/exit
angles. However, this case is of little interest, so we exclude it from consideration
by imposing the condition

|cos (V~, Q~)|>fc (0<fc<l) (6.12)

on the entrance angle. This restricts the domain of Poincare mapping to ©R(C, k).
We also make the a priori assumption

=s* (6.13)
cos(V+,Q+)

about the exit angles of all osculating orbits.
Let us try to formulate a more verifiable condition which provides the validity

of (6.13). To achieve this, we give an estimate for

COS
— 1.'

The equations (3.14) and (4.8) and the well-known formula

, = e ch g +1
e c h ^ - 1 '

(which may be easily obtained from (3.13) and (3.14)) imply that

(V,Q) *sh£
cos(V,Q) = -

It follows that

cos I

/
We have taken into account here that

\
=\Q \ =

(6.14)

(6.15)

(6.16)

2h+ ' " ' 2h

The difference of the first factor and 1 is given by (6.6). To estimate the difference
of the third one and 1, we apply

. -— <
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(see (5.1)) and (6.2):

1
< -

1 1

2 V l - e i / ( l - e i ) 1-ei
2

— - 1
h

We obtain the estimate for the fourth factor from

. + 2h+\Q+\-\-2hR \2h + -2h\R

(6.17)

- 1
e ch gR +1

having in mind \(h/h+)-l\<e:

2 + 2hR 2hR
— 1

1

h +

e ch %R +1
'-— 1

1

2 V i -

:19
/ 1

.22^— (6.18)

It remains to estimate the difference between the factor sh ^R/sh £?+ in (6.16) and
1. Applying the Cauchy formula and inequality (6.9), we obtain

1
^ - 1 |sh g+ |

shg" shi"
(6.19)

with g"e [^+, ^ R ( T ) ] . We rewrite the inequality (6.12), squaring both its parts and
taking into account (6.15),

This implies

-l\/e~
(e

r sh 'g ^ 2/e chg - l \ /
-)2ch2?"~ V e-chSr A

>k\e]ch
cif

l

and

r+ ch2 T
(6.20)

In a similar way, via assumption (6.13), we obtain

sh2g" T )

4 1 {{l/2h~)+R)
(6.21)

where T' is chosen to satisfy g" = <£R(T'). Taking into account (6.20) and (6.21), we
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obtain from (6.19)

— 1
48.39 1 / 1

111.76
(6.22)

Now, having obtained the estimates of the differences of every factor in (6.16)
and 1, we may estimate the difference for the whole product. To this end we use
the elementary inequality

exp I I a,J I at, I —

which is valid when |/3,| < a, < 1. We assume

na+ft)-: a,
(6.23)

/ 3 3 = V - ^ - 1 .

(6.24)

and

= 111.76p(^r

ch %R +1

= 24.51

The inequalities |/3j|<a,- are valid as long as (6.13) holds, as one may see from
(6.22), (6.16), (6.17), and (6.18). That a , < l may be regarded as an independent
condition. If

(6.25)

this condition is certainly met. Thus the a posteriori estimate of the ratio of sines
of exit angles (see (6.16), (6.23), (6.24))

cos(VR,QR) _ i
4n

247.95
500

(6.26)

is stronger than the a priori estimate (6.13). As the 'continuous induction principle'
states (see, e.g. [1]), if for a continuous function (

cos

cos

here) of a scalar argument (T here), the a posteriori estimate is stronger than the
a priori one, then both estimates are valid. Therefore, if (6.25) is fulfilled, then
both (6.13) and its consequences (6.21), (6.22), (6.26) are valid.
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To finish the estimation of perturbation of £?+ started by (6.11) we must use the
inequality

min sh V
1.29,

which is a consequence of (6.22), (6.25). Moreover, (6.20) gives

,,*. ,„+, chsr %

min sh s"
48 .39(—

\2h

\2h~ )

< 62.43 f (

It remains to estimate the perturbations of the exit time from the /?-ball. Let us
consider once more the Kepler orbit osculating about the perturbed one at the
instant T, which corresponds to the instant f(r) of the physical (unreduced) time.
By the standard formula for Kepler motion (it can be easily obtained also by
integrating (4.2), (4.3) with <i> = 0) the physical elapsed time between the instants
of osculation and the exit from the .R-ball if the comet moves along the Kepler
osculating orbit, is described by the relation

. . . . g (T)shg R -g R ( r ) e(T)shg(T)-g(T)
fe(T)-f(T) = M (2h(r)f2 M {2h{T)fn • (6-27)

