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Abstract
Reliability analysis of stress–strength models usually assumes that the stress and strength variables are indepen-
dent. However, in numerous real-world scenarios, stress and strength variables exhibit dependence. This paper
investigates the reliability estimation in a multicomponent stress–strength model for parallel-series system assum-
ing that the dependence between stress and strength is based on the Clayton copula. The estimators for the unknown
parameters and system reliability are derived using the two-step maximum likelihood estimation and the maximum
product spacing methods. Additionally, confidence intervals are constructed by utilizing asymptotically normal
distribution theory and bootstrap method. Furthermore, Monte Carlo simulations are conducted to compare the
effectiveness of the proposed inference methods. Finally, a real dataset is analyzed for illustrative purposes.

1. Introduction

The reliability of system refers to the probability that system will effectively carry out its intended
function within a designated time frame and under specified environmental conditions. In the relia-
bility context, the germ of stress–strength model was initially introduced by [8] and developed by [9]
and [11]. This model involves assessing the reliability of a system with a random strength variable
X and suffering from random stress variable Y. The reliability of the system, considering the stress–
strength relationship as the failure mode, is defined as the probability that the strength variable X
exceeds the stress variable Y. The stress–strength model has found applications in a wide array of fields,
including engineering, oceanography, hydrology, economics, and medicine, as described by [21]. The
following examples highlight the practical applications of the stress–strength model in diverse fields,
demonstrating its significance in assessing systems reliability.

Rocket engines: Here X is assigned to denote the strength of the rocket chamber while Y commonly
signifies the maximal chamber pressure generated by ignition of a solid propellant. In this scenario, the
reliability R can be defined as the probability of a successful engine firing, defined as P(X > Y).

Earthquake resistance: In a study of the risk of some tall or spacious buildings, it is crucial to eval-
uate the building’s capacity to withstand the stresses induced by ground motion during an earthquake.
When considering the random variable X as the building strength during an earthquake and the random
variable Y as the induced stress, the probability R = P(X > Y) quantifies the probability of designing
a building that is deemed safe.

Several studies in the literature have explored stress–strength models using various probability distri-
butions, including Weibull, Lindley, generalized logistic, and bathtub-shaped distributions. Noteworthy
recent contributions on this topic include works by [3, 4, 18], and [30].
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Figure 1. The structure of a parallel-series system.

The previously mentioned system is considered to be a single-component system, which is a limited
assumption when addressing various scenarios. As science, technology, and manufacturing techniques
have advanced, we now encounter numerous multicomponent systems in our daily lives, including items
like IT hardware, aero engines, keyboards, and more. The study of multicomponent system reliability in
stress–strengthmodels holds significant value and providesmeaningful insights. Eryilmaz [14] obtained
the system reliability for a general coherent structure under stress–strength setup. Eryilmaz and Iscioglu
[15] got some conclusions about stress–strength reliability in the context of multicomponent multi-state
systems modeling. Reliability inference of k-out-of-n system for multicomponent stress–strength model
under the assumptions of Burr-XII distribution was studied by [28]. Liu et al. [22] derived the relia-
bility estimation of multicomponent system accounting for the stress–strength model and the specific
N-M-cold-standby arrangement. Kohansal [20] focused on the estimation of system reliability for a
k-out-of-n system within a multicomponent stress–strength model, employing progressively censored
Kumaraswamy sample. The parallel-series system, an essential and widely used structure in reliability
engineering, consists of several subsystems connected in parallel, each containing numerous compo-
nents arranged in a series configuration, as illustrated in Figure 1. The parallel-series system is vital
for ensuring high reliability, robust fault tolerance, and versatile operation, making it indispensable for
critical applications like power grids, communication infrastructures, and aerospace technologies. For
further studies on parallel-series systems, readers may refer to [26] and [2]. In the domain of reliabil-
ity estimation for parallel-series systems, several researchers have proposed flexible methodologies. For
instance, Coit [12] described a flexible procedure to establish approximate confidence interval (ACI) for
system reliability in situations there is uncertainty about component reliability information. Benkamra
et al. [7] constructed a properly hybrid sequential design to optimize the reliability of the parallel-
series system. Modibbo et al. [23] introduced two approaches of estimations for the parallel-series and
series-parallel system reliability developed on themaximum likelihood estimation (MLE) and uniformly
minimum-variance unbiased estimation.

Traditionally, it has been commonly assumed that the stress and strength variables in reliability
analysis are independent of each other. However, in practical scenarios, considering the dependence
structure between stress and strength variables is often more realistic due to their potential influence
from shared or common factors. An effective approach for modeling the dependence structure between
these variables is through the use of a bivariate distribution, such as bivariate Gamma distribution
[25], Marshall–Olkin bivariate Weibull distribution [24], general bivariate distribution [1], bivariate
Kumaraswamy distribution [19], and bivariate exponentiated half-logistic distribution [31]. However,
one limitation of the bivariate distribution model is that it necessitates the marginal distributions of the
stress and strength variables to be from the same family of distributions. To overcome this constraint,
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copula has been widely utilized as a potent tool for capturing the dependence structure between stress
and strength variables. Copula is utilized to characterize the dependence structure among random vari-
ables and holds a significant position in the formation of joint distributions by leveraging marginal
distributions. The absence of marginal distribution information within copula empowers the ability
to exercise greater freedom in choosing the marginal distribution. In Domma and Giordano’s works
[13], the dependence relationship was characterized by Farlie-Gumbel-Morgenstern (FGM) copula. By
considering Burr III distributions for both stress and strengths, they obtained the reliability estima-
tor. Gao et al. [16] conducted a comprehensive evaluation of reliability while considering the mixed
copula dependence structure between stress and strength variables by combining the Frank, Clayton,
and Gumbel copulas through a linear combination. Estimation of the stress–strength reliability was
investigated by [6] when stress and strength were Gumbel copula dependent. Zhu [32] derived the relia-
bility estimation of k-out-of-n system for a dependent multicomponent stress–strength model under the
assumption of Clayton copula dependence between stress and strength variables.

