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SYSTEMS WITH FAILURE-DEPENDENT
LIFETIMES OF COMPONENTS

M. BURKSCHAT,∗ Otto-von-Guericke University Magdeburg

Abstract

A model for describing the lifetimes of coherent systems, where the failures of components
may have an impact on the lifetimes of the remaining components, is proposed. The model
is motivated by the definition of sequential order statistics (cf. Kamps (1995)). Sequential
order statistics describe the successive failure times in a sequential k-out-of-n system,
where the distribution of the remaining components’ lifetimes is allowed to change after
every failure of a component. In the present paper, general component lifetimes which can
be influenced by failures are considered. The ordered failure times of these components
can be used to extend the concept of sequential order statistics. In particular, a definition
of sequential order statistics based on exchangeable components is proposed. By utilizing
the system signature (cf. Samaniego (2007)), the distribution of the lifetime of a coherent
system with failure-dependent exchangeable component lifetimes is shown to be given
by a mixture of the distributions of sequential order statistics. Furthermore, some results
on the joint distribution of sequential order statistics based on exchangeable components
are given.

Keywords: Coherent system; k-out-of-n system; sequential order statistics; exchangeable
lifetimes; signature
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1. Introduction

In reliability theory, the notion of a coherent system is of great importance for modeling
technical systems. Let X1, . . . , Xn denote the lifetimes of the components in a coherent system.
Then, the lifetime of the system is given by the random variable T = φ(X1, . . . , Xn), where
φ denotes a coherent life function which describes the structure of the system (cf. Barlow and
Proschan (1975, p. 12) or Esary and Marshall (1970)). In many situations, the distribution of
the system lifetime T can be conveniently expressed in terms of the signature of the system (see
Samaniego (2007)). Then, the distribution of T is a mixture of the marginal distributions of the
ordered failure times X1:n, . . . , Xn:n of the components, where the weights of this mixture are
given by the system signature. The concept of the signature has been introduced for independent
and identically distributed (i.i.d.) component lifetimes (see Samaniego (1985)) and extended
to exchangeable components (see Kochar et al. (1999), Navarro et al. (2005), Navarro and
Eryilmaz (2007), and Navarro et al. (2008c)). Further references for various properties of the
Samaniego signature, related concepts, and applications are, for instance, Boland et al. (2003),
Boland and Samaniego (2004b), Navarro and Shaked (2006), Khaledi and Shaked (2007),
Navarro and Eryilmaz (2007), Navarro et al. (2007a), (2007b), (2008a), (2008b), and Navarro
and Hernandez (2008).
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In this paper, a general model for describing the lifetimes of coherent systems, where the
failures of components may have an impact on the lifetimes of remaining components, is given.
Such a model is adequate if failures lead to an increased stress on surviving units or even cause
damages to them. In order to describe these situations, in Kamps (1995) a corresponding model
was introduced for k-out-of-n systems with i.i.d. component lifetimes. A k-out-of-n : F system
is a particular coherent system consisting of n components that fails if and only if at least
k of the components fail. If the components’ lifetimes are described by the random variables
X1, . . . , Xn, then the lifetime of such a system is given by the kth order statistic Xk:n. In order to
take into account possible effects on component lifetimes after failures, Kamps (1995) defined
a generalization of (ordinary) order statistics of i.i.d. random variables, the sequential order
statistics. The model of sequential order statistics serves to describe the successive failure times
in a sequential k-out-of-n system, where the distribution of the remaining components’ lifetimes
is allowed to change after every failure of a component. More details about this model can
be found in Kamps (1995), Cramer and Kamps (2001b), and Cramer (2006b). Further aspects
of sequential order statistics have been studied, for instance, in Cramer and Kamps (1996),
(1998), Cramer (2001), Cramer and Kamps (2001a), (2001b), (2003), Beutner et al. (2007),
Revathy and Chandrasekar (2007), Zhuang and Hu (2007), Balakrishnan et al. (2008), and
Beutner (2008).

The general model treated in this paper will yield an extension of sequential order statistics in
two directions. First, the concept of sequential order statistics can be extended to exchangeable
random variables, that is, the i.i.d. assumption in sequential k-out-of-n systems is weakened.
Moreover, the underlying idea is considered not only for the restricted setting of k-out-of-n
systems, but it is also transferred to more general coherent systems. In fact, the presented
approach in principal applies to coherent systems with non-independent and not identically
distributed components.

The paper is organized as follows. In Section 2, a model for a system with component
lifetimes which can be influenced by failures is defined. The relation between these failure-
dependent component lifetimes and the successive failure times in the system is given. Given
an additional exchangeability assumption, we propose to use the ordered failure times in the
model to extend the definition of sequential order statistics to exchangeable components. In
Section 3, the lifetime of a system with failure-dependent components is considered. In
particular, the approach of using sequential order statistics for describing the lifetime of a
k-out-of-n system with failure-dependent component lifetimes is transferred to lifetimes of
general coherent systems. This is done by deriving a signature-based representation of the
distribution of the system lifetime in terms of the distributions of sequential order statistics.
Finally, in Section 4, some results on the distribution theory of sequential order statistics based
on exchangeable components are given. A particular case of an exchangeable distribution
resulting from mixing conditional i.i.d. exponential distributed random variables is studied in
detail. The section closes with some illustrative examples.

2. Ordered failure times of components

In this section a general scheme of describing the successive failure times of components
in a system is derived. After every failure, the lifetimes of the remaining components can be
modified. To illustrate this idea, we consider the following example.

Example 2.1. Let X
(1)∗ and X

(2)∗ denote the first and the second failure times, respectively, of
the components in a two-component parallel system. In particular, X

(2)∗ denotes the lifetime of
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the complete system. At first, the lifetimes of the two components in the system are assumed
to be given by

Y
(1)
1 = X1

α1V
, Y

(1)
2 = X2

α1V
, with α1 > 0, (2.1)

where X1 and X2 are independent random variables that follow a standard exponential distri-
bution with mean 1, and V is a random variable independent of (X1, X2) which is distributed
according to a gamma distribution with shape parameter a > 0 and scale parameter b > 0.

Here the random variables X1/α1 and X2/α1 can be interpreted as the single lifetimes
of two identical components. The random variable V represents a random influence on
the two components caused by the usage in the system. Related models of components
sharing a common environment have been considered in, e.g. Lindley and Singpurwalla (1986),
Garren and Richards (1998), and Gupta (2002). Observe that the resulting lifetimes Y

(1)
1 and

Y
(1)
2 are exchangeable, that is, the distributions of (Y

(1)
1 , Y

(1)
2 ) and (Y

(1)
2 , Y

(1)
1 ) are identical.

Furthermore, for reasons of identifiability, we can assume without loss of generality thatb = 1/a

for the parameter of the gamma distribution (and, therefore, E(V ) = 1). Due to the assumptions,
we obtain the following joint survival function of (Y

(1)
1 , Y

(1)
2 ):

P(Y
(1)
1 > y1, Y

(1)
2 > y2) =

∫ ∞

0
exp[−α1v(y1 + y2)] (av)a−1

�(a)
e−av dv

=
(

1 + α1(y1 + y2)

a

)−a

, y1, y2 > 0.

Then, the distribution of the first failure time X
(1)∗ in the system is given by (x > 0)

P(X(1)∗ ≤ x) = P(Y
(1)
1:2 ≤ x) = 1 − P(Y

(1)
1 > x, Y

(1)
2 > x) = 1 −

(
1 + 2α1x

a

)−a

.