Naturally, f R (O = t+, tR(f+) = r, which implies

r-t+=\T -ftR(r)dr. (6.28)
JT- dr

The derivative, entering here as integrand, is evaluated using (6.27), taking into
account the fact that

d x /*g(T)chg(T)-l
Itt{T)- (2h(r)f2 '•
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The fourth term contains the quantity d%R/dr, which has not figured in our estimates
yet. From the equality of integrands in (6.8) we note that

d%R Rdh l + 2hRlde

dr e dr e e dr

This, together with (6.21), (4.13(a), (/)) yields

.{\ + 2hR){\/2h+R)
dr

2h\Q\)2

2/t

{2hf
2 1 l(l/2h-

7 V -

1*1

•4-

Finally, by virtue of lemma 4, we may estimate the sum of all terms in (6.29) except
the fourth one by

+ 2hR)(l+ 2h\Q{)2

(2*?

< 4 4 4 . 2 8 - = | ( - | ^ + i ? ) COM2/?-
s2h * ^2n /

(6.31)

7. 77ie end of the proof: estimates of perturbation of derivative of the Poincare mapping
Let us evaluate the derivative of the Poincare mapping for the perturbed and
unperturbed flows in the coordinates (£, f)t at an arbitrary point

This mapping (£~, t~)-*(i+, t+) can be represented as a composition of four
mappings:

(1) The inclusion

i:RxrS2xR=>t/-*@i(e,it), i :(r , , O-
(2) The shift 6 (0 resp.) along the integral curves of S (3£ resp.) for the fixed

'time' fo - TO (TO - TO resp.) where

and

(/(fo), t(fo), f(f J

t The term 'coordinates' is a rather relative one: f runs over a region in R x TS2.
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(3) The projection along the integral curves of 36 (3c resp.) onto the hypersurface

(4) The projection pr(e>() of W onto (£ f )-space U x T§2 x R.
The composition of the two latter mappings we denote by 0- (resp. n). We shall
write the derivatives in matrix form, using the fact that W is embedded in the
ambient Euclidean space.

One may easily evaluate the derivative $ of i

d% R
id, —— 0

0 0 1

by finding d ^ / d f as the derivative of an implicit function from the relation
?«)!-/? =0:

The first component of the latter can be estimated in <BR(e, k) by means of (4.8)

e ch % -1
\v\~k

and the second by means of (4.8), (6.14) and (3.14)

~;2ch:

16 16

We can write, therefore, the majorant for # in (|, £)-, (̂ , f)-, (f, I)-, and (t, t)-
components

(•Jl + 2/k1 0\ /1.74/fc 0\

' - ^ l o i ) ^ l o i> a i )

The derivative 0 of 6 is given by the solution of the equations of variation for
(4.14):

(7.2)

along the trajectory (/(T), T(T)) in the interval (T , f+). The derivative 0 of 6 is
the solution of the same system with <I> = 0 along the trajectory (£(T), t(j)) in the
interval (T~, T+). Since

it is sufficient to estimate
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in order to estimate the perturbation of the derivative of the coordinates £ As for
the estimate of the variation of t, we shall not need it.

Let us rewrite the system (7.2) for the sake of brevity in the form

dr
(7.3)

— (8t)^y(r)8{
ar

and integrate it

J i ^ { J } do-

Introducing the notations

(Ti|,

we write down the integral inequality for 1£(T):

2C{T)

)||+ f
Furth rr, applying Gronwall's lemma, we obtain

(7.4)

To estimate si, 93, V at T~ < T S f+ we must use lemmas 6 and 7
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1^1 dr

/ 1
<65.79 -—

\2n

=f ||r(r)M

(l-ei)1 ^2h

Imposing the condition

* 3 _ u.3R^ r + /?) COM + 9 2 5 . O l ( ^
2n / \2rt J2h

or, the stronger one,

we obtain from (7.4) the estimates of the variation (exp (A +BT) s 6.36):

|3g(f+) ..II < e f i . 2/ 1
— id <5884ju. I -—

l l f ( " ) » ^2ft

It is easy to see that the derivatives II and ft of the mappings TT, rr are the
composition of projection pr onto (£, f)-space and respectively of the projections
onto the hyperplanes tangent to ̂  = 0 along the vectors £(£+, t+), £{i+, F~):

d(i, t) - d(i, t)
[ = P r ~^ ^TT> n = pr—• -r—. (7.9)