Although prior studies have addressed reliability estimation for parallel-series systems, to the best of
our knowledge, there are few works available on dependent stress–strength models specifically applied
to parallel-series systems. Therefore, this paper aims to provide reliability estimation for the dependent
stress–strength model in a parallel-series system, considering the dependence between the stress and
strength variables, assuming Weibull and Burr XII distributions for stress and strength, respectively.
We employ copula function to capture the dependence between the two variables. The two-step MLE
and maximum product spacing (MPS) approaches are used to estimate unknown parameters and sys-
tem reliability. That is, in the first step of the two-step approach, the focus is on estimating the model
parameters. Following this, the second step involves estimating the dependence parameter utilizing the
results obtained in the initial step. The system reliability is subsequently determined using the estimated
model parameters and dependence parameter. Confidence intervals (CIs) for both unknown parameters
and system reliability are established by taking advantage of the asymptotic normality of MLEs and
utilizing the bootstrap percentile methods.

The rest of this paper is rolled as follows. In Section 2, we introduce the copula theory and derive the
reliability of parallel-series system. In Section 3, the two-step MLE and MPS approaches are employed
to calculate the reliability estimators for the parallel-series system. In Section 4, the CIs for both
unknown parameters and system reliability are also developed utilizing bootstrap method. A Monte
Carlo simulation study is carried out in Section 5 to compare the effectiveness of the proposed infer-
ence methods. In Section 6, we analyze a real dataset for illustrative purposes. Section 7 concludes the
paper.

2. Preliminaries

Prior to delving into the main results, it is crucial to provide an overview of basic concepts that will be
referenced throughout the subsequent sections.

2.1. Copula

For a random vector X = (X1,X2, . . . ,Xn) with joint cumulative distribution function (CDF) H and
univariate marginal distribution functions F1,F2, . . . ,Fn, if there exists a function C : [0, 1]n → [0, 1],
such that, for all xi, i = 1, . . . , n,

H (x) = C(F1(x1),F2(x2), . . . ,Fn(xn)),

then C is called the copula of random vector X. Similarly, if there exists a function Ĉ : [0, 1]n → [0, 1],
such that

H (x) = Ĉ(F1(x1),F2(x2), . . . ,Fn(xn)),
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where Fi = 1−Fi is marginal survival function and H is the joint survival function, then Ĉ is called the
survival copula of random vector X.

Copulas have many good properties, some main properties are given below, note ui = Fi (xi), i =
1, . . . , n,

(i) If at least one ui, i = 1, . . . , n is equal to zero, then

C(u1, . . . , ui−1, 0, ui+1, . . . , un) = 0.

(ii) If all ui, i = 1, . . . , n are equal to 1 except ui, then

C(1, . . . , 1, ui, 1, . . . , 1) = ui.

Archimedean copulas are favored in various applications owing to their mathematical tractability and
capacity to model wide ranges of dependence structures. The Archimedean copula family encompasses
numerous useful copulas, including well-known examples such as product copula, Clayton copula,
Frank copula, and Gumbel copula. The detailed description of Archimedean copula is given as follows:

For a decreasing and continuous function k : [0,+∞) ↦→ [0, 1] such that k(0) = 1 and k(+∞) = 0.
Then

Ck (u1, ..., un) = k
(
q(u1) + · · · + q(un)

)
, ui ∈ [0, 1], i = 1, . . . , n

is said to be an Archimedean copula with generator k, where q = k−1 is the pseudo-inverse of k. A
comprehensive exploration of copulas and their applications can be found in [27].

The two-dimensional strict Clayton copula

C\ (u, v) =
(
u−\ + v−\ − 1

)− 1
\ , \ ∈ (0,+∞), (1)

which is used in this paper to capture the dependence structure between the stress and strength. The
dependence between two random variables decreases as \ decreases, and the first partial derivative
of (1) with respect to u can be written as

mC\ (u, v)
mu

= u−(\+1)
(
u−\ + v−\ − 1

)− (
1
\
+1

)
.

2.2. Model description

Consider an m-n parallel-series system consisting of m disjoint modules connected in parallel. Module
i (1 ≤ i ≤ m) consisting of n components connected in series. Let Xij (i = 1, 2, . . . ,m; j = 1, 2, . . . , n)
denote a set of independent and identically distributed random variables with common CDF F, rep-
resenting the strength of component in the m-n parallel-series system. Additionally, let Y be a random
variable representing the common stress, and it has a CDFG. For anm-n parallel-series system, denoting
the strength of system by Z, then the CDF of Z is given by

FZ (z) = [1 − (1 − F (z))n]m, (2)

and its probability density function (PDF) can be written as

fZ (z) = nm(1 − F (z))n−1 [1 − (1 − F (z))n]m−1f (z). (3)

Suppose that Xij (i = 1, 2, . . . ,m; j = 1, 2, . . . , n) follows Burr XII distribution with shape param-
eters _ and X, Y follows Weibull distribution with scale parameter U and shape parameter V. The
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corresponding distribution functions are

F (x;_, X) = 1 −
(
1 + x_

)−X

, x > 0,_ > 0, X > 0

and

G (y;U, V) = 1 − exp
(
−UyV

)
, y > 0,U > 0, V > 0.