In particular, we obtain the corresponding density function

f X
(1)∗ (x) = 2α1

(
1 + 2α1x

a

)−(a+1)

, x > 0. (2.2)

After the failure of the first component, it is assumed that the surviving component is exposed
to a higher load. This is reflected by replacing the parameter α1 in (2.1) with a (typically larger)
parameter α2, which leads to the new model

Y
(2)
1 = X1

α2V
, Y

(2)
2 = X2

α2V
, with α2 > 0.

The (conditional) distribution of the second failure time X
(2)∗ is now defined via the conditional

distribution of the order statistics Y
(2)
1:2 and Y

(2)
2:2 of the new random variables Y

(2)
1 and Y

(2)
2 :

P(X(2)∗ ≤ x2 | X(1)∗ = x1) = P(Y
(2)
2:2 ≤ x2 | Y

(2)
1:2 = x1)

=
∫ x2

0
f Y

(2)
2:2 | Y (2)

1:2 (z | x1) dz, x1 ≤ x2.

We obtain the representation

f X
(2)∗ | X(1)∗ (x2 | x1) = f Y

(2)
2:2 | Y (2)

1:2 (x2 | x1)

= α2
a + 1

a

(1 + α2(x1 + x2)/a)−(a+2)

(1 + α2x1/a)−(a+1)
, x1 ≤ x2, (2.3)
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because of

f Y
(2)
1:2 ,Y

(2)
2:2 (x1, x2) = 2a(a + 1)

(
α2

a

)2(
1 + α2(x1 + x2)

a

)−(a+2)

, x1 ≤ x2,

f Y
(2)
1:2 (x1) = 2α2

(
1 + 2α2x1

a

)−(a+1)

, x1 > 0.

Consequently, the joint density of the two failure times in the 2-out-of-2 system is given by
(see (2.2) and (2.3))

f X
(1)∗ ,X

(2)∗ (x1, x2) = f X
(1)∗ (x1)f

X
(2)∗ | X(1)∗ (x2 | x1)

= 2α1α2
a + 1

a

(
1 + 2α1x

a

)−(a+1)
(1 + α2(x1 + x2)/a)−(a+2)

(1 + 2α2x1/a)−(a+1)
, x1 ≤ x2.

By construction, in this model the influence of a loss of one component is taken into account by
switching to another distribution of the underlying component lifetimes after the first failure.

Now, the basic idea presented in the situation of Example 2.1 is developed in a more general
context. In the following, let n ∈ N and let (Y

(r)
1 , . . . , Y

(r)
n ), 1 ≤ r ≤ n, be random vectors

with values in R
n that satisfy the following conditions.

(A1) The random vectors (Y
(r)
1 , . . . , Y

(r)
n ), 1 ≤ r ≤ n, have the same support.

(A2) The random variables Y
(r)
1 , . . . , Y

(r)
n fulfill

P(Y
(r)
i = Y

(r)
j ) = 0, i, j ∈ {1, . . . , n}, i �= j,

for every r ∈ {1, . . . , n}.
Note that, for fixed r ∈ {1, . . . , n}, the entries of the random vector (Y

(r)
1 , . . . , Y

(r)
n ) need not

be independent. Moreover, in contrast to Example 2.1, the random variables Y
(r)
1 , . . . , Y

(r)
n

need not be necessarily exchangeable.
Furthermore, let Y

(r)
1:n, . . . , Y

(r)
n:n denote the order statistics of the random variables Y

(r)
1 , . . . ,

Y
(r)
n , 1 ≤ r ≤ n. For the given random variables Y

(r)
1 , . . . , Y

(r)
n , we consider the antiranks

I
(r)
1 , . . . , I

(r)
n :

I
(r)
j = l ⇐⇒ Y

(r)
j :n = ρj :n(Y (r)

1 , . . . , Y (r)
n ) = Y

(r)
l ,

where
ρj :n(y1, . . . , yn) = yj :n, y1, . . . , yn ∈ R,

and yj :n denotes the j th order statistic (i.e. the j th smallest value among the values y1, . . . , yn).
Now, we will specify a model for the distribution of successive failure times in a technical

system. At first, the distribution of new random vectors

(X
(r)
1 , . . . , X(r)

n ), 1 ≤ r ≤ n,

is defined in the following way. For j ∈ {1, . . . , n}, let

P(X
(j)
1 ≤ y1, . . . , X

(j)
n ≤ yn | X

(j−1)∗∗ = xj−1, I
(j−1)∗∗ = ij−1, . . . , X

(1)∗∗ = x1, I (1)∗∗ = i1)

= P(Y
(j)
1 ≤ y1, . . . , Y

(j)
n ≤ yn | Y

(j)
j−1:n = xj−1, I

(j)
j−1 = ij−1, . . . , Y

(j)
1:n = x1, I

(j)
1 = i1).
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(Interpretation. Conditioned on the past, X
(j)
1 , . . . , X

(j)
n describe the lifetimes of the compo-

nents in a system with n units before the j th failure has occurred, i.e. X(j)
1 describes component

1, X
(j)
2 describes component 2, and so on, if the components are labeled with the numbers

1, . . . , n. The conditional distribution of X
(j)
1 , . . . , X

(j)
n after the (j − 1)th and before the j th

failure is modeled with the conditional distribution of Y
(j)
1 , . . . , Y

(j)
n . Note that, due to the

conditioning on the past and assumption (A2), after the (j −1)th failure exactly j −1 variables
of X

(j)
1 , . . . , X

(j)
n are determined.) Here

X
(j)∗∗ := ρj :n(X(j)

1 , . . . , X
(j)
n ) = X

(j)
j :n

(that is, X
(j)∗∗ equals the j th failure time of a unit in the system) and

I
(j)∗∗ = l ⇐⇒ ρj :n(X(j)

1 , . . . , X
(j)
n ) = X

(j)
l

(that is, I (j)∗∗ equals the number of the j th failed unit, i.e. the failure time X
(j)∗∗ corresponds to the

component with number I
(j)∗∗ ). Note that, due to assumption (A2), the values of I

(1)∗∗ , . . . , I
(n)∗∗

are pairwise different and they coincide with the numbers 1, . . . , n.
The failure times associated to the different components in the system are finally given by the

random variables X
(n)
1 , . . . , X

(n)
n from the last stage of the above scheme, that is, X(n)

1 describes
the lifetime of component 1, X

(n)
2 describes the lifetime of component 2, and so on. Due to

their construction, we will call the random variables X
(n)
1 , . . . , X

(n)
n in the following failure-

dependent component lifetimes. By utilizing the definition of X
(n)
1 , . . . , X

(n)
n , it is clear that

the corresponding order statistics, X
(n)
1:n, . . . , X

(n)
n:n, coincide in distribution with the successive

failure times X
(1)∗∗ , . . . , X

(n)∗∗ (which have been introduced as particular order statistics in the
successive stages), that is, we get the following relation.

Lemma 2.1. Under assumptions (A1) and (A2),

(X
(n)
1:n, . . . , X

(n)
n:n) ∼ (X(1)∗∗ , . . . , X(n)∗∗ ).

By going through the lines of the previous stepwise construction we observe that the
distribution of X

(1)∗∗ , . . . , X
(n)∗∗ is determined by the conditional distributions

P(X
(j+1)∗∗ ≤ xj+1, I

(j+1)∗∗ = ij+1 | X(1)∗∗ = x1, I (1)∗∗ = i1, . . . , X
(j)∗∗ = xj , I

(j)∗∗ = ij )

= P(Y
(j+1)
j+1:n ≤ xj+1, I

(j+1)
j+1 = ij+1 | , Y

(j+1)
1:n = x1, I

(j+1)
1 = i1, . . . , Y

(j+1)
j :n = xj ,

I
(j+1)
j = ij )

and the initial distribution

P(X(1)∗∗ ≤ x1, I (1)∗∗ = i1) = P(Y
(1)
1:n ≤ x1, I

(1)
1 = i1).

