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Introduction

1.1 Statistical Inference

Probability is the way we quantify uncertainty. It is based on three axioms
that develop the whole probability theory. We suggest the book Mood et al.
(1974) to review the main concepts.

Statistics is the science of data. It is the science of collecting, exploring,
presenting and making decisions from data. As a science, it is divided into
two branches: descriptive statistics and inferential statistics. The former
involves sampling and exploration, whereas the latter deals with decision
making, which includes estimation, hypothesis testing and predictions.

To understand the previous definitions and some other concepts involved
in statistics, let X denote a characteristic of interest that is measurable
for individuals in a particular population. For instance, X could be the
income, height or age of a person in a particular population (school, county,
country, etc.). The statistical population is the collection of all possible
values xi for the individuals i = 1,2, . . . of the population. In notation,
Pop = {x1, x2, . . .}, where the population size could be infinite. If we
were able to obtain all possible values for the whole population, we could
summarise them in a relative frequency table and plot it in a histogram, like
the one depicted in Figure 1.1. If we make the histogram bins narrower and
take the limit as the length of the bins goes to zero, by appropriately dividing
by the bins’ length we obtain a smooth curve such as the one plotted on top
of the histogram in Figure 1.1. Let us denote this curve mathematically as
f (x | θ0), which is a function of x, the possible values of the variable of
interest, and θ0, which is the true population parameter. In other words, the
population is fully characterised by the curve, that is, Pop ⇐⇒ f (x | θ0).
The curve is actually a probability model or a density function for a random
variable X indexed by the parameter θ0.

In statistics, it is not common to have access to all population values,
but usually we have access to a subset of them that we call a sample.
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Figure 1.1 Histogram (shaded) and probability curve (solid line)
for simulated data.

Formally, a sample is a finite collection of size n < ∞ of the characteristic of
interest {X1,X2, . . . ,Xn}. Since these values are unknown to the researcher
beforehand, they can be assumed to be (conditionally) independent random
variables whose possible values are determined by the probability model
f (x | θ), where the population parameter is usually unknown but belongs
to a specific parameter space Θ, that is, θ0, θ ∈ Θ. For instance, for the data
depicted in Figure 1.1, a possibility would be to assume a gamma model,
namely X ∼ Ga(α, β), where θ = (α, β) ∈ Θ = (R+)2.

There are two main approaches for statistical inference: classical or fre-
quentist, and Bayesian. Within either inferential approach we could assume
two possibilities for the population: a parametric assumption like the one
we mentioned earlier where X ∼ f (x | θ) and θ ∈ Θ; or a non-parametric
assumptionwhere the population is not characterised by a parametricmodel,
namely X ∼ f (x) with f ∈ F and F the space of all probability models.
This leads to four types of inferential procedures, which are summarised in
Table 1.1.

https://doi.org/10.1017/9781009584128.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009584128.002


1.1 Statistical Inference 3

Assumption\Procedure Frequentist Bayesian

Parametric (1) (3)
Non-parametric (2) (4)

Table 1.1 Types of inferential procedures.

We now briefly describe the generalities of each inferential procedure
with a little more emphasis on (3) since most of the ideas discussed in this
book belong to that context.

(1) Frequentist Parametric: The assumptions here are that observed
data X = {X1, . . . ,Xn} are a sample from population Xi ∼ f (x | θ) of
independent random variables where θ ∈ Θ. Sample information about θ is
summarised in the joint distribