Can. J. Math., Vol. XXV, No. 3, 1972, pp. 465-476

PROJECTIVE HOMOTOPY CLASSES
OF STIEFEL MANIFOLDS

JOSEPH STRUTT

1. Introduction. Given a homotopy class [f] in 7,(X), we say that [f] is
projective if and only if there is a homotopy commutative factorization

s—J x5

NoA

where v is the standard double covering. We then denote by m,™®!(X) the
subset of projective homotopy classes in , (X ).

The notion of projective homotopy classes was studied in the author’s
thesis [5], and the projective homotopy classes for spheres in the stable range,
up through the 3-stem were calculated in [6]. The purpose of the present
paper is to prove the following result:

1.1 THEOREM. m/F™)(X) = m:(X) for X equal to the Stiefel manifolds V3
and Vi 4.

The interest in projective homotopy classes of Stiefel manifolds arises from
a problem concerning vector fields on spheres, studied by Zvengrowski [7].
In particular, he asks the following question: Is every r-field on S*~! homotopic
to a skew linear r-field? An r-field on S$"! is defined to be a set of r-vector
vector fields on S*~! which are orthonormal at every point. This can be regarded
as a cross section of the fibration

Vn—l.T — Va,r1 — 571

and one can then consider homotopy classes of 7-fields. An r-field is said to be
skew linear if and only if it is equivariant with respect to the obvious Z;
action on V, ;11 and S*L

In [7] Zvengrowski shows that for » £ 5, every r-field is homotopic to a
skew-linear r-field. The first part of the proof makes use of a homotopy
classification of r-fields on S"~!; the homotopy classes of 7-fields are in one-one
correspondence with (# — 1)-dimensional homotopy classes of the fibre
mne1(Va-1,-). In the parallelizable case, i.e., when n = 2,4, or 8, the skew linear
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r-fields are in one-one correspondence with the projective classes 7,1 (V,—1,7).
Therefore one wants to know that

Tn—lproj(Vn—l,T) = Tn—l(V—l,r)

when#n = 2,4, or 8 Most of the arguments are elementary and are given in [7].
The concern of this paper is to handle the two non-trivial cases m7(V7,3) and
™7 ( V7’4) .

2. Construction of Postnikov systems. The principal tool in studying
projective homotopy classes is the mod 2 Postnikov system for the space in
question. We will first construct a Postnikov system for 177 ;. Recall (cf. [4])
that H*(V,x; Z:) is the algebra over the Steenrod algebra generated by
H*(RPrZ4-1; Z5) and subject to the relation S¢i[j] = C; (¢ + j] (including
[7]2 = [24]), where [j] denotes the generator of HI(RP'Z;_1; Zs) (see Figure

2.1).
n Generator of H" (V7 3; Zs)
4 [4]
5 [5]
6 (6]
7 c.
8 R
9 (4] [5]

Figure 2.1

Since H*(V7,3; Z») has [4] and [5] as generators over the Steenrod algebra,
to construct a Postnikov system, we begin with the map

(4] X [6]: V13— K(Z,4) X K(Z,,5).

It is clear that this map induces an isomorphism on 74(—). If we construct a
space X; by killing the class S¢%, ® 1 in H*(K(Z,4) X K(Z, 5); Z>), the
map [4] X [5] will lift to X5 and the lifting will satisfy the hypotheses of the
% , approximation theorem (see [1, p. 100]):

X5

| .

Vin T K(Z,4) X K70, 5) —25B L, k(2 0).
Therefore the lifting will induce a %, isomorphism on m5(—). (%, denotes
the Serre class of abelian torsion groups of finite exponent such that the order
of every element is prime to p.)

The cohomology of X ; is computed in Table 1 using the Serre exact sequence.
The symbol “Sg® ?’ in the table denotes Sg’Sq’. The arrows indicate trans-
gression from the cohomology of the fibre to the cohomology of the base. The
Greek letters denote classes which pull back to the appropriate Sq’Sq¢? of the
fundamental class of the fibre. For example, «(2) in H* (X 5; Z,) pulls back to
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TABLE 1
H*(K(Z,4) X H*(K(Z,, 6) X
n K (Z,, b)) H*(K(Z,, 5)) - H*(X5) K(Z., 6)) H*(X6)
4 24 ® 1 Q@1 W®1
5 1® 45 ‘s 1® s 1Q s
6 SE® 1% Sqts 5® 1
1Q® Sqlis 1Q® Sglis 1Q 4 1® Sglis
i -
7 Sg3'l:4 [ 1‘/ Sq2'i5 10 V Sql'l:s ® 1
1Q® Sg¥is a(2) 1Q® Sq'zs
8 Q1 S¢is Q@1 S¢is Q@ 1 12Q 1
B@3)
1Q® Sgdis Sq?1z5 1Q® Sg¥s -1 Q® Sg, 1 ® Sg2lig
')’(2' 1)
1® Sgttis 1Q® Sg?is ¥(2,1)
9 1® Sqs Sq*is 1® Sg‘is/
1® Sg*lis Sq®is 1Q Sgdlis
24 Q 15 24 Q 15 8(3, 1)
etc. etc.
I'4
10 S¢i?i, @ 1
etc.

Sq%is in H* (K (Z3, 5); Z»); v(2, 1) pulls back to S¢*>'7s. In dimensions through
eight, at least, we are in the range of Serre’s exact sequence, and transgression
is defined on all elements in the cohomology of the fibre.

The succeeding stages of the Postnikov system are constructed by deciding

which class or classes must be killed in order that the hypotheses of the%,
approximation theorem be satisfied at the next stage (see Table 1). The
Postnikov system we then get is displayed in Figure 2.2.

K(Z,7) X KZy,7) X K(Z4,7) - X1

!

K (Zy,6) X K(Z2,6) > Xs— K(Z,8) X K(Zs,8) X K(Z4, 8)

!

K(Zs,5) — X5 — K(Zs,7) X K(Zs,7)

!

K(Z,4) X K(Z,,5) — K(Z,, 6)

Figure 2.2
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The Postnikov invariants are S¢%, ® 1, (1 ® S¢>%;) X «(2), and
(@2 ®1) X (1 ®Sg>%;5) X 7(2, 1), in that order. (7(2, 1) denotes the image
of v(2,1) in H*(X4; Z,).) It is clear that the class 7,2 ® 1 in the cohomology
of X is the mod 2 reduction of an integral class. To see that 1 ® Sg?'%i; and
(2, 1) are both reductions of Z, classes but not Zs classes, we need certain
information about the squaring operations in H*(X5; Z5).

2.1 LEMMA. T'he classes a(2),v(2, 1), and 6(3, 1) in H*(Xs; Z,) can be chosen
so that Sg® «(2) = 6(3,1) and Sq*v(2,1) = 5(3, 1).

Proof. (3, 1) is any class which pulls back to S¢3S¢'s, so by the Adem
relation, S¢2S¢? = S¢3S¢', it is clear that the two equalities hold modulo the
image of p*, where p is the fibre map. To show that these classes can be chosen
so that strict equality holds, we use a naturality argument. We consider the
2-stage Postnikov system

X5

v Sq2’l:4

K(Z,4) — K(Z., 6).
The projection onto the first factor of K(Z,4) X K(Z,, 5) induces a map
from the first Postnikov system to the second:

X ____‘p__, X4

l l

K(Z,4) X K(Zy,5) — K(Z, 4).

It is clear that H*(Xs'; Z,) is identical to H*(X;; Z,) except that there are
no classes of the form 1 ® S¢’7s (see Table 1). In particular, the image of
p*is zero in H*(Xs'; Z,). Therefore we have that

S¢tv'(2,1) =6 (3,1) =S¢ &' (2)
in H*(Xs'; Z,). Then we simply choose a(2),v(2, 1), and 6(3, 1) in H*(X;; Z)
to be ¢*(@' (2)), ¥’ (2,1)), and ¢*(&' (3, 1)), respectively. The result now
follows by naturality.
We then use the well-known Bockstein lemma, whose proof is given in
(1, p. 106]:

2.2 LEMMA. Let p: E — B be a Serre fibration with fibre F. Let d; denote the ith
Bockstein homomorphism and let v denote the inclusion of the fibre into the total
space. Suppose that a class u in H"(F; Zy) tramsgresses to dp for some v in
H"(B; Zy). Then d i 1p* (v) is defined in H''(E; Zs) and r* (d1p™* (v)) = dyu.