Obviously, the random variables I
(1)∗∗ , . . . , I

(n)∗∗ may have a strong influence on the joint distri-
bution of X

(1)∗∗ , . . . , X
(n)∗∗ .

Similarly, we can define, on the basis of assumptions (A1) and (A2), further random variables
by neglecting the values of I

(1)∗∗ , . . . , I
(n)∗∗ . Let X

(1)∗◦ , . . . , X
(n)∗◦ have a joint distribution that is

specified by the conditional distributions

P(X
(j+1)∗◦ ≤ xj+1 | X(1)∗◦ = x1, . . . , X

(j)∗◦ = xj )

= P(Y
(j+1)
j+1:n ≤ xj+1 | Y

(j+1)
1:n = x1, . . . , Y

(j+1)
j :n = xj )
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and the initial distribution
P(X(1)∗◦ ≤ x1) = P(Y

(1)
1:n ≤ x1).

Whereas in the definition of X
(1)∗∗ , . . . , X

(n)∗∗ the ‘path’ of failed components is taken into
account, i.e. the number of every unit that has failed in the past appears in the condition of the
conditional distributions, in the definition of X

(1)∗◦ , . . . , X
(n)∗◦ this knowledge about the numbers

of failed components is not preserved. Therefore, the joint distributions of X
(1)∗∗ , . . . , X

(n)∗∗ and
X

(1)∗◦ , . . . , X
(n)∗◦ may be different if the components of the random vectors (Y

(r)
1 , . . . , Y

(r)
n ), 1 ≤

r ≤ n, are not identically distributed (see Example 2.2, below). However, the distributions
of both random vectors coincide in the important case where the following assumption is
satisfied.

(A3) The random variables Y
(r)
1 , . . . , Y

(r)
n are exchangeable for every r ∈ {1, . . . , n}.

To prove this result, the following lemma will be used. It can be regarded as a generalization
of a well-known result for usual order statistics.

Lemma 2.2. Under assumptions (A1), (A2), and (A3), the random vectors

(X(1)∗∗ , . . . , X(n)∗∗ ) and (I (1)∗∗ , . . . , I (n)∗∗ )

are independent, and

P(I (1)∗∗ = i1, . . . , I
(n)∗∗ = in) = 1

n! , (i1, . . . , in) ∈ �n,

where

�n := {(r1, . . . , rn) ∈ {1, . . . , n}n | ri �= rj for i, j ∈ {1, . . . , n}, i �= j}.
Proof. Recall that, due to properties of order statistics from exchangeable random variables

(see, e.g. Hájek et al. (1999, p. 37)), for every r ∈ {1, . . . , n}, the random vectors

(Y
(r)
1:n, . . . , Y (r)

n:n) and (I
(r)
1 , . . . , I (r)

n )

are independent, and

P(I
(r)
1 = i1, . . . , I

(r)
n = in) = 1

n! , (i1, . . . , in) ∈ �n.

Now, in order to prove the lemma, we consider the probabilities

P(X(1)∗∗ ≤ x1, . . . , X
(j)∗∗ ≤ xj , I (1)∗∗ = i1, . . . , I

(j)∗∗ = ij ), j ∈ {1, . . . , n},
and carry out an induction on j ∈ {1, . . . , n}. The case in which j = n proves the assertion.
For j = 1, we obtain

P(X(1)∗∗ ≤ x1, I (1)∗∗ = i1) = P(Y
(1)
1:n ≤ x1, I

(1)
1 = i1) = P(Y

(1)
1:n ≤ x1) P(I

(1)
1 = i1)

for every x1 ∈ R and i1 ∈ {1, . . . , n}. This yields

P(X(1)∗∗ ≤ x1, I (1)∗∗ = i1) = P(X(1)∗∗ ≤ x1) P(I (1)∗∗ = i1)
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for j = 1. Now, let the induction assumption hold for j ≥ 1 with j < n. Consider

P(X(1)∗∗ ≤ x1, . . . , X
(j+1)∗∗ ≤ xj+1, I (1)∗∗ = i1, . . . , I

(j+1)∗∗ = ij+1)

=
∫
×j

l=1(−∞,xl ]××j

l=1{il}
P(X

(j+1)∗∗ ≤ xj+1, I
(j+1)∗∗ = ij+1 | X(1)∗∗ = y1, . . . , X

(j)∗∗ = yj ,

I (1)∗∗ = k1, . . . , I
(j)∗∗ = kj )

× dP X
(1)∗∗ ,...,X

(j)∗∗ ,I
(1)∗∗ ,...,I

(j)∗∗ (y1, . . . , yj , k1, . . . , kj )

= (�).

Because, by definition,

P(X
(j+1)∗∗ ≤ xj+1, I

(j+1)∗∗ = ij+1 | X(1)∗∗ = y1, . . . , X
(j)∗∗ = yj , I (1)∗∗ = k1, . . . , I

(j)∗∗ = kj )

= P(ρj+1:n(X(j+1)
1 , . . . , X

(j+1)
n ) ≤ xj+1, ρj+1:n(X(j+1)

1 , . . . , X
(j+1)
n ) = X

(j+1)
ij+1

|
X(1)∗∗ = y1, . . . , X

(j)∗∗ = yj , I (1)∗∗ = k1, . . . , I
(j)∗∗ = kj )

= P(ρj+1:n(Y (j+1)
1 , . . . , Y

(j+1)
n ) ≤ xj+1, ρj+1:n(Y (j+1)

1 , . . . , Y
(j+1)
n ) = Y

(j+1)
ij+1

|
Y

(j+1)
1:n = y1, . . . , Y

(j+1)
j :n = yj , I

(j+1)
1 = k1, . . . , I

(j+1)
j = kj )

= P(Y
(j+1)
j+1:n ≤ xj+1, I

(j+1)
j+1 = ij+1 | Y

(j+1)
1:n = y1, . . . , Y

(j+1)
j :n = yj ,

I
(j+1)
1 = k1, . . . , I

(j+1)
j = kj ).

Since (Y
(j+1)
1:n , . . . , Y

(j+1)
n:n ) and (I

(j+1)
1 , . . . , I

(j+1)
n ) are independent, we obtain, for the last

expression,

P(Y
(j+1)
j+1:n ≤ xj+1, I

(j+1)
j+1 = ij+1 | Y

(j+1)
1:n = y1, . . . , Y

(j+1)
j :n = yj ,

I
(j+1)
1 = k1, . . . , I

(j+1)
j = kj )

= P(Y
(j+1)
j+1:n ≤ xj+1 | Y

(j+1)
1:n = y1, . . . , Y

(j+1)
j :n = yj )

× P(I
(j+1)
j+1 = ij+1 | I

(j+1)
1 = k1, . . . , I

(j+1)
j = kj ).

Consequently,

P(X
(j+1)∗∗ ≤ xj+1, I

(j+1)∗∗ = ij+1 | X(1)∗∗ = y1, . . . , X
(j)∗∗ = yj , I (1)∗∗ = k1, . . . , I

(j)∗∗ = kj )

= P(Y
(j+1)
j+1:n ≤ xj+1 | Y

(j+1)
1:n = y1, . . . , Y

(j+1)
j :n = yj )

× P(I
(j+1)
j+1 = ij+1 | I

(j+1)
1 = k1, . . . , I

(j+1)
j = kj ).