\ '3(6
We have used here the simpler notation

a(6 0 a(6 0 "
All objects appearing in the first (resp., second) formula are taken at the point
(€+, t+) (resp., (i+,r)). The cap-, as in lemma 4 denotes the projection into
(6 0-space.
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Let us transform ft - n to the form convenient for estimation

1®-

291

n-n=
3(60

\ '3(6 0/

\d(f, t) d(£, i
(7.10)

By virtue of (5.6), (4.8) and (6.12) we obtain

2h +

\Q+\cos(V\Q*) kR

Similarly, (see (6.13)), we have

kR'

(7.11a)

(7.11b)

Below we shall use the notation

The matrices (7.9) will be considered as consisting of (£, %)-, (t, £)-,
(t, 0-components. It follows from (7.11), (4A6d) and (4.13/) that

I®:
, Q

\ d(i, t)

Hence, by means of (7.6), we have

l_/52.91a 0\
fc\5.36g 0/'

(g, t)-,

(7.12)

5.36 g/k 0/"
(7.13)

Since

(*•&) - l +I* & \
\ '3(6 0 /

we obtain by virtue of (6.23), using (6.6), (6.2), (6.22) and (7.6):

IT d* \
\ '3(6 0/

'3(6 0

< 235.55 2.
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Multiplying (7.12) by this estimate we obtain a majorant for the first term in (7.9)

\ a(£ t)i
U 3* \

a_/ 12463a 0\
A:3\l263g oJ'

yR _ fiR / h+ \

V 2 ^ y/2ir\yfP >

The ^-component of

is equal to

and, in fact, has already been estimated (6.17); the estimate of ^-component follows

from (4.13r); the estimate of ——- from (4.16a"). Thus, we have a majorant of

the second term in (7.9):

1 » A , „ d9 1 / 26.44a

'd(i,t)/
To estimate

we shall proceed as we did several times before.

d\Q(t,i+)\ d\Q{t,%+)\

= fTVa
J T - V T-

Because of d\Q\/dw = 0 the integrand may be estimated by

which, in turn, may be estimated by virtue of (4.16e), (4.13/, g) and (6.30). Finally
applying lemma 7, we obtain

This gives the majorant of the last term in (7.9):

i. _ / dV d9 \ / 0
^ \ 3 4 1
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Summing up (7.14)-(7.16) and taking into account (7.6) we obtain in accordance
with (7.10)

fl"n-<(i«X*" o)' (717)

All that now remains is to estimate the perturbation of the derivatives of the
Poincare mapping. As we have seen, the difference between the derivatives at the
point (io, to ) may be represented in the form

©)+(ft-n)0)A (7.18)

(7.19)

Majorants for 0 and 0 - 0 have the form

0

1

1
0 -

4717a+5884bg

d£~ df

419b

\\^1 JJl
liar dt~

(The latter represents, as a matter of fact, the pair of inequalities (7.7) and (7.8).)
From (7.18), we obtain the following majorant

• - > *

9202 P" 11366^
k

46864^1+54878^-

466b

2246-p
k

(7.20)

which does not depend on (£0, t0) s <SR(e, k).
We resume our arguments. At each stage of selecting the small parameter (see

(5.12), (6.25), (7.6)), we required the fulfilment of a condition more restrictive than
the preceding one. So, if (7.6) is fulfilled, then the Poincare mapping exists and we
have the estimates (6.1), (6.4), (6.5), (6.31), (7.20) which is the assertion of the
theorem.

8. The first terms of asymptotic expansion
There often arises in practice the need to have a more precise approximation to
the real orbit than Kepler's approximation. Below we construct the asymptotic
approximation to this orbit, restricting ourselves by the first non-trivial terms of
an expansion with respect to the integral powers of fj.. We estimate further the
degree of the approximation obtained in the OGu.1) -neighbourhood of Jupiter.

We rewrite our basic system of equations (4.14) in a slightly modified form

d (o.o.o.i> . t

(8.1)

Let

T(T) = r(0,(T r(2)(r)
(8.2)
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We substitute these expressions into (8.1) emphasizing the terms up to /&'

d_
dr

= r((O,o.o.i)

£(2)(T

dr
T( 2 ) (T)+00*3

B(€(0))

One has here

d(p(O,t ,O)_d<p(O,t , 0)

dt du.
= 0

because <p(0,
equations

When comparing the terms of the same order we obtain the

(1)
dr

— i (0,0,0,1),

dT (0)

dr

(2)

(3) <

dr
= 0,

BB(£m)
dr

(8.3)