We apply this to the fibration K (Z,, 6) X K(Z,, 6) — X¢ — X5, taking u
to be Sg%s ® 1, v to be 1 ® S¢?'4s, and 7 to be 1. Then ds(1 ® Sg*'i;) is
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defined and non-zero in H*(X¢; Z;). We then use the fact that a class w is the
mod 2 reduction of a Zy class but not a Zs + 1 class if and only if dyw is
defined and non-zero. Similarly for ¥(2, 1), we take « to be 1 ® Sq2, v to be
v(2,1), and 7 to be 1. We note that # = 1 ®.S¢% transgresses to Sq%x(2),
which by Lemma 2.1 is precisely 6 (3, 1),and §(3, 1) = dyy (2, 1).

We can therefore conclude that d»y(2,1) is defined and non-zero in
H*(Xe; Z5). This finishes the argument that 1 ® S¢2''4s and (2, 1) are
reductions of Z, but not Zs classes.

It can now be verified that the map

[4] X [5): Va3 > K(Z, 4) X K(Z,5)

lifts to each X and that each lifting V7 ; — X; induces a %, isomorphism
onmi(—), 1=k

According to the calculations of Paechter [2], 7,(V73) is 2-primary except
in dimension 7, where 77 (V7 3) = Z 4+ Z4 + Z1s. Therefore the lifting V7 ;3 — Xy
induces an isomorphism on 7;(—) for ¢ < 7 and an epimorphism for 7 = 7. For
any CW complex K, this implies that the induced map [K, V7 ;] — [K, X4]
is bijective if dim K < 7 and surjective if dim K = 7 (see [3, Corollary
7.6.23]). In particular, [RP?, V3] — [RP7?, X4] is surjective, so

7T7PI’0](V7'3) — 7r7Pt0](X7)
is also surjective. Therefore m;*™!(X7) is equal to the 2-primary component
of " (V1,3).
Next we construct a Postnikov system for V7 4. The Z, cohomology of V7,4
is given in Figure 2.3.

n Generator of H*(V7.4; Z5)
3 (3]

4 [4]

5 [5]

6 (6] = ([3])*

7 [3] [4]

8 (3] [5]

9 [3] [6] = ([3])3 [4] [5]

Figure 2.3
We begin with the map

[3]. V7,4 g K(Zz, 3),

which induces an isomorphism on m3(—). To construct the next stage, Vs,
the class Sq¢2Sq¢'i; in H* (K (Zs, 3); Z,) must be killed. The cohomology of Y5
is computed in Table 2. We note that we are not in the range of Serre’s exact
sequence; in particular, there is 73 ® %5 in H3(B; H*(F)) which could be hit
by Sq%s. However, i5 transgresses to Sq*'i;, so Sq%; transgresses to Sg%?%1i;
which is 0 by the Adem relations. In particular, S¢?¢s survives. Furthermore,
13 ® 15 will hit 73 ® Sq¢*'23, adding nothing new to H3(Y;, Z2). Therefore, the
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TABLE 2
n H*(K(Zs, 3)) H*(K(Z5)) H*(Ys) H*(K(Z6))  H*(Y)
3 3 3 13
4 Sql’ia Sql‘is Sqlis
5 quis 5 quis Sg2i3
6 g Sqtis i3 16 3
Sy
7 135q4s / Sq¥is igSqlf/ Sqli 135q4s
Sqi a(2) -
8 'isquis Sqais isS_qzi:; qu’is iasgzis
(Sgti? Sgeis (Sgtis? (Sgtisy?
B(3)
v(2,1) 72, 1)
9 (Sqt4s) (Sg?is) Sgtis (Sq'43) (Sg*i) Sg¥is
133, 135¢%13 Sgéles 158, 135143 Sq*lig
Sg*%; Sgt%5 8(3, 1)
etc. etc.
X
10 Sgt2ilig
etc.

fact that we are not in the range of Serre’s exact sequence does not complicate
matters, at least through dimension eight.

As before, the succeeding stages are constructed by deciding which classes
must be killed in order that the hypotheses of the %, approximation theorem
be satisfied. The Postnikov system for V7 4 is shown in Figure 2.4.

K(Zy 7) X K(Z4y 7) _)Y7
l
K(Z2 6) > Ys—> K(Z,8) X K(Z4,8)
l
K(Zs 5) > Ys— K (Z2,7)
!
K (Z,,3) — K(Z,, 6)
Figure 2.4

The Postnikov invariants are S¢2Sq'is;, «(2), and (Sg'3)? X ¥(2, 1), in that
order.
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It follows from the universal coefficient theorem that Sql7; is the mod 2
reduction of an integral class, so the same is true for (S¢'i3)%. To show that
(2, 1) is the mod 2 reduction of a Z, class and not a Zg class, we need the
following fact, analogous to Lemma, 2.1:

2.3 LEMMA. The classes a(2),v(2, 1), and 6(3, 1) in H*(Ys; Zs) can be chosen
such that Sq*a(2) = 6(3, 1) and Sqg'v(2,1) = 6(3, 1).