By either summing over ij+1 or letting xj+1 → ∞ and using the induction hypothesis, this
yields

P(X
(j+1)∗∗ ≤ xj+1, I

(j+1)∗∗ = ij+1 | X(1)∗∗ = y1, . . . , X
(j)∗∗ = yj , I (1)∗∗ = k1, . . . , I

(j)∗∗ = kj )

= P(X
(j+1)∗∗ ≤ xj+1 | X(1)∗∗ = y1, . . . , X

(j)∗∗ = yj )

× P(I
(j+1)∗∗ = ij+1 | I (1)∗∗ = k1, . . . , I

(j)∗∗ = kj ).
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Thus, by again utilizing the induction hypothesis,

(�) =
∫
×j

l=1(−∞,xl ]××j

l=1{il}
P(X

(j+1)∗∗ ≤ xj+1 | X(1)∗∗ = y1, . . . , X
(j)∗∗ = yj )

× P(I
(j+1)∗∗ = ij+1 | I (1)∗∗ = k1, . . . , I

(j)∗∗ = kj )

× d(PX
(1)∗∗ ,...,X

(j)∗∗ ⊗ PI
(1)∗∗ ,...,I

(j)∗∗ )(y1, . . . , yj , k1, . . . , kj )

=
∫
×j

l=1(−∞,xl ]
P(X

(j+1)∗∗ ≤ xj+1 | X(1)∗∗ = y1, . . . , X
(j)∗∗ = yj ) dP X

(1)∗∗ ,...,X
(j)∗∗ (y1, . . . , yj )

×
∫
×j

l=1{il}
P(I

(j+1)∗∗ = ij+1 | I (1)∗∗ = k1, . . . , I
(j)∗∗ = kj ) dP I

(1)∗∗ ,...,I
(j)∗∗ (k1, . . . , kj )

= P(X(1)∗∗ ≤ x1, . . . , X
(j+1)∗∗ ≤ xj+1) P(I (1)∗∗ = i1, . . . , I

(j+1)∗∗ = ij+1).

For determining the probabilities, consider

P(I (1)∗∗ = i1, . . . , I
(n)∗∗ = in) = P(I (1)∗∗ = i1)

n∏
j=2

P(I
(j)∗∗ = ij | I

(j−1)∗∗ = ij−1, . . . , I
(1)∗∗ = i1).

Because of

P(I
(j)∗∗ = ij | I

(j−1)∗∗ = ij−1, . . . , I
(1)∗∗ = i1) = P(I

(j)
j = ij | I

(j)
j−1 = ij−1, . . . , I

(j)
1 = i1),

the corresponding results for usual order statistics from exchangeable random variables can
now be applied. This completes the proof.

Now we show the announced equality in distribution of both random vectors under the
exchangeability assumption.

Theorem 2.1. Under assumptions (A1), (A2), and (A3),

(X(1)∗∗ , . . . , X(n)∗∗ ) ∼ (X(1)∗◦ , . . . , X(n)∗◦ ).

Proof. By definition we have

P(X(1)∗∗ ≤ x1) = P(Y
(1)
1:n ≤ x1) = P(X(1)∗◦ ≤ x1), x1 ∈ R.

Let (i1, . . . , in) ∈ �n. Then, we obtain, for r ∈ {1, . . . , n − 1},
P(X(r+1)∗∗ ≤ xr+1 | X(r)∗∗ = xr , . . . , X

(1)∗∗ = x1)

= P(X(r+1)∗∗ ≤ xr+1 | X(r)∗∗ = xr , I (r)∗∗ = ir , . . . , X
(1)∗∗ = x1, I (1)∗∗ = i1) (by Lemma 2.2)

= P(Y
(r+1)
r+1:n ≤ xr+1 | Y (r+1)

r:n = xr , I (r+1)
r = ir , . . . , Y

(r+1)
1:n = x1, I

(r+1)
1 = i1)

(by definition)

= P(Y
(r+1)
r+1:n ≤ xr+1 | Y (r+1)

r:n = xr , . . . , Y
(r+1)
1:n = x1) (due to assumption (A3))

= P(X(r+1)∗◦ ≤ xr+1 | X(r)∗◦ = xr , . . . , X
(1)∗◦ = x1) (by definition).

Thus, the claimed result is proved.
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Since in the situation considered in Theorem 2.1 both types of random variables can be
regarded as an extension of the concept of sequential order statistics introduced in Kamps (1995)
to exchangeable components, we apply the same notation in this case. Thus, we propose the
following definition of sequential order statistics based on exchangeable components.

Definition 2.1. Let n ∈ N. Let (Y
(r)
1 , . . . , Y

(r)
n ), 1 ≤ r ≤ n, be random vectors with values in

R
n that satisfy the following conditions.

(A1) The random vectors (Y
(r)
1 , . . . , Y

(r)
n ), 1 ≤ r ≤ n, have the same support.

(A2) The random variables Y
(r)
1 , . . . , Y

(r)
n fulfill

P(Y
(r)
i = Y

(r)
j ) = 0, i, j ∈ {1, . . . , n}, i �= j,

for every r ∈ {1, . . . , n}.
(A3) The random variables Y

(r)
1 , . . . , Y

(r)
n are exchangeable for every r ∈ {1, . . . , n}.

Let (Y
(r)
1:n, . . . , Y

(r)
n:n), 1 ≤ r ≤ n, be the random vectors of the corresponding order statistics.

Then random variables X
(1)∗ , . . . , X

(n)∗ are called sequential order statistics based on exchange-
able components if their distribution satisfies

P(X(1)∗ ≤ x1) = P(Y
(1)
1:n ≤ x1), x1 ∈ R,

and

P(X(r+1)∗ ≤ xr+1 | X(r)∗ = xr , . . . , X
(1)∗ = x1)

= P(Y
(r+1)
r+1:n ≤ xr+1 | Y (r+1)

r:n = xr , . . . , Y
(r+1)
1:n = x1), xr+1 ∈ R,

for PX
(r)∗ ,...,X

(1)∗ -almost all (xr , . . . , x1) ∈ R
r for every r ∈ {1, . . . , n − 1}.

Remark 2.1. The distribution of sequential order statistics coincides with that of usual order
statistics based on exchangeable random variables if the distributions of the underlying random
vectors (Y

(r)
1 , . . . , Y

(r)
n ), 1 ≤ r ≤ n, are identical.

Remark 2.2. The relation to the sequential order statistics based on i.i.d. random variables
defined in Kamps (1995) is seen in this way. Let the vectors (Y

(r)
1 , . . . , Y

(r)
n ), 1 ≤ r ≤ n, have

i.i.d. components with continuous cumulative distribution function (CDF) Fr . Then,

P(X(1)∗ ≤ x1) = P(Y
(1)
1:n ≤ x1) = 1 − (1 − F1(x1))

n, x1 ∈ R.

Moreover, due to the Markov property of order statistics from i.i.d. random variables with a
continuous distribution and a well-known result for conditional distributions of order statistics
(see David and Nagaraja (2003, Theorem 2.5)), we obtain

P(X(r+1)∗ ≤ xr+1 | X(r)∗ = xr , . . . , X
(1)∗ = x1) = P(Y

(r+1)
r+1:n ≤ xr+1 | Y (r+1)

r:n = xr)

= 1 −
(

1 − Fr+1(xr+1)

1 − Fr+1(xr)

)n−r

.