Q (f (0)),

Taking ${r ) = £ , T(T ) = 0 as initial conditions for the system (8.1), we obtain
from (8.2) the following initial conditions for the systems (8.3):

https://doi.org/10.1017/S0143385700001619 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001619


Kepler approximation for fly-by orbits 295

This implies that |(D(T) = O and TW(T) = O and therefore simplifies the equations
(8.3)

3
(XT

— T((o,o,o,n

(2)
dr

(8.4)

dq

dT
m

dr

Now we begin the estimation of the deviation of the approximate solution

from the true one. We transform the differences £(T) —f(r), T(T)-T(T) bearing
in mind that all functions defined on SM can be extended into U9 (and, in particular,
onto the convex hull of 3ft):

rrr '
= j [J TZ , t + (i.T, fi) do-

T(r)-f(r)

f
( I - f (0) - M f (2>)

f (0), (0))
,1ds j

Estimates of these expressions are based on the following facts,
(a) It is easy to see that the estimate

(p(q,t,fi)-
d<p(O,t , 0 )

dq
^C12\q\2 (C12 = const.)

is valid in the ball \q\<fj.R when t belongs to a finite interval and fj. is sufficiently
small.

(b) The estimates of lemma 5 for pseudopolynomials obtained under assumption
(|, t)e$R also hold in the convex hull of 9Ji, provided one replaces l + 2h\Q\ by
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e ch % (which is not the same because

and

is true in the convex hull).
(c) If the conditions of the basic theorem are fulfilled, then for a certain A the

inequality

holds. We assert that if f' lies in the segment whose end-points are £(T) and
then the quantities

f1({') = e'ch%' and A(f) = 2 P

can be estimated by means of their values at £<O)(T). Namely,

1 exp(-fi) exp(A)

2h' 2 2hm

(The first inequality is a consequence of

, , ,2^1+ (16(0)1 +A)2

and

ch
For any T for which

|O(f(0)(T))|s/? and

hold simultaneously, the estimates

also hold.
Thus, if h is bounded away from zero while /u. and r tend to zero, then the error

of the approximate solution (8.5) is of order A2 for the elements | and /u,5A2+s in
physical time. This should be compared with A for £ and /u5A1+5 for t in case of
the zero order (i.e. Kepler's) approximation. The formulae describing £(2>, Tm can
be easily obtained from the system (8.4(2)) by successive integration. The integrals
which occur may be evaluated in explicit form because the integrands are poly-
nomials of degree three and four in ch §?«» = ch r, sh £?(0) = sh T with constant
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coefficients. This means, in particular, that the approximate solution (8.5) is para-
metrized by the eccentric anomaly of the unperturbed orbit, since

£«»(T) = (£(O)(T), »(O)(T))" (const, T)

is no more than the Kepler orbit osculating at the instant T~ (or, if one prefers, at
the instant t~).

These formulae are rather bulky and so we do not include them. They may be
useful, however, in applied problems because of the speed of computation in
comparison with numerical integration and because sufficient accuracy is guaran-
teed. As an example, the problem of the approximate determination of the true
pericentre and time of passage through it is within the power of a microcalculator.
It suffices to determine the root of equation

&(0)(T) + fJ- 2%(2)(T) = T + /A 2 ^ ( 2 ) ( T ) = 0

by 1-2 iterations taking T = 0 as the initial approximation and to substitute the
found value of T into the formulae for the time and for the rest of the elements.

9. Discussion of the result. Other possible applications of the estimation method
In the present paper, we considered perturbations caused by the external gravita-
tional forces. The peculiarity of perturbations of this kind is that they vanish at the
origin of the coordinate system centred at Jupiter. One may expect that the
perturbation of the elements is small when the energy is bounded away from zero
and the magnitude of the perturbing force (of order r in the case under consideration)
is small with respect to Jupiter's gravity (of order n/r2), i.e. when

or in the \fi3 vicinity of Jupiter with A equal to a constant much less than one.
The theorem proved in this paper confirms these expectations. From the purely
technical viewpoint the requirement for r3/fj. to be small appears when estimating
the right-hand side of the system (4.14):

C

Another important class is formed by perturbations which do not vanish at the
point coinciding with Jupiter. These perturbations have a non-gravitational nature
(they may be caused, for example, by light pressure). One may regard their absolute
magnitude to be of the order 1, while the relative magnitude is of order l/(n/r2).
The latter is small within kyJ1 vicinity of Jupiter when A is a constant much less
than one. The estimate of the right-hand side of (4.14) has the form