Then, the respective PDF are

f (x;_, X) = X_x_−1
(
1 + x_

)−X−1

and

g (y;U, V) = UVyV−1 exp
(
−UyV

)
.

Hence, (2) and (3) can be expressed as

FZ (z;_, X) = [1 − (1 + z_)−nX]m

and

fZ (z;_, X) = nmX_z_−1 (1 + z_)−nX−1 [1 − (1 + z_)−nX]m−1.

In the majority of cases, stress variable Y and strength variable Z exhibit dependence. To account
for this dependence, we assume that their relationship is characterized by a two-dimensional Clayton
copula C\ (u, v). Then, the reliability R of the system is expressed as

R = P (Z > Y) =
∫ +∞

0

∫ z

0
h(z, y)dydz

=

∫ +∞

0

∫ z

0

m2C(u, v)
mumv

���u=FZ (z)
v=G (y)

fZ (z)g(y)dydz

=

∫ +∞

0

mC(u, v)
mu

���u=FZ (z)
v=G (z)

fZ (z)dz. (4)

3. Inference of R

3.1. Maximum likelihood estimation

In this subsection, our focus is on the MLE of R. Suppose that there are k systems subjected to a life-
testing process, and the observed samples of the system stress and strength are Yi and Zi (i = 1, 2, . . . , k),
respectively. Hence the respective likelihood functions with observed samples Zi and Yi (i = 1, 2, . . . , k)
are

L1(_, X | data) =
k∏

i=1
fZ (zi;_, X) = nkmkXk_k

k∏
i=1

z_−1i (1 + z_i )−nX−1 [1 − (1 + z_i )−nX]m−1

and

L2(U, V | data) =
k∏

i=1
g (yi;U, V) = UkVk

k∏
i=1

yV−1i exp(−UyVi ).
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Then, we can further get the respective log-likelihood functions

logL1 (_, X | data) = k log n + k logm + k log X + k log_ − (nX + 1)
k∑

i=1
log(1 + z_i )

+ (_ − 1)
k∑

i=1
log zi + (m − 1)

k∑
i=1

log[1 − (1 + z_i )−nX] (5)

and

logL2(U, V | data) = k logU + k log V + (V − 1)
k∑

i=1
log yi − U

k∑
i=1

yVi . (6)

The following Theorems 3.1–3.4 affirm the existence and uniqueness of the MLEs of model
parameters.

Theorem 3.1. The MLE of _ exists and is unique which is the solution of

J1 (_) =
k
_
+

k∑
i=1

log (zi) − (nX + 1)
k∑

i=1

z_i log (zi)
1 + z_i

+(m − 1)
k∑

i=1

nX log (zi) z_i
(
1 + z_i

) −1−nX

1 −
(
1 + z_i

) −nX
= 0. (7)

Proof. By computing the first partial derivative of (5) with respect to _, and set to be zero, (7) is
obtained. It is easy to figure out that lim_→0+ J1(_) = +∞. Note that, lim_→+∞

k
_
= 0. For convenience,

let

J11(_) =
k∑

i=1
log (zi) − (nX + 1)

k∑
i=1

z_i log (zi)
1 + z_i

+ (m − 1)
k∑

i=1

nX log (zi) z_i
(
1 + z_i

) −1−nX

1 −
(
1 + z_i

) −nX
.

In the next, we just need to show that lim_→+∞ J11(_) < 0, the proof will be proceeded by discussing
the following three cases.

Case 1: 0 < zi < 1, i = 1, . . . , k.
Observe that log (zi) < 0 and lim_→+∞ z_i = 0, thus we have

lim
_→+∞

J11(_) = (1 + 1
nX

)
k∑

i=1
log (zi) < 0.

Case 2: zi > 1, i = 1, . . . , k.
Since log (zi) > 0 and lim_→+∞ z_i = +∞, then we have

lim
_→+∞

J11(_) = −nX
k∑

i=1
log (zi) < 0.

Case 3: 0 < zi < 1(i = 1, . . . , k1), zj > 1(j = k1 + 1, . . . , k).
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For this case, according to Case 1 and Case 2, we have

lim
_→+∞

J11(_) = (1 + 1
nX

)
k1∑
i=1

log (zi) − nX
k∑

j=k1+1
log

(
zj
)
< 0.

Hence we further get lim_→+∞ J1(_) < 0. By noting that

nXz_i
(
1 + z_i

)
nX −

(
1 + z_i

)
nX + 1 ≥ 0,

then we get

dJ1 (_)
d_

= − k
_2 − (m − 1)

n∑
i=1

nXz_i log2 (zi)
(
nXz_i

(
1 + z_i

) nX −
(
1 + z_i

) nX + 1
)(

1 + z_i
) 2 ( (

1 + z_i
) nX − 1

) 2

−(nX + 1)
n∑

i=1

z_i log2 (zi)(
1 + z_i

) 2
< 0,

which yields that J1(_) is decreasing in _. Thus, the existence and uniqueness of MLE of _ are
proved. �

Theorem 3.2. The MLE of X exists and is unique which is the solution of

J2(X) =
k
X
− n

k∑
i=1

log
(
1 + z_i

)
+ (m − 1)

k∑
i=1

n
(
1 + z_i

) −nX log
(
1 + z_i

)
1 −

(
1 + z_i

) −nX
= 0. (8)

