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A NOTE ON ERDOS-RENYI LAW OF
LARGE NUMBERS

BY
CHANDRAKANT M. DEO

ABSTRACT. In this note the Erdos-Renyi law of large numbers is
extended to stationary Gaussian sequences.

1. Intreduction and main theorem. A new law of large numbers for i.i.d.
sequence of random variables was discovered by Erdos-Renyi (1970). The
general problem of extending this theorem to stationary sequences, under
various mixing conditions, appears to be quite difficult. In this note we deal
with a stationary Gaussian sequence and show that such a sequence obeys
Erdos-Renyi theorem under a mild condition on the correlation sequence. The
same condition was used in Deo (1974) to prove Strassen’s law of iterated
logarithm for stationary, Gaussian sequences.

Let {£,:1=n <o} be a stationary, Gaussian sequence with E(¢,)=1, E(¢}) =
1 and E(&1&uv1)=rs, n=0. Let So=0, S,=)-1& and for 1=k=n let
O(n, k) =maxo<j=<n—« (Sj+x — S;)/k. We will assume that

(1) lim n'**r, =0 for some B>0.

n—oo

Under (1) the series Y r; converges absolutely. Write o’=1+2Y_, 1. We
exclude the degenerate case o =0 and assume hereafter ¢ >0. Let [ -] be the
usual largest integer function. The object of this note is to prove the following

THEOREM. If (1) holds then, for each ¢ >0,
?2) lim O(n, [c log n)) = a\/%

with probability one.
Proof. We first show that

2
3) lim O(n,[clog n])= "\/Z w.p. 1.
Let €>0. The first step consists in proving that 3 positive numbers v, 8
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(depending upon &) such that
@) P{O(n, [clogn])< o-( \/%— s} <n"+e™, for alllarge n.

Now break up the integers 1 through n into blocks of size [c log n] leaving a
gap of size [loglog n] between two adjacent blocks. Let k, denote the total
number of such blocks of size [c logn] and let J;, J,, ..., J,, denote these
blocks. Thus J; consists of integers 1 through [c log n], J, consists of integers
[c log n]+[loglog n] through 2[c log n]+[loglog n] and so on. Note that k, is
approximately n/(log n+loglogn) and as will be clear from computations
below the last incomplete block if any, of size less than [c log n] can be safely
ignored. Let Y,;=Y,c5,§ 1=i<k, Now the probability in (4) is clearly
dominated by

(5) P{ max (o’[clogn])™"?Y,,; < (\/%— s)Jc log n}.

l1=i=<k,

Note that for each n, the variances of Y, ;’s are equal; and, as n— o, these are
asymptotic to o°c log n. Hence if 0 <&’ < ¢, the probability in (5) is, for large n,
less than

(6) P{lma;(( (Var Y,.;)) %Y, < (\/%— s')Jc log n} )

=i=K,

Let now Zy, Z,, . .., Z, be independent standard normal variables. We have,

7 P{lrsnii)'cc" zZ; < (\/%— s’)«/c log n} = f[l P{Zi < (\/%—e’>«/c log n}

- ﬁ [1—P{Z,~ > (\/%'8')*/0 log "H

i=1

— kz P{Zi > (\/%—s’)\/c log n}.

=e'7!

Now using the standard estimate ([4], page 175) for the upper tail of the
normal distribution it is easy to see that P{Z; > (y2/c —&')/2 log n} is, for large
n, greater than n"1"® for some 8'>0. Also k, >n"'"*"?=for large n. Hence the
probability in (7) is less than e ™™ for large n where &= 8'/2.

Next we estimate A, which stands for the difference between the prob-
abilities in (6) and (7). For this we use the following

LeEmMMA (BERMAN (1964)). Let the random variables X1, X,, . . ., X, have joint
Gaussian distribution with zero means, unit variances and correlations
{rGi,j):1=i=<j=n}. Also let Z,,2Z,,...,Z, be independent standard normal.
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Then for any a>0,

‘P(max X< a) —P( max Z; < a)

l=i=n l=<i=n

2
= X [=rG T [rG, lex {——a }
l=isj<n I ])l p 1+'r(i’ ])I
To apply this lemma let r,(i, j) denote the correlation coefficient between Y.
and Y, ;. Under our hypothesis (1) it is a straightforward verification that 3
finite positive constant B independent of n, i, j such that

|r(i, i+1)|<B(loglogn)™,  1=i=<k,—1; and

(8)
(i, i+ k)| <B(k—1)7%, k>1, 1=i+k=<k,

Thus 1.(i,j)—>0 as n—o uniformly in i, j. Also note that {(y/2/c—
e')J/clog n}2>(2—s")log n, where ¢"=2,/2¢'c and ¢">0 can be made arbit-
rarily small by making ¢’ and hence ¢ small enough. Hence applying the lemma
we have, for all large n,

A, =const Z Ir. GGy )| - p =@ G 0D

l=sisj<k,

<const ). |r(i, )| n 72"

l=i=j<k,

= const{ Z (n—k)(k— 1)—Bn—2+(s"/2)+(n _ 1)n‘2+(“/2)}
k=2

where in the last step we have used (8) and the fact that k, <n. Note that
e ,(n—k)k=1)F=n¥r_,(k—1)"" <const n>®. Hence, we get (assuming
B <1 without loss of generality),

©) A, <const n> P72+ = copst nTAHETD

Here >0 is fixed and &" can be taken to be less than 23 by choosing our
initial &£ >0 small enough which is permissible since, if (4) holds for some ¢, it
also holds for all smaller . Thus from (9) we can conclude that

(10) A,=n"" forsome <y>0, for alllarge n.

Combining (10) and (7) we get (4).

It now follows from (4) and the first Borel-Cantelli lemma that @([e"'°]—
1, k—1)<o(y2/c—¢) for only finitely many k’s with probability one. Note that
for n with [e“]=n<[e®*"*], the numerator is the definition of
O(n,[clogn]) is less than or equal to the numerator in the definition of
O([e**"°]—1, k) whereas the denominators are asymptotically equal. Thus
O(n,[clogn])<o(J2/c—¢€) only finitely often with probability one which
proves (3).
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The proof that lim ©(n,[clog n])<oy2/c is much simpler. Indeed, for

>0,

(11) P{G)(n, [clog n])>o-(\/%+ s)}s nP{%ﬁ—i—%> (\/%+ c)Jc log n}

Again using the standard estimate ([4], page 175) of the upper tail of the
normal distribution it is easy to see that the right side of (11) is dominated by
n~* for some a>0. In conjunction with the first Borel-Cantelli iemma this
implies ®([e"'], k) > o(y2/c + €) only finitely often with probability one. By an
approximation similar to the one already used this means ©(n,[c log n])>
(o0/2/c + €) only finitely often with probability one. This completes the proof of
the theorem.
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