Proof. The projection V74— Vz 3 (dropping the last row of a 4 X 7 matrix)
induces a map between the mod 2 Postnikov systems. Letting ¢: Vs — X5
denote the map induced on the fifth stage, it is easy to show that we can take
the «(2) in H*(Y5; Zs) to be ¢*(a(2)), and similarly for v(2, 1) and §(3, 1).
The conclusion now follows from Lemma 2.1.

We can now apply the Bockstein lemma to show that dyy (2, 1) is defined and
non-zero in H*(Vg; Z;). This implies that (2, 1) is the reduction of a Z4 class
but not a Zs class.

The calculations of Paechter [2] show that 7;(V74) is only 2-primary for
1 = 7, so the lifting V74 — Y7 induces an isomorphism on 7;(—) for 1 £ 7
and an epimorphism for 2 = 8 (note that m3(¥7) = 0). From this we can
conclude that m*™I(1/; 4) is isomorphic to 773 (Y7).

3. Computation of =¥ (X). Several propositions will lead to the proof
of Theorem 1.1. The first result is that the sums of certain projective classes
are again projective (Proposition 3.2). This will follow from the fact that each
fibration in the Postnikov system is principal:

3.1 LEmMA. Let (H, ¢) be an H-space acting on the left of a space (X, xo). Suppose
that there is o map r:H — X preserving base points such that the following
diagrams are homotopy commultative:

HxH—Y s p XS xx—S 3 HxXX
d Xr r id M1
M
HXX———X X

where M 1is the multiplication of H and M, is the action of H on X. Let n > 1,
fiS*—>X,¢:S">H,g =rog:S"— X. Then we have that

[f]1+ [g] = [Mio (f X g') 0 A]
in m,(X).

This lemma generalizes a familiar result on H-spaces and is proved in [7].

3.2 ProroSITION. Let F — E — B be a principal fibration with fibre map p and
inclusion map r. Let [f], [g] € 7T (E) such that [g] factors as a projective class
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through the fibre; t.e., there is a [g'] € mF™ (F) such that [g] = [rog']. Then
[f]+ [g] € m H(E).

Proof. By definition there are maps f': RP" — E and g"/: RP" — F such that
f~f"ov and g’ =~ g"” o». Since the fibration is principal, F is an H-space
acting on the left of E in such a way that the hypotheses of Lemma 3.1 are
satisfied. Therefore

[f1+ [g] = [Mio (f X g')oA]
= [Myo (f'ov X g’ ov)o A]
= [Mio (f X g')o Aoy,

and this is clearly projective.

3.3 ProPOSITION. Let X be an (n — 1) connected space where n is odd. Then
mreN(X) = 2-m,(X).

Proof. Since X is (n — 1) connected, any map RP*— X factors (up to
homotopy) through RP"/RP"!, Thus S* — X is projective if and only if it
factors as

S* — RP* — RP"/RP" 1>~ 5" - X.
Since S® — RP" — 5" has degree 2 when 7 is odd, the conclusion now follows.

We now prove several results that are more technical. The symbols f;, fs,
and f; will denote the classes 22 ® 1, 1 ® S¢>''25, and (2, 1), respectively,
in the cohomology of X, with the appropriate coefficients (see Figure 2.2).
Similarly, the symbols {; and [, will denote the classes (Sq';)? and (2, 1) in
the cohomology of ¥ (see Figure 2.4).

3.4 PROPOSITION. Let g:RP" — X be any map (Figure 2.2) and let g’ denote
the unique extension of g to RP® (since 17(Xs) = 73(Xs) = 0, @ unique extension
extsts by the Puppe sequence). Then there is a lifting f: RP™T — X1 of g satisfying
[fov] = (a1, as a3) inm(X7) = Z + Zy+ Zs, wherea; = 0if g’*(f;) = 0and
a;is odd if g* (%) # 0,2 =1,2,3.