C

and the arguments leading to the proof of the theorem may be repeated mutatis
mutandis in this case also. The same is true with respect to the asymptotic formulae
of the preceding section.
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One more important case where our method works is the non-local study of the
orbit perturbation, i.e. not only during passage in Jupiter's vicinity, but also on the
whole infinite time interval. It turns out to be possible to estimate the variation of
the elements when the perturbing force decreases at infinity a little more rapidly
than the Newtonian one, or, more exactly, when the perturbation admits the
estimate e/(l + \r\)0 with /3>2, e « l . One may consider, as an example, the
perturbation caused by the non-sphericity of Jupiter. The value of fi does not play
any role, so one may assume /A = 1. In these assumptions the estimate of the
right-hand side of (4.14) is

e max (1,2ft) e

:i+Mr 2ft
Lemma 7 must be reformulated.

LEMMA 7'. Let a solution of (4.14) exist for — oo < T < +oo and satisfy the conditions:

(a) —>- ; (b) ft(r)>0;
dr l+e0

(c) «=-c"se(i

K

for some eo>0, K > 1. Then the integral

dr

with (2 > 2 converges and admits the estimate

dT 1

Proof.
f°° dr f00 1 dr

L0O(l+2h\Q(r)\) 0-2~

I- , (e ch %f~2

eo_ r
-2)J_exp(/S-2)J-ooexp08-2)|8fr e0'2 /3-2"

Now one may easily estimate the perturbation of the elements, following if not
the letter, then the spirit of the arguments given in §§ 5-7; the perturbation <p for
simplicity may be regarded as an autonomous one.

Afterword
The goal of this paper is to present the first part of the joint research of the late
Professor V. M. Alexeyev and myself which was undertaken on V. M. Alexeyev's
initiative. The task we set for ourselves was to confirm the hypothesis, going back
to Laplace, of the possibility of a capture of a comet by the Sun-Jupiter system
due to the passage of the comet close to Jupiter. More precisely, we intended to
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prove, for the case of the restricted three-body problem as a model, the possibility
of a capture in the strict mathematical sense, i.e. for a semi-infinite time interval.
This could not be expected to be a simple problem, if only because, as it is known,
the set of the initial conditions leading to capture is of measure zero. Nevertheless,
the experience gained by Professor V. M. Alexeyev in the study of trajectories
with close passage as well as in the study of quasi-random motion in the
Kolmogorov-Sitnikov example made him believe that this could indeed be realized.
Quite soon we found that it was possible to prove the existence of capture in
another well-known dynamical system which could be regarded as the next stage
of idealization; this is a combination of two two-body problems where the perturba-
tions of the motion caused by the Sun are eliminated in a neighbourhood of Jupiter
and, vice versa, the perturbations caused by Jupiter are eliminated outside that
neighbourhood. As should be expected, the essence of the capture phenomenon
proves to be connected with the presence of the so-called hyperbolic (Perron)
subset in the phase space. In this situation methods of symbolic dynamics and, in
particular, Professor V. M. Alexeyev's method of itinerary schemes, sometimes
called the method of vertical and horizontal strips, turned out to be applicable.
The existence of a hyperbolic set is a stable phenomenon (it should be emphasized
that, on the contrary, the trajectories constituting this set are highly unstable). So
it is natural to study the restricted problem by approximating it with the above-
mentioned idealized problem. The main difficulty we encountered was the choice
of the size of the neighbourhood of Jupiter. For a long time it seemed to us that
there existed a 'blank space', namely, a ring e / i I < r < V 5 around Jupiter within
which one cannot restrict oneself to a single body, either to the Sun or to Jupiter,
when considering the variational equations. The idea of the regularization 'in terms
of first integrals' presented in this paper made it possible to clarify this delusion
by extending the sphere of Kepler's asymptotics from ^ to /x1. This enabled us
to achieve our aim. The proof of the existence of a capture in the restricted
three-body problem based on the consideration of orbits with close passage is being
prepared for publication. An example of such a capture is given by an orbit which
in the past is hyperbolic and in the future is asymptotically approaching a periodic
orbit of the second species in Poincare's classification.

The content of this paper is the result of joint work done by Professor V. M.
Alexeyev and myself. Professor Alexeyev had intended to take upon himself the
entire task of presenting the results, however he only had time to write the
introductory part. The rest of the presentation is mine. A number of imperfections
in the presentation of the material have been corrected by A. I. Grunthal who, as
well as myself, has studied under Professor V. M. Alexeyev. YU. S. OSIPOV
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