Therefore, X
(1)∗ , . . . , X

(n)∗ also have the Markov property and their transition probabilities
coincide with those of sequential order statistics (cf. Kamps (1995, p. 29)).
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Remark 2.3. Let Y
(r)
1 , . . . , Y

(r)
n be i.i.d. random variables that are distributed according to the

distribution function
Fr = 1 − (1 − F)αr , αr > 0,

where F denotes a continuous distribution function. The resulting model of sequential order
statistics X

(1)∗ , . . . , X
(n)∗ has been studied extensively in the literature (we refer the reader to the

references in Section 1). In this case, sequential order statistics can be treated as generalized
order statistics (see Kamps (1995)) and, therefore, corresponding results apply as well. In
the particular situation where F is given by an exponential distribution with location and scale
parameters, the joint distribution of X

(1)∗ , . . . , X
(n)∗ is known to coincide with the distribution of

order statistics from a Weinman multivariate exponential distribution (cf. Johnson et al. (2000,
pp. 388–391)).

Remark 2.4. The situation given in Example 2.1 fits into the general framework as follows.
In fact, there we described the ordered failure times in a two-component parallel system via
particular sequential order statistics X

(1)∗ and X
(2)∗ . The corresponding component lifetimes are

based on random vectors (Y
(r)
1 , Y

(r)
2 ), r ∈ {1, 2}, with the absolutely continuous exchangeable

distributions (with α1, α2, a > 0)

P(Y
(r)
1 > y1, Y

(r)
2 > y2) =

(
1 + αr(y1 + y2)

a

)−a

, y1, y2 > 0, r ∈ {1, 2},
respectively. Therefore, the assumptions of Definition 2.1 are fulfilled.

Of course, given assumption (A3), the distributions of the random variables coincide, i.e.

(X(1)∗∗ , . . . , X(n)∗∗ ) ∼ (X(1)∗ , . . . , X(n)∗ ) ∼ (X(1)∗◦ , . . . , X(n)∗◦ ).

If (A3) is dropped, the random variables X
(1)∗∗ , . . . , X

(n)∗∗ and X
(1)∗◦ , . . . , X

(n)∗◦ can be regarded as
extensions of sequential order statistics based on exchangeable components into two different
directions. The random variables X

(1)∗∗ , . . . , X
(n)∗∗ can be used to describe failure times in

technical systems with nonexchangeable components where failures may affect the lifetimes
of remaining intact components. Therefore, these random variables enable the transfer of the
idea underlying the concept of sequential order statistics to more general systems. In contrast,
X

(1)∗◦ , . . . , X
(n)∗◦ represent a direct extension of the formal definition of sequential order statistics

to the nonexchangeable case.
We close this section with an example which illustrates that the joint distributions ofX(1)∗◦ , . . . ,

X
(n)∗◦ and X

(1)∗∗ , . . . , X
(n)∗∗ may be different.

Example 2.2. Let the random vectors (Y
(1)
1 , Y

(1)
2 ) and (Y

(2)
1 , Y

(2)
2 ) be given, with correspond-

ing density functions

f Y
(1)
1 ,Y

(1)
2 (y1, y2) = λ1λ2 exp[−(λ1y1 + λ2y2)], y1, y2 > 0,

f Y
(2)
1 ,Y

(2)
2 (y1, y2) = λ̃1̃λ2 exp[−(̃λ1y1 + λ̃2y2)], y1, y2 > 0,

with λ1, λ2, λ̃1, λ̃2 > 0. Thus, (Y
(1)
1 , Y

(1)
2 ) is distributed as two independent random variables

that follow exponential distributions with parameters λ1 and λ2, respectively. The vector
(Y

(2)
1 , Y

(2)
2 ) follows the same law, but with (possibly different) parameters λ̃1 and λ̃2. By

following the construction of (X
(2)
1 , X

(2)
2 ) we obtain the corresponding density:

f X
(2)
1 ,X

(2)
2 (y1, y2) =

{
λ1̃λ2 exp[−(λ1 + λ2)y1] exp[−̃λ2(y2 − y1)], y1 < y2,

λ̃1λ2 exp[−(λ1 + λ2)y2] exp[−̃λ1(y1 − y2)], y1 > y2.
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Note that this is Freund’s bivariate exponential distribution. Recall that if two random variables
X1 and X2 have a joint density function with respect to the two-dimensional Lebesgue measure,
then the density function of the corresponding order statistics is given by

f X1:2,X2:2(x1, x2) = f X1,X2(x1, x2) + f X1,X2(x2, x1), x1 < x2.

Thus, by applying Lemma 2.1 we obtain the following density function for (X
(1)∗∗ , X

(2)∗∗ ):

f X
(1)∗∗ ,X

(2)∗∗ (x1, x2) = exp[−(λ1 + λ2)x1]
× (λ1̃λ2 exp[−̃λ2(x2 − x1)] + λ̃1λ2 exp[−̃λ1(x2 − x1)]), x1 < x2.

However, it can be shown that the density function of (X
(1)∗◦ , X

(2)∗◦ ) is given by

f X
(1)∗◦ ,X

(2)∗◦ (x1, x2) = λ̃1̃λ2
λ1 + λ2

λ̃1 + λ̃2
exp[−(λ1 + λ2)x1]

× (exp[−̃λ2(x2 − x1)] + exp[−̃λ1(x2 − x1)]), x1 < x2.

Consequently, the distributions of (X
(1)∗∗ , X

(2)∗∗ ) and (X
(1)∗◦ , X

(2)∗◦ ) may be different if the underly-
ing random vectors are not exchangeable. Clearly, in the exchangeable case, i.e. λ1 = λ2 = λ,

λ̃1 = λ̃2 = λ̃, both densities are identical (see Theorem 2.1) and we obtain the following density
of sequential order statistics:

f X
(1)∗ ,X

(2)∗ (x1, x2) = 2λ̃λ exp[−2λx1] exp[−̃λ(x2 − x1)], x1 < x2.

Note that this is the density function of particular sequential order statistics based on i.i.d. ran-
dom variables with CDF F1 in the first and CDF F2 in the second stage, where the
assumptions F1 = 1 − (1 − F)α1 and F2 = 1 − (1 − F)α2 are imposed (cf. Remark 2.3).
Here, we arrived at sequential order statistics with underlying standard exponential distribution
F(t) = 1 − e−t , t ≥ 0, and the model parameters α1 = λ, α2 = λ̃.

Finally, observe that even in the case λ1 = λ̃1 and λ2 = λ̃2, the densities of (X
(1)∗∗ , X

(2)∗∗ ) and
(X

(1)∗◦ , X
(2)∗◦ ) are identical:

f X
(1)∗∗ ,X

(2)∗∗ (x1, x2) = λ1λ2 exp[−(λ1 + λ2)x1](exp[−λ2(x2 − x1)] + exp[−λ1(x2 − x1)])
= λ1λ2(exp[−(λ1x1 + λ2x2)] + exp[−(λ2x1 + λ1x2)]), x1 < x2.

In this case both random vectors are also not exchangeable, but there is no change in the
underlying bivariate distribution after the first failure. Consequently, we obtain usual order
statistics from independent, but not identically distributed exponential random variables.

3. Systems with failure-dependent component lifetimes

In the last section we developed a model for the increasingly ordered failure times of the
components in a system with failure-dependent component lifetimes. Under assumptions (A1)
and (A2), the lifetimes of the single components in such a system are given by the random
variables X

(n)
1 , . . . , X

(n)
n . The ordered failure times X

(1)∗∗ , . . . , X
(n)∗∗ are distributed like the

corresponding order statistics (cf. Lemma 2.1).
In this section we are interested in the lifetime of the system itself. In the following we

will consider coherent systems (cf. Barlow and Proschan (1975)). The relation between the
lifetime of a coherent system and the lifetimes of its components can be specified in terms of a
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coherent life function φ (cf. Barlow and Proschan (1975, p. 12) or Esary and Marshall (1970)).
Due to the definition of coherent life functions, the lifetime T ∗∗ of a coherent system with the
failure-dependent component lifetimes X

(n)
1 , . . . , X

(n)
n is given by

T ∗∗ = φ(X
(n)
1 , . . . , X(n)

n ).