Similarly, let g: RP" — Y (Figure 2.4) and let g’ denote its unique extension
to RP8. Then there is a lifting f:RP" — Yq of g satisfying [fov] = (b1, bs) 1n
m(Ye) = Z + Zs, where b, =0 if ¢g*({(;,) =0 and b, is odd if g'*({;) = 0,
i=1,2

Proof. We shall prove only the first statement since the proof of the second
is identical. We construct the space X7 from X¢ by first killing those f;'s whose
images under g’* are zero (call the resulting space X;) and then killing (the
images of ) the remaining f;’s in X+'. It is easy to see that this gives the same
space as the one obtained by killing all of the f,’s at the same time. The lifting
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of f isnow gotten simply by lifting g’ to X+, thenrestricting thislifting to RP7,
and finally lifting the restriction to Xy (see Figure 3.1):

Tv
f X
RP7 C > RPs8 £ X

Figure 3.1

By construction, ' of has an extension to RP$, where p’ is the fibre map
X7 — X7. Therefore p’ o f o v is null homotopic by the Puppe sequence. This
says precisely that a; = 0 for those 7's satisfying g’* (f;) = 0.

Now assume g'* (£;) 5 0 for some 7. We may consider f; as a Z; class since
g’ (£,) # 0if and only if g’* of the mod 2 reduction of f; is non-zero. We now
construct a space Wy by killing only ¥;, and killing this as a Z; class rather
than as a Z or Z, class:

K(Z,7) —> Wy
l
Xo— K(Zs,8)

where X¢ — K (Z,, 8) represents the mod 2 reduction of f;. By naturality of
induced fibrations, there is a map ¢: X7 — Wy such that the induced map on
m(—) sends (a1, @z, a3) in Z+ Z,+ Z, to the mod 2 reduction of a; If
[fov] = (a1, as, as), then a; is odd if and only if [¢ o fo»] is non-zero. The
Puppe sequence says that [¢ o f o »] is non-zero if and only if ¢ 0 f is not extend-
able to RP8. But g’* (f;) with ; considered as a Z, class is precisely the obstruc-
tion to lifting g’ to W4 Any extension of ¢ of to RP?® would constitute a
lifting of ¢, so the condition g’* (f;) 5 0implies that ¢ o f has no such extension.
Therefore [¢ o f 0 v] is non-zero, or a; is odd.

3.5 PROPOSITION. Let h':RP® — K(Z,4) X K(Z3, 5) be any map (Figure 2.2).
Then there are liftings hy', he':RP® — X5 of b’ such that hy/*(x(2,1)) = 0 and
ha'*(y(2,1)) # 0.

An identical result holds for any map #':RP8 — K (Z,, 3) (Figure 2.4).

Proof. Since H* (RP8; Zy) = Z,[u]/ ("), the only possible obstruction to
lifting %’ is Sq?u*, which is zero. So A’ lifts to a map g/, say. We construct
another lifting, g/, by using the action of the fibre on the total space to ‘‘add”
g1/ to the map #5:RP® — K (Z,, 5) (compare Lemma 3.1). The sum is repre-
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sented by [M;o0 (#® X gi') o A], and it is clearly a lifting of 4. By the com-
mutativity of the diagram

M
K(Z3, 5) X K(Zs,5) — K(Z,, 5)

ierl M, lr
K(Z2,5)><X5 —_')X()

where M is the H-space multiplication and M is the action of the fibre on Xs.
we get that

M*(2,1)) =1 @72, 1) + S¢*'; @1
(recall that 7*(y(2, 1)) = Sq¢?%;s). This implies that
2y (2, 1)) = Sg>'us + g"™*(v(2, 1)).

Since S¢?'u; is non-zero, it follows that if g/*(y(2,1)) =0, then
g2/*(y(2,1)) # 0, and vice-versa. Therefore &/ and %y’ can be chosen from
gl/ and gz’.

3.6 PROPOSITION. Given any map g:RP" — X5 or Vs, then g*(«(2)) = 0.

Proof. We extend g to g':RP® — X; or Y5 and note that g*(@(2)) = 0 if
and only if g*(«(2)) = 0. Supposing to the contrary that g’* (@ (2)) = u7, we
have by Lemmas 2.1 and 2.3 that

u® = Sg*g* (@(2)) = ¢*(6(3, 1)) = Sg'g”* (2, 1)).

But S¢'g’*(v(2,1)) must be zero since g’*(y(2,1)) is in dimension eight.
Therefore g*(«(2)) = 0.