Proof. By taking the first partial derivative of (5) with respect to X, and set to be zero, we have (8). It
is easy to verify that limX→0+ J2(X) = +∞ and limX→+∞ J2 (X) = −n

∑k
i=1 log

(
1 + z_i

)
< 0. Note that

dJ2(X)
dX

= − k
X2

− (m − 1)
k∑

i=1

(
−

n2 (
1 + z_i

) −nX log2
(
1 + z_i

)
1 −

(
1 + z_i

) −nX
−

n2 (
1 + z_i

) −2nX log2
(
1 + z_i

)(
1 −

(
1 + z_i

) −nX ) 2

)
= − k

X2
− (m − 1)

k∑
i=1

(
n2 (

1 + z_i
) nX log2

(
1 + z_i

)( (
1 + z_i

)
Xn − 1

) 2

)
< 0,

That is, the function J2(X) is decreasing in X. Hence, the existence and uniqueness of MLE of X are
proved. �

Theorem 3.3. For a given V, the MLE of U exists and is given by

ÛM =
k∑k

i=1 yVi
.

Proof. Take the first derivative of (6) with respect to U and set to be zero, then we get

m logL2(U, V | data)
mU

=
k
U
−

k∑
i=1

yVi = 0.

Then, we obtain ÛM = k∑k
i=1 yVi

.
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In the following, we prove the existence of the MLE of U. Let k ≠ 0 and V > 0 be fixed. Note that
log t ≤ t − 1 for t = U

ÛM
, thus we have

k logU = k log
U

ÛM
+ k log ÛM

≤ k
U

ÛM
− k + k log ÛM

= U

k∑
i=1

yVi − k + k log ÛM ,

which implies that

logL2(U, V | data) = k logU + k log V + (V − 1)
k∑

i=1
log yi − U

k∑
i=1

yVi

≤ U

k∑
i=1

yVi − k + k log ÛM + k log V + (V − 1)
k∑

i=1
log yi − U

k∑
i=1

yVi

= k log ÛM + k log V + (V − 1)
k∑

i=1
log yi − k.

Let k = ÛM
∑k

i=1 yVi , then we further have

logL2(U, V | data) ≤ k log ÛM + k log V + (V − 1)
k∑

i=1
log yi − ÛM

k∑
i=1

yVi

= logL2(ÛM , V | data).

The equation holds if and only if U = ÛM . This proves the assertion. �

Theorem 3.4. The MLE of V exists and is unique which is the solution of

H (V) = k
V
+

k∑
i=1

log yi − U

k∑
i=1

yVi log yi = 0. (9)

Proof. By computing the first partial derivative of (6) in regard to V, and set to be zero, (9) is obtained.
In (9), for convenience, let H1(V) =

∑k
i=1 log yi − U

∑k
i=1 yVi log yi. Then it is easy to figure out

limV→0+
k
V
= +∞ and limV→0+ H1(V) is a constant, hence limV→0+ H (V) = +∞.

Note that, limV→+∞
m
V
= 0. With regard to limV→+∞ H1(V), we divide yi into two parts, one is greater

than 1 and the left is less than 1, because limV→+∞ yVi = 0 for yi < 1, limV→+∞ yVi = 1 for yi =

1, and limV→+∞ yVi = +∞ for yi > 1. Then we can obtain that limV→+∞ H1(V) < 0, then we have
limV→+∞ H (V) < 0.

Furthermore, since

dH (V)
dV

= − k
V2

− U

k∑
i=1

yVi (log yi)2 < 0,

thus function H (V) is decreasing from positive to negative. Hence, existence and uniqueness are
proved. �
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As the dimensionality of the copula increases, the computation complexity of MLE also intensifies,
rendering it impractical when dealing with a large number of parameters [17]. In order to overcome this
hurdle, the two-step MLE is used as a favorable attractive alternative to the full MLE strategy, which is
first proposed by [29] for the two-dimensional case. In the first step, the MLEs _̂M , X̂M , ÛM , V̂M are cal-
culated by using nonlinear computational techniques such as the Newton-Raphson iteration approach.
In the second step, the MLE of the dependence parameter \ in (1) is determined by constructing the
following log-likelihood function based on the observed samples (Zi,Yi),

logL3(\ | data) =
k∑

i=1
log c(ui, vi; \)

= k log(1 + \) − (1 + \)
k∑

i=1
log uivi − (2 + 1

\
)

k∑
i=1

log(u−\
i + v−\

i − 1),

where c is density function of Clayton copula (1), ui = FZ (zi; _̂M , X̂M), vi = G(yi; ÛM , V̂M). By making
the first derivatives of logL3(\ | data) with respect to \ to zero, the likelihood equation can be obtained
as

d log L3(\ | data)
d\

=
k

1 + \
−

k∑
i=1

log uivi +
1
\2

k∑
i=1

log(u−\
i + v−\

i − 1)

+ (2 + 1
\
)

k∑
i=1

u−\
i log ui + v−\

i log vi

u−\
i + v−\

i − 1
= 0.

The estimated value \̂M of \ can be gained by using optimization techniques.
Therefore, by substituting _, X,U, V, \ for _̂M , X̂M , ÛM , V̂M , \̂M into (4), the MLE R̂M of R may be

produced by applying the MLE’s invariance property. Moreover, the ACIs of _, X,U, V, \ and R can be
determined by leveraging the asymptotic normality of the MLEs.