Clearly, this relation holds without imposing exchangeability assumptions on the component
lifetimes. By additionally assuming (A3), the reliability function of the system lifetime can be
represented as a mixture of the reliability functions of sequential order statistics X

(1)∗ , . . . , X
(n)∗ .

The weights in the mixture are given by the system signature (cf. Samaniego (2007)).
The signature s = (s1, . . . , sn) of a coherent system with coherent life function φ and

exchangeable component lifetimes X1, . . . , Xn such that

P(Xi = Xj) = 0, i, j ∈ {1, . . . , n}, i �= j,

is given by (this follows from Navarro et al. (2008c, Theorem 3.6))

si = P(T = Xi:n), 1 ≤ i ≤ n,

where T = φ(X1, . . . , Xn) denotes the system lifetime. In this case, the signature can
also be represented as follows (see Navarro and Eryilmaz (2007), and Navarro et al. (2008c,
Theorem 3.2)):

si = #{σ ∈ Pn | σ ∈ Si}
n! , 1 ≤ i ≤ n, (3.1)

where Pn denotes the set of all permutations of the numbers 1, . . . , n and Si is a set of
permutations with

Si = {σ ∈ Pn | φ(y1, . . . , yn) = yi:n for every (y1, . . . , yn) ∈ Xσ }
and

Xσ = {(x1, . . . , xn) ∈ R
n | xσ(1) < · · · < xσ(n)}.

Note that expression (3.1) for the signature depends only on the coherent life function φ and
the number of components in the system.

Now, the following theorem yields a representation of the distribution of the system lifetime
on the basis of the signature (cf. Navarro et al. (2008c, Theorem 3.6) for weakly exchangeable
lifetimes).

Theorem 3.1. Let X1, . . . , Xn be exchangeable lifetimes of components in a coherent system
with coherent life function φ. If

P(Xi = Xj) = 0, i, j ∈ {1, . . . , n}, i �= j,

then the reliability function of the system lifetime T = φ(X1, . . . , Xn) is given by

P(T > t) =
n∑

i=1

si P(Xi:n > t), t ∈ R,

where s = (s1, . . . , sn) denotes the signature of T . The entries of s can be obtained via (3.1).
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The next result shows that the failure-dependent component lifetimes X
(n)
1 , . . . , X

(n)
n fulfill

the conditions of the previous theorem if the assumptions of Definition 2.1 are satisfied. The
mainly technical proof is omitted.

Lemma 3.1. Let the assumptions of Definition 2.1 hold. Then the random variables X
(n)
1 , . . . ,

X
(n)
n are exchangeable and they satisfy

P(X
(n)
i = X

(n)
j ) = 0, i, j ∈ {1, . . . , n}, i �= j.

By combining Theorem 3.1 with the previous result, we obtain a signature-based representa-
tion of the reliability function of a system with failure-dependent component lifetimes in terms
of the reliability functions of sequential order statistics X

(1)∗ , . . . , X
(n)∗ .

Theorem 3.2. Let the assumptions of Definition 2.1 hold. Let X
(n)
1 , . . . , X

(n)
n be the failure-

dependent lifetimes of the components in a coherent system with coherent life function φ. Then
the reliability function of the system lifetime T ∗ = φ(X

(n)
1 , . . . , X

(n)
n ) is given by

P(T ∗ > t) =
n∑

i=1

si P(X(i)∗ > t), t ∈ R,

where s = (s1, . . . , sn) denotes the signature of T ∗. The entries of s can be obtained via (3.1).

Proof. According to Lemma 3.1, the component lifetimes X
(n)
1 , . . . , X

(n)
n satisfy the

assumptions of Theorem 3.1. Consequently, the reliability function of the system is a mixture
of the reliability functions of the corresponding order statistics X

(n)
1:n, . . . , X

(n)
n:n. Because of

P(T ∗ > t) =
n∑

i=1

si P(X
(n)
i:n > t)

=
n∑

i=1

si P(X(i)∗∗ > t) (by Lemma 2.1)

=
n∑

i=1

si P(X(i)∗ > t) (by Theorem 2.1 and Definition 2.1),

the assertion is proved.

By utilizing the last result, the original idea of sequential order statistics, namely to describe
the lifetime of a k-out-of-n system with failure-dependent component lifetimes, can be extended
to lifetimes of general coherent systems. Settings where failure dependence may be reasonably
integrated are, for instance, the different types of consecutive k-out-of-n systems. A linear
consecutive k-out-of-n : F system consists of n linearly ordered components which are labeled
with the numbers 1, . . . , n. Such a system fails if and only if k consecutive components
i, i + 1, . . . , i + k − 1 fail (1 ≤ i ≤ i + k − 1 ≤ n). In a circular consecutive k-out-of-n : F

system the components are arranged in a circle. Consequently, the system fails if and only if k

consecutive components in this circle fail. The signatures of both of these consecutive systems
are already known. The signatures of linear consecutive k-out-of-n : F systems are given in
Boland and Samaniego (2004a) (see also Samaniego (2007, p. 64)). Using these results, the
signature of a circular consecutive k-out-of-n : F system can be obtained by utilizing a relation
given in Triantafyllou and Koutras (2008) between the signatures of both systems. Therefore,
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the known signatures can be combined with results for sequential order statistics in order to
model consecutive k-out-of-n systems in a failure-dependent setting (see Example 4.5 in the
next section).

4. Distribution theory of sequential order statistics

According to the results of the last section, the distribution theory of sequential order statistics
is important in order to obtain the distribution of the lifetime of a coherent system with failure-
dependent exchangeable component lifetimes. Therefore, we give some results on the joint
distribution theory of sequential order statistics based on exchangeable components in this
section. Distribution theoretical results for the case of i.i.d. components can be found in Kamps
(1995), Cramer and Kamps (2001b), Kamps and Cramer (2001), Cramer and Kamps (2003),
and Cramer (2006a).

In the following we assume in general that the random vectors (Y
(r)
1 , . . . , Y

(r)
n ), 1 ≤ r ≤ n,

satisfy the conditions of Definition 2.1. If they have absolutely continuous distributions, we
obtain the following joint density function of sequential order statistics.

Theorem 4.1. For r ∈ {1, . . . , n}, let (Y
(r)
1 , . . . , Y

(r)
n ) have a joint density function fr with

respect to the n-dimensional Lebesgue measure. Then the density of sequential order statistics
is given by

f X
(1)∗ ,...,X

(n)∗ (x1, . . . , xn)

= n!
∫ ∞

x1

∫ ∞

y2

· · ·
∫ ∞

yn−1

f1(x1, y2, y3, . . . , yn) dyn · · · dy3 dy2

×
n−1∏
r=1

∫ ∞
xr+1

∫ ∞
yr+2

· · · ∫ ∞
yn−1

fr+1(x1, . . . , xr+1, yr+2, yr+3, . . . , yn) dyn · · · dyr+3 dyr+2∫ ∞
xr

∫ ∞
yr+1

· · · ∫ ∞
yn−1

fr+1(x1, . . . , xr , yr+1, yr+2, . . . , yn) dyn · · · dyr+2 dyr+1

for x1 ≤ · · · ≤ xn. Alternatively, the density function can be rewritten as

f X
(1)∗ ,...,X

(n)∗ (x1, . . . , xn)

= n!
∫ ∞

x1

∫ yn

x1

· · ·
∫ y3

x1

f1(x1, y2, . . . , yn−1, yn) dy2 · · · dyn−1 dyn

×
n−1∏
r=1

∫ ∞
xr+1

∫ yn

xr+1
· · · ∫ yr+3

xr+1
fr+1(x1, . . . , xr+1, yr+2, . . . , yn−1, yn) dyr+2 · · · dyn−1 dyn∫ ∞

xr

∫ yn

xr
· · · ∫ yr+2

xr
fr+1(x1, . . . , xr , yr+1, . . . , yn−1, yn) dyr+1 · · · dyn−1 dyn

for x1 ≤ · · · ≤ xn.