Proof of Theorem 1.1. We begin with X = V7 5. The object is to constructeight
types of projective classes, namely classes of the form (g, b, ¢) in m(X7) =
Z + Z4 + Zywhere each one of the a, b, and ¢ is specified to be either zero or an
odd number. Since the fibrations in the Postnikov system are principal, we
can then add to these any projective class of X7 which is the image of a pro-
jective class of the fibre, and the sum is again projective (Proposition 3.2).
By Proposition 3.3 the images of the projective classes of the fibre are precisely
those (a, b, ¢) in Z + Z4 + Z; where each of a, b, and ¢ is even. So by adding
such classes, any element of 77(X7) can be realized as a projective class.

To construct the eight types of projective classes described above, we first
consider the composition

h J
RP'" > K(Z,4) - K(Z,4) X K(Z,,5)

where & is non-trivial (note that [RP?, K(Z,4)] = H*(RP";Z) = Z,) and j
is the inclusion into the first factor. It follows from Proposition 3.5 that there
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are liftings #; and hy of joh to X5 such that A/*((2,1)) =0 and
ho'*(y(2,1)) £ 0 (2 denotes the unique extension of #; to RP?). By Proposi-
tion 3.6, #; and %, can be lifted to Xs; we denote the liftings by g; and g,
respectively. It follows that g/*(42 ® 1) # 0 and g/*(1 ® Sq¢*>;5) = 0 for
i=1,2 and g/*%(2,1)) = 0 or 8 in H¥*(RP8; Z,) according as 7 = 1 or 2.
Therefore, by Proposition 3.4 there are liftings f; of g; to X which satisfy
[fio»] = (odd, 0,0) and [f:0v] = (odd, 0, odd).
Next we consider the composition

5
u k
RP'— K (Zs, 5) > K(Z,4) X K(Zs,5)
where & is the inclusion into the second factor. Following the same procedure,
we obtain liftings f5 and fs to X7 which satisfy [fsov] = (0, odd, 0) and
[feor] = (0, odd, odd).
Next we consider the map

h X u:RP"— K(Z,4) X K(Z,,5)

where % is non-trivial. Then & X %5 has liftings f; and fs to X7 such that
[fso»] = (odd, odd, 0) and [fs0 »] = (odd, odd, odd).
Finally, we consider the composition

5
u
RP"— K(Z,, 5) — Xs.

This lifts to X7 (the obstruction is Sq¢?u5 = 0) and since its extension to RP3
pulls the class v (2, 1) back to u?, the lifting f7 can be chosen so that it satisfies
[frov] = (0,0, odd).

The maps f;ov,72 = 1,...,7, together with the trivial map yield the eight
types of projective homotopy classes we require. We therefore conclude that
N (X ) = mi(X).

This shows that only the 2-primary part of V7 ; is projective. To show that
all of w7 (V23) = Z + Z4s+ Z12 is projective (including the 3-primary part
and sums of 3-primary classes with 2-primary classes), we consider a Postnikov
system for V73 (not mod 2). The last stage will look like

KZA+Zi+Zi+ Z3) > Wy
A
We

Since 2-Z3; = Z3, any class in the 3-primary part comes from a projective class
of the fibre. By Proposition 3.2 these classes add projectively to other pro-
jective classes, and so 75 (V73) = w7(Va73).

We now prove Theorem 1.1 for X = V5 4. Again, the object is to construct
projective classes (e, b) in m;(Yy) = Z + Z, where both ¢ and b are specified
to be either zero or an odd number. Then it will follow from Propositions 3.2
and 3.3 that 7m7(Y7) consists entirely of projective classes.
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First, we consider the map
u3:RP" — K (Z,, 3).

By Proposition 3.5, #? has liftings &y and ks to ¥ which satisfy 2,/* (v (2, 1)) = 0
and #2'* (v (2, 1)) # 0. We can then lift 4, and %5 to ¥, and by Proposition 3.4
these maps will have liftings f; and f, to Y7 which will satisfy [f1 0 »] = (odd, 0)
and [fs0v] = (odd, odd).

Secondly, we consider the composition

5
u

RP" 5K (Zy,5) — Vs

which lifts to ¥; (the obstruction is Sq?xz® = 0). Since the extension of this
composition to RP?® pulls the classvy (2, 1) back to u?, the lifting f; can be chosen
so that [f;0»] = (0, odd).

The maps f; 0,4 = 1, 2, 3, together with the trivial map give the four types
of projective classes specified above. We conclude that 71 (Y;) = m(¥V4),
and since 77 (V7,4) is only 2-primary, it follows that 7:¥™3 (V7,4) = m1(V7.4).
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