3.2. MPS estimation

Cheng and Amin [10] introduced the MPS method, which provides an alternative way to estimate the
parameters of a statistical model, especially when the MLE approach is impractical or computationally
intensive. In our study, suppose that z1:k < z2:k < · · · < zk:k and y1:k < y2:k < · · · < yk:k are the order
sample of z1, z2, . . . , zk and y1, y2, . . . , yk , respectively, and the corresponding uniform spacings can be
given by

D1i (_, X) = FZ (zi:k;_, X) − FZ (zi−1:k;_, X)

and

D2i (U, V) = G (yi:k;U, V) − G (yi−1:k;U, V) ,

where i = 1, 2, . . . , k + 1,FZ (z0:k;_, X) = G (y0:k;U, V) = 0 and FZ (zk+1:k;_, X) = G (yk+1:k;U, V) = 1.
Then the MPS estimators _̃P, X̃P, ŨP, ṼP of _, X,U, V can be obtained in the first step by maximizing

M1(_, X) =
1

k + 1

k+1∑
i=1

log (D1i (_, X))
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and

M2 (U, V) =
1

k + 1

k+1∑
i=1

log (D2i (U, V))

with respect to _, X and U, V, respectively. Further, define

D3i (\) = C
(
FZ (zi:k; _̃P, X̃P),G(yi:k; ŨP, ṼP); \

)
− C

(
FZ (zi−1:k; _̃P, X̃P),G(yi−1:k; ŨP, ṼP); \

)
.

Following the idea in the first step, then the MPS estimator \̃P of \ can be obtained by maximizing

M3(\) =
1

k + 1

k+1∑
i=1

logD3i (\)

with respect to \.
Therefore, substituting the MPS estimators for _, X, U, V and \ into Eq. (4), and the MPS estimation

R̃P of R then can be computed by applying the MPS estimator’s invariance property.

4. Bootstrap confidence intervals

On the one hand, the assumption of asymptotic normality relies on large sample sizes and is based on
the theory of large samples. However, in certain cases, the available sample sizes are very small. The
bootstrap methods prove to be more suitable and reliable for constructing CIs in such situations. On
the other hand, while the MPS estimator of R can be obtained using the MPS method, constructing CIs
for unknown parameters and R is not straightforward. In such cases, the parametric bootstrap percentile
method is employed to construct bootstrap confidence intervals (BCIs) for unknown parameters and R
based on MPS estimators. Following is the specific Algorithm 1.

5. Simulation study

This section illustrates the inference methods described in the previous sections by conducting Monte
Carlo simulation. Consider a 3-1 parallel-series system in the multicomponent stress–strength model,
that is (m, n) = (3, 1). We take _ = 0.2, X = 3.6, U = 0.5, V = 0.7. For given dependence parameters \ = 2,
\ = 2.5, and \ = 3, the respective true values of R are 0.149550, 0.141699, and 0.135706.

Suppose that the dependent sample (z, y) derived from Clayton copula C(u, v) denotes cu(v) =
mC (u,v)

mu . The next Algorithm 2 is employed to generate the dependent samples.
Using the generated dependent samples, we employ the two-stepMLE andMPSmethods to estimate

the model parameters. The average estimators, Biases, mean square errors (MSEs), CIs, and CI lengths
of the unknown parameters are computed based on 1,000 times simulation. The simulation results are
presented in Tables 1–6.

From Tables 1–6, some conclusions could be found.
(i) The Biases andMSEs of bothMLEs andMPS estimators ofmodel parameters present a downward

trend as the value of k increases. This indicates that the estimations become more accurate with higher
values of k.

(ii) For the majority of circumstances, as k rises, so do the biases of the MLEs of the dependence
parameter and R. Because the MLEs of the dependence parameter and R are computed using the MLEs
of the model parameters, the error is compounding as the sample size increases.

(iii) When the dependency parameter takes on different values, the biases of the estimators for both
the model parameters and R show no significant change for the same sample size.
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Algorithm 1 The algorithm of BCIs
Input: N , MPS estimators λ̃P , δ̃P , α̃P , β̃P , θ̃P .
Output: 100(1 − τ)% BCIs of model parameters and reliability R.

1: Generate dependent bootstrap sample by using the estimators λ̃P , δ̃P , α̃P , β̃P , θ̃P .
2: Utilizing the bootstrap samples obtain bootstrap estimators λ̃∗

P , δ̃∗
P , α̃∗

P , β̃∗
P , θ̃∗

P ;
3: Calculate the bootstrap estimation R̃∗

P of R using the bootstrap estimators λ̃∗
P , δ̃∗

P ,
α̃∗

P , β̃∗
P , θ̃∗

P ;
4: Repeat Step 2 and Step 3 N times to get N bootstrap estimators

{λ̃
∗(i)
P , δ̃

∗(i)
P , α̃

∗(i)
P , β̃

∗(i)
P , θ̃

∗(i)
P , R̃

∗(i)
P }, i = 1, 2, . . . , N.

5: Arrange {λ̃
∗(i)
P , δ̃

∗(i)
P , α̃

∗(i)
P , β̃

∗(i)
P , θ̃

∗(i)
P , R̃

∗(i)
P } in ascending order to obtain the bootstrap

sample

{λ̃
∗[1]
P , . . . , λ̃

∗[N ]
P ; δ̃∗[1]

P , . . . , δ̃
∗[N ]
P ; α̃∗[1]

P , . . . , α̃
∗[N ]
P ; β̃∗[1]

P , . . . , β̃
∗[N ]
P ; θ̃∗[1]

P , . . . , θ̃
∗[N ]
P ; R̃∗[1]

P , . . . , R̃
∗[N ]
P }.

6: The two-sided 100(1 − τ)% BCIs of λ, δ, α, β, θ and R are

λ̃
∗[Nτ

2 ]
P , λ̃

∗[N(1− τ
2 )]

P , δ̃
∗[Nτ

2 ]
P , δ̃

∗[N(1− τ
2 )]

P , α̃
∗[Nτ

2 ]
P , α̃

∗[N(1− τ
2 )]

P ,

β̃
∗[Nτ

2 ]
P , β̃

∗[N(1− τ
2 )]

P , θ̃
∗[Nτ

2 ]
P , θ̃

∗[N(1− τ
2 )]

P , R̃
∗[Nτ

2 ]
P , R̃

∗[N(1− τ
2 )]

P .

Algorithm 2 Generating the dependent stress-strength samples.
Input: initial value k, m, n, λ, δ, α, β.
Output: dependent sample (z, y)

1: Generate k-dimensional independent uniform (0, 1) vectors u, w;
2: Calculate v = c−1

u (w), where c−1
u (·) is the pseudo-inverse of cu(·);

3: Set z = ((1 − u
1
m )− 1

nδ − 1)
1
λ and y = − 1

α
log(1 − v)

1
β ;

4: Get the dependent samples (z, y).

(iv) The length of the intervals tends to decrease with an increase in k. The interval lengths of BCIs
are shorter when k is small, whereas the interval lengths of MLEs are shorter when k is larger.

(v) It is worth mentioning that in the context of R, although there is only a small difference between
the MLEs and MPS estimators, it can be observed that the MLE performs slightly better than the MPS.

6. Real data analysis

In the following, we analyze two real datasets and present the practical applicability of the aforemen-
tioned methods. We consider datasets, from two groups of patients suffering from head and neck cancer
disease. Both of these datasets were analyzed and discussed in the context of stress–strength reliability
analysis by [5]. Now, we give the application of our established model to analyze the two real datasets,
which are listed as follows:

Data 1: 12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 74.48, 78.26,
81.43, 84, 92, 94, 110, 112, 119, 127, 130, 133, 140, 146, 155, 159, 173, 179, 194, 195, 209, 249, 281,
319, 339, 432, 469, 519, 633, 725, 817, 1,776.
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Table 1. MLEs, biases, MSEs, and ACIs for _, X,U, V, \, and R (\ = 2).
ACI

k Parameter MLE Bias MSE Lower Upper Lengths

20 _ 0.207889 0.007889 0.002195 0.148505 0.267273 0.118768
X 3.601831 0.001831 0.003130 2.577563 4.626099 2.048536
U 0.515036 0.015036 0.011232 0.218808 0.811264 0.592457
V 0.731418 0.031418 0.012699 0.476840 0.985997 0.509156
\ 1.920711 −0.079289 0.006627 0.775450 3.065972 2.290522
R 0.152377 0.002827 0.000629 0.131672 0.173082 0.041410

25 _ 0.205811 0.005811 0.001799 0.153195 0.258428 0.105233
X 3.602109 0.002109 0.003448 2.686305 4.517913 1.831608
U 0.512539 0.012539 0.008748 0.248417 0.776661 0.528244
V 0.725968 0.025968 0.009548 0.500669 0.951267 0.450598
\ 1.920157 −0.079843 0.006685 0.895402 2.944912 2.049510
R 0.152376 0.002826 0.000539 0.133926 0.170826 0.036900

40 _ 0.198693 −0.001307 0.000666 0.165718 0.231668 0.065950
X 3.602603 0.002603 0.003283 3.011800 4.193407 1.181607
U 0.505862 0.005862 0.002876 0.336774 0.674949 0.338174
V 0.710445 0.010445 0.003275 0.569496 0.851394 0.281898
\ 1.920037 −0.079963 0.006690 1.258658 2.581415 1.322758
R 0.152636 0.003086 0.000234 0.140908 0.164364 0.023456

Table 2. MPSs, biases, MSEs, and BCIs for _, X,U, V, \, and R (\ = 2).
BCI

k Parameter MPS Bias MSE Lower Upper Lengths

20 _ 0.127557 −0.072443 0.005978 0.102518 0.288753 0.186235
X 3.597884 −0.002116 0.180971 3.504483 3.694815 0.190332
U 0.534934 0.034934 0.023716 0.420870 0.968518 0.547648
V 0.659454 −0.040546 0.017576 0.608441 0.987333 0.378893
\ 1.915044 −0.084956 0.040460 1.528565 2.895434 1.366869
R 0.181329 0.031779 0.003641 0.134376 0.226568 0.092192

25 _ 0.128560 −0.071440 0.005751 0.102535 0.291945 0.189410
X 3.610970 0.010970 0.150817 3.506385 3.693716 0.187331
U 0.531082 0.031082 0.019485 0.425368 0.969191 0.543823
V 0.663360 −0.036640 0.013924 0.605060 0.983214 0.378154
\ 1.917636 −0.082364 0.039259 1.550794 2.885628 1.334834
R 0.178252 0.028702 0.003024 0.136724 0.225143 0.088419

40 _ 0.130137 −0.069863 0.005137 0.101538 0.286660 0.185122
X 3.642966 0.042966 0.063216 3.504986 3.695019 0.190034
U 0.519147 0.019147 0.007851 0.431864 0.960091 0.528228
V 0.674244 −0.025756 0.005588 0.607751 0.964035 0.356284
\ 1.945329 −0.054671 0.022940 1.526798 2.876367 1.349568
R 0.170060 0.020509 0.001326 0.139322 0.225560 0.086238
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Table 3. MLEs, biases, MSEs, and ACIs for _, X,U, V, \, and R (\ = 2.5).
ACI

k Parameter MLE Bias MSE Lower Upper Lengths

20 _ 0.198466 −0.001534 0.001841 0.141940 0.254991 0.113050
X 3.601413 0.001413 0.003120 2.577557 4.625269 2.047713
U 0.515036 0.015036 0.011232 0.218808 0.811264 0.592457
V 0.731418 0.031418 0.012699 0.476840 0.985997 0.509156
\ 2.425600 −0.074400 0.005764 1.070271 3.780930 2.710659
R 0.147021 0.005322 0.000665 0.129642 0.164401 0.034759

25 _ 0.196623 −0.003377 0.001557 0.146521 0.246726 0.100205
X 3.602466 0.002466 0.003460 2.686749 4.518183 1.831433
U 0.512539 0.012539 0.008748 0.248417 0.776661 0.528244
V 0.725968 0.025968 0.009548 0.500669 0.951267 0.450598
\ 2.424984 −0.075016 0.005838 1.210755 3.639213 2.428459
R 0.146938 0.005239 0.000563 0.131401 0.162475 0.031073

40 _ 0.191343 −0.008657 0.000942 0.152646 0.230040 0.077393
X 3.598861 −0.001139 0.003453 2.876121 4.321602 1.445482
U 0.508201 0.008201 0.004596 0.300465 0.715936 0.415471
V 0.716347 0.016347 0.005252 0.541654 0.891041 0.349386
\ 2.425160 −0.074840 0.005813 1.468048 3.382271 1.914223
R 0.148065 0.006366 0.000382 0.135967 0.160164 0.024197

Table 4. MPSs, biases, MSEs, and BCIs for _, X,U, V, \, and R (\ = 2.5).
BCI

k Parameter MPS Bias MSE Lower Upper Lengths

20 _ 0.127557 −0.072443 0.005978 0.102518 0.288753 0.186235
X 3.597884 −0.002116 0.180971 3.504483 3.694815 0.190332
U 0.534934 0.034934 0.023716 0.420870 0.968518 0.547648
V 0.659454 −0.040546 0.017576 0.608441 0.987333 0.378893
\ 1.915044 −0.084956 0.040460 1.528565 2.895434 1.366869
R 0.181329 0.031779 0.003641 0.134376 0.226568 0.092192

25 _ 0.122368 −0.077632 0.006580 0.102535 0.291945 0.189410
X 3.651156 0.051156 0.155427 3.506385 3.693716 0.187331
U 0.531082 0.031082 0.019485 0.425368 0.969191 0.543823
V 0.663360 −0.036640 0.013924 0.605060 0.983214 0.378154
\ 2.475762 −0.024238 0.001849 1.550794 2.885628 1.334834
R 0.169358 0.027659 0.002804 0.136724 0.225143 0.088419

40 _ 0.128874 −0.071126 0.005455 0.102249 0.291337 0.189088
X 3.619635 0.019635 0.088689 3.505166 3.694612 0.189447
U 0.524393 0.024393 0.011833 0.425626 0.967959 0.542333
V 0.669264 −0.030736 0.008489 0.609865 0.983691 0.373826
\ 1.926133 −0.073867 0.033385 1.533296 2.905750 1.372455
R 0.174778 0.025228 0.001951 0.137596 0.225333 0.087738
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Table 5. MLEs, biases, MSEs, and ACIs for _, X,U, V, \, and R (\ = 3).
ACI

k Parameter MLE Bias MSE Lower Upper Lengths

20 _ 0.192117 −0.007883 0.001716 0.137648 0.246587 0.108939
X 3.601605 0.001605 0.003193 2.578081 4.625129 2.047048
U 0.515036 0.015036 0.011232 0.218808 0.811264 0.592457
V 0.731418 0.031418 0.012699 0.476840 0.985997 0.509156
\ 2.925532 −0.074468 0.005771 1.361502 4.489562 3.128059
R 0.143331 0.007626 0.000688 0.128273 0.158390 0.030117

25 _ 0.190391 −0.009609 0.001489 0.142103 0.238679 0.096576
X 3.601905 0.001905 0.003464 2.686655 4.517154 1.830499
U 0.512539 0.012539 0.008748 0.248417 0.776661 0.528244
V 0.725968 0.025968 0.009548 0.500669 0.951267 0.450598
\ 2.924944 −0.075056 0.005838 1.526188 4.323700 2.797512
R 0.143347 0.007642 0.000590 0.129892 0.156803 0.026911

40 _ 0.185457 −0.014543 0.000984 0.148132 0.222781 0.074649
X 3.599865 −0.000135 0.003352 2.877044 4.322685 1.445641
U 0.508201 0.008201 0.004596 0.300465 0.715936 0.415471
V 0.716347 0.016347 0.005252 0.541654 0.891041 0.349386
\ 2.925072 −0.074928 0.005821 1.822045 4.028100 2.206055
R 0.144288 0.008583 0.000413 0.133781 0.154795 0.021013

Table 6. MPSs, biases, MSEs, and BCIs for _, X,U, V, \, and R (\ = 3).
BCI

k Parameter MPS Bias MSE Lower Upper Lengths

20 _ 0.117151 −0.082849 0.007414 0.102066 0.290670 0.188604
X 3.674427 0.074427 0.195273 3.505086 3.694815 0.189729
U 0.534934 0.034934 0.023716 0.421049 0.970507 0.549459
V 0.659454 −0.040546 0.017576 0.606930 0.987619 0.380689
\ 2.902828 −0.097172 0.025395 2.026216 3.401511 1.375295
R 0.166321 0.030616 0.003289 0.130497 0.220701 0.090204

25 _ 0.118132 −0.081868 0.007189 0.102405 0.292616 0.190212
X 3.690602 0.090602 0.165942 3.505241 3.693952 0.188711
U 0.531082 0.031082 0.019485 0.420726 0.971697 0.550970
V 0.663360 −0.036640 0.013924 0.604225 0.982289 0.378064
\ 2.901551 −0.098449 0.026377 2.026572 3.391811 1.365239
R 0.163018 0.027313 0.002709 0.125796 0.219223 0.093427

40 _ 0.118666 −0.081334 0.006910 0.102305 0.292684 0.190379
X 3.702255 0.102255 0.102588 3.504886 3.694912 0.190026
U 0.524393 0.024393 0.011833 0.423644 0.967959 0.544315
V 0.669264 −0.030736 0.008489 0.610042 0.980218 0.370176
\ 2.892217 −0.107783 0.029312 2.024968 3.375658 1.350690
R 0.159349 0.023644 0.001709 0.127449 0.220511 0.093062
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Table 7. Goodness-of-fit test results for copula.
Clayton Gumbel Frank

Statistic 0.0138 0.0183 0.0185
p-value 0.8861 0.5990 0.5693
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Figure 2. Empirical model and the fitted model of real datasets.

Data 2: 6.53, 7, 10.42, 14.48, 16.10, 22.70, 34, 41.55, 42, 45.28, 49.40, 53.62, 63, 83, 84, 91, 108,
112, 129, 133, 133, 139, 140, 140, 146, 149, 154, 157, 160, 160, 165, 173, 176, 218, 225, 241, 248,
273, 277, 297, 405, 417, 420, 440, 523, 583, 594, 1,101, 1,146, 1,417.

To enhance the efficiency of dependency analysis, it is important to maintain a consistent sample
size across both datasets. Using the sample function in R, we randomly selected a subset of Data 2
(designated as Data 2*) to match the sample size of Data 1, which represents strength data, while Data
2* represents stress data.

Data 2*: 14.48 , 176, 6.53, 157,108, 248, 41.55, 53.62, 154, 84, 405, 241, 11,14, 12, 42, 297, 165,
129., 1,146, 594, 173, 225, 417, 83, 10.42, 15, 273, 140, 140, 160, 149, 160, 22.7, 133, 13, 583, 91,
523, 139, 63, 218, 440, 7.

To model the dependence between strength and stress, we chose the Clayton copula for its ability to
capture lower tail dependence, which is particularly relevant in reliability data where simultaneous low
values (e.g., stress and strength failures) are of interest [27]. Although other copulas like the Gumbel
and Frank are also used in reliability studies, the Clayton copula better matched our data’s dependence
structure. We also evaluated the Gumbel and Frank copulas. A goodness-of-fit test, shown in Table 7,
yielded a high p-value (0.8861) for the Clayton copula, where the significance of the bold value indicates
the optimal result, confirming its suitability for modeling the observed dependence. Future research
might explore nonparametric approaches, such as empirical copulas or kernel-based estimations, to
capture more complex dependence structures.

Through iterative procedures, we can obtain the MLE and MPS estimator of _ are _̂M = 1.8619 and
_̃P = 1.7211, the MLE and MPS estimator of X are X̂M = 0.7774 and X̃P = 0.7824, the MLE and MPS
estimator of U are ÛM = 0.5870 and ŨP = 0.6105, the MLE and MPS estimator of V are V̂M = 0.9093
and ṼP = 0.8201, the MLE and MPS estimator of \ are \̂M = 0.2422 and \̃P = 0.2499. Using the above
datasets, the MLE and MPS estimator for system reliability are R̂M = 0.5378 and R̃P = 0.5468.

In order to determine the suitability of the Burr XII and Weibull distributions for fitting the datasets,
we utilize the computed estimators of unknown parameters to calculate the Kolmogorov–Smirnov (K-
S) test statistic and corresponding p-values. For strength data, the K-S statistic for the Burr XII model
is D= 0.0480 with a p-value of p= 0.9998. For stress data, the K-S statistic for the Weibull model is
D= 0.1138 with a p-value of p= 0.6188. The empirical distribution curves based on data 1 and data
2*, along with the fitted Burr XII and Weibull marginal distribution curves for strength and stress, are
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presented in Figure 2. These results indicate that both models provide an excellent fit for the respective
datasets.

7. Conclusion

This paper investigated the estimation of reliability for a multicomponent parallel-series system while
considering the presence of dependence between stress and strength based on Clayton copula. We
employed the two-step MLE and MPS approaches to estimate the system reliability, assuming Weibull
and Burr XII distributions for stress and strength, respectively. The simulation results demonstrate that
the two-step MLE method outperformed the MPS method in terms of reliability estimation. Real data
analysis gives the applicability of the presented results. Although this study successfully addressed
the reliability estimation problem, one important aspect that remains unexplored is the selection of an
appropriate copula, which is of interest to pursue.
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