Proof. Since Y
(r)
1 , . . . , Y

(r)
n are exchangeable, the density of Y

(r)
1:n, . . . , Y

(r)
n:n is given by

f Y
(r)
1:n ,...,Y

(r)
n:n (x1, . . . , xn) = n! fr(x1, . . . , xn), x1 ≤ · · · ≤ xn.

Consequently,

f X
(1)∗ (x1) = n!

∫ ∞

x1

∫ ∞

y2

· · ·
∫ ∞

yn−1

f1(x1, y2, y3, . . . , yn) dyn · · · dy3 dy2
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and, moreover,

f X
(r+1)∗ | X(r)∗ ,...,X

(1)∗ (xr+1 | xr , . . . , x1)

= f Y
(r+1)
r+1:n | Y (r+1)

r:n ,...,Y
(r+1)
1:n (xr+1 | xr , . . . , x1)

= f Y
(r+1)
1:n ,...,Y

(r+1)
r:n ,Y

(r+1)
r+1:n (x1, . . . , xr , xr+1)

f Y
(r+1)
1:n ,...,Y

(r+1)
r:n (x1, . . . , xr )

=
∫ ∞
xr+1

∫ ∞
yr+2

· · · ∫ ∞
yn−1

fr+1(x1, . . . , xr+1, yr+2, yr+3, . . . , yn) dyn · · · dyr+3 dyr+2∫ ∞
xr

∫ ∞
yr+1

· · · ∫ ∞
yn−1

fr+1(x1, . . . , xr , yr+1, yr+2, . . . , yn) dyn · · · dyr+2 dyr+1

for xr+1 ≥ xr , which leads to the given result. The second representation is obtained by
changing the order of integration.

Remark 4.1. If f1 = f2 = · · · = fn = f , sequential order statistics X
(1)∗ , . . . , X

(n)∗ coincide
with order statistics X1:n, . . . , Xn:n from exchangeable random variables with density f , i.e.

f X1:n,...,Xn:n(x1, . . . , xn) = n! f (x1, . . . , xn), x1 ≤ · · · ≤ xn.

If the exchangeable random variables are generated by mixing conditionally i.i.d. random
variables, then the joint density of sequential order statistics simplifies. The resulting represen-
tation is given in the following corollary.

Corollary 4.1. Let 	1, . . . , 	n be random variables with distribution functions G1, . . . , Gn,
respectively. For r ∈ {1, . . . , n}, let (Y

(r)
1 , . . . , Y

(r)
n ) have a joint density function

fr(y1, . . . , yn) =
∫ n∏

i=1

fr(yi | θ) dGr(θ),

where fr(· | θ) denotes a density with respect to the Lebesgue measure for every θ in the support
of 	r . Then the joint density function of sequential order statistics is given by

f X
(1)∗ ,...,X

(n)∗ (x1, . . . , xn)

= n!
∫

f1(x1 | θ)(F 1(x1 | θ))n−1 dG1(θ)

×
n−1∏
r=1

∫
(
∏r+1

i=1 fr+1(xi | θ))(F r+1(xr+1 | θ))n−r−1 dGr+1(θ)∫
(
∏r

i=1 fr+1(xi | θ))(F r+1(xr | θ))n−r dGr+1(θ)
, x1 ≤ · · · ≤ xn,

where Fr(· | θ) denotes the distribution function with density fr(· | θ) (1 ≤ r ≤ n).

Proof. Since the marginal density of order statistics from these particular exchangeable
random variables is given by

f Y
(r)
1:n ,...,Y

(r)
r:n (x1, . . . , xr )

= n!
(n − r)!

∫ ( r∏
i=1

fr(xi | θ)

)
(F r(xr | θ))n−r dGr(θ),

the result follows.
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In the remainder we treat a generalization of the model considered in Example 2.1 in detail. In
the following model, sequential order statistics based on independent, identically exponentially
distributed random variables with different rate parameters (cf. Remark 2.3 and Remark 4.2)
appear as a limit case. Let α1 . . . , αn > 0. We define

(Y
(r)
1 , . . . , Y (r)

n ) =
(

X1

αrVr

, . . . ,
Xn

αrVr

)
, 1 ≤ r ≤ n, (4.1)

where X1, . . . , Xn are i.i.d. random variables that are distributed according to a standard
exponential distribution. The random variable Vr is independent of X1, . . . , Xn and follows
a gamma distribution with shape parameter ar > 0 and scale parameter 1/ar (in particular,
E(Vr) = 1 and var(Vr) = 1/ar ). This setting fulfills the conditions of Corollary 4.1 by setting,
e.g. 	r = Vr and

fr(x | θ) = αrθ exp[−αrθx], x > 0,

for every r ∈ {1, . . . , n}. The resulting joint distribution of Y
(r)
1 , . . . , Y

(r)
n has the density

function

fr(y1, . . . , yn) = �(ar + n)

�(ar)

(
αr

ar

)n(
1 + αr

ar

n∑
i=1

yi

)−(ar+n)

, y1, . . . , yn > 0.

It is well known that this is a multivariate Pareto distribution of the second kind (cf. John-
son et al. (2000, pp. 602–605)) with

E(Y
(r)
1 ) = ar

αr(ar − 1)
, ar > 1, var(Y (r)

1 ) = a3
r

α2
r (ar − 2)(ar − 1)2 , ar > 2,

cov(Y
(r)
1 , Y

(r)
2 ) = a2

r

α2
r (ar − 2)(ar − 1)2 , ar > 2.

Since Vr converges in distribution to the constant 1 if ar → ∞, it follows from (4.1) and
the continuous mapping theorem that in this case Y

(r)
1 , . . . , Y

(r)
n converge in distribution to

independent, identically exponentially distributed random variables with scale parameter 1/αr .
By applying Corollary 4.1, it can be shown that the joint density of sequential order statistics

based on (4.1) is given by (with 0 =: x0 ≤ x1 ≤ · · · ≤ xn)

f X
(1)∗ ,...,X

(n)∗ (x1, . . . , xn)

= n!
( n∏

j=1

αj (aj + j − 1)

aj

)

×
n∏

j=1

(1 + (αj /aj )(
∑j−1

i=1 xi + (n − j + 1)xj ))
−(aj +j)

(1 + (αj /aj )(
∑j−2

i=1 xi + (n − j + 2)xj−1))
−(aj +j−1)

.

For appropriately normalized spacings from these sequential order statistics, the following
relation holds. A well-known result for these spacings in the situation of Remark 2.3 with
an underlying standard exponential distribution F is included by passing to the limit (see
Remark 4.2, below).
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Theorem 4.2. Let X
(1)∗ , . . . , X

(n)∗ be sequential order statistics based on the random vectors
(4.1). Then the distribution of

D(r)∗ = (n − r + 1)αr(X
(r)∗ − X(r−1)∗ ), 1 ≤ r ≤ n

(with X
(0)∗ := 0), satisfies the relation

D(r)∗ ∼ Zr

(
1 + αr

ar

r−1∑
k=1

D
(k)∗

αk

)
, 1 ≤ r ≤ n,

with independent random variables Z1, . . . , Zn, where Zr follows a Pareto type II distribution
with scale parameter ar and shape parameter ar + r − 1, i.e. the distribution function of Zr is
given by

FZr (t) = 1 −
(

1 + t

ar

)−(ar+r−1)

, t ≥ 0.

Proof. The density of D
(1)∗ , . . . , D

(n)∗ is given by

f D
(1)∗ ,...,D

(n)∗ (d1, . . . , dn)

=
n∏

j=1

aj + j − 1

aj

×
n∏

j=1

(1 + (αj /aj )(
∑j

k=1 dk/αk))
−(aj +j)

(1 + (αj /aj )(
∑j−1

k=1 dk/αk))
−(aj +j−1)

, d1, . . . , dn ≥ 0.

It can be shown that

f D
(r)∗ | D(1)∗ ,...,D

(r−1)∗ (dr | d1, . . . , dr−1)

= ar + r − 1

ar + αr

∑r−1
k=1 dk

(
1 + dr

ar + αr

∑r−1
k=1 dk/αk

)−(ar+r)

, dr ≥ 0.

Consequently, D
(r)∗ | D

(1)∗ = d1, . . . , D
(r−1)∗ = dr−1 follows a Pareto type II distribution with

scale parameter ar + αr

∑r−1
k=1 dk/αk and shape parameter ar + r − 1. Thus, we obtain the

relation

D(r)∗ ∼ Z̃r

(
ar + αr

r−1∑
k=1

D
(k)∗

αk

)
, 1 ≤ r ≤ n,

with independent random variables Z̃1, . . . , Z̃n, where Z̃r follows a Pareto type II distribution
with scale parameter 1 and shape parameter ar+r−1. By rewriting the relation with Zr = arZ̃r ,
we arrive at the claimed result.

Remark 4.2. In the case considered in Remark 2.3, if F is chosen as a standard exponential
distribution then the CDFs Fr follow exponential distributions with possibly different rate
parameters, i.e.

Fr(t) = 1 − e−αr t , t ≥ 0, 1 ≤ r ≤ n.

It is well known that in this case the spacings

D(r)∗ = (n − r + 1)αr(X
(r)∗ − X(r−1)∗ ), 1 ≤ r ≤ n,
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are i.i.d. and they are again distributed according to F (cf. Kamps (1995, p. 81)). This result
can be obtained from Theorem 4.2 via a limit approach. Let a1 = · · · = an = a. Note that Zr

converges in distribution to a standard exponentially distributed random variable if a → ∞.
Hence, the claimed result follows from the relation in Theorem 4.2 and the continuous mapping
theorem by letting a → ∞. Moreover, Theorem 4.2 can be regarded as a generalization of this
particular result.

Remark 4.3. Since E(Z1) = a1/(a1 −1) (if a1 > 1) and E(Zr) = ar/(ar +r−2), 2 ≤ r ≤ n,
Theorem 4.2 yields the recurrence relation

E(D(r)∗ ) = ar

ar + r − 2
+ αr

ar + r − 2

r−1∑
k=1

E(D
(k)∗ )

αk

with
E(D(1)∗ ) = a1

a1 − 1
if a1 > 1.

In particular, no assumptions on a2, . . . , an are needed. In the case in which a1 = · · · = an =
a > 1, the expressions can be further simplified. It can be shown by induction that

r∑
k=1

E(D
(k)∗ )

αk

= a(a + r − 1)

r∑
k=1

1

αk(a + k − 2)(a + k − 1)
,

which in turn yields

E(D(r)∗ ) = a

a + r − 2
+ aαr

r−1∑
k=1

1

αk(a + k − 2)(a + k − 1)

= a

a + r − 1
+ aαr

r∑
k=1

1

αk(a + k − 2)(a + k − 1)
.

Finally, we apply the previous results in order to calculate the mean system lifetime of some
concrete coherent systems in the setting of model (4.1).

Remark 4.4. For the two-component parallel system in Example 2.1, we obtain (if a > 1)

E(D(1)∗ ) = a

a − 1
, E(D(2)∗ ) = 1 + α2

α1(a − 1)
,

and, consequently, the mean of the lifetime T ∗
2:2 = X

(2)∗ of the two-component parallel system
with failure-dependent component lifetimes is given by

E(X(2)∗ ) = E(D
(2)∗ )

α2
+ E(D

(1)∗ )

2α1
= 1

α2
+ a + 2

2α1(a − 1)
.

Remark 4.5. By utilizing Theorem 3.2, we can find the mean system lifetimes of consecutive
k-out-of-n : F systems. We give two examples.

• The signature s = (s1, s2, s3) of a linear consecutive 2-out-of-3 : F system is given by
(cf. Samaniego (2007, p. 64))

s1 = 0, s2 = 2
3 , s3 = 1

3 .
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By applying Theorem 3.2, the mean of the lifetime T ∗
c:2:3 of the linear consecutive 2-out-

of-3 : F system with failure-dependent component lifetimes is given by

E(T ∗
c:2:3) = 2

3 E(X(2)∗ ) + 1
3 E(X(3)∗ ).

If the sequential order statistics are based on the random vectors (4.1) with a1 = a2 =
a3 = a > 1, we obtain

E(X(2)∗ ) = E(D
(2)∗ )

2α2
+ E(D

(1)∗ )

3α1
= 1

2α2
+ 2a + 3

6α1(a − 1)
,

E(X(3)∗ ) = E(D
(3)∗ )

α3
+ E(D

(2)∗ )

2α2
+ E(D

(1)∗ )

3α1

= a

α3(a + 1)
+ a + 3

2α2(a + 1)
+ 2a + 9

6α1(a − 1)
.

Hence, the mean of the lifetime T ∗
c:2:3 has the explicit form

E(T ∗
c:2:3) = 1

3

(
a

α3(a + 1)
+ 3a + 5

2α2(a + 1)
+ 2a + 5

2α1(a − 1)

)
.

• It can be shown (cf. Triantafyllou and Koutras (2008)) that the signature s = (s1, s2, s3, s4)

of a circular consecutive 2-out-of-4 : F system is given by

s1 = 0, s2 = 2
3 , s3 = 1

3 , s4 = 0.

Thus, the mean of the lifetime T ∗
cc:2:4 of the circular consecutive 2-out-of-4 : F system

with failure-dependent component lifetimes is also given by

E(T ∗
cc:2:4) = 2

3 E(X(2)∗ ) + 1
3 E(X(3)∗ ).

However, note that the occurring sequential order statistics depend on n = 4. If model
(4.1) with a1 = · · · = a4 = a > 1 is considered, we obtain the expectations

E(X(2)∗ ) = E(D
(2)∗ )

3α2
+ E(D

(1)∗ )

4α1
= 1

3α2
+ 3a + 4

12α1(a − 1)
,

E(X(3)∗ ) = E(D
(3)∗ )

2α3
+ E(D

(2)∗ )

3α2
+ E(D

(1)∗ )

4α1

= a

2α3(a + 1)
+ 2a + 5

6α2(a + 1)
+ 3a + 10

12α1(a − 1)
.

The mean of the lifetime T ∗
cc:2:4 is therefore given by

E(T ∗
cc:2:4) = 1

3

(
a

2α3(a + 1)
+ 2a + 3

2α2(a + 1)
+ 3a + 6

4α1(a − 1)

)
.

In particular, we have E(T ∗
cc:2:4) < E(T ∗

c:2:3) for every choice of α1, α2, α3 > 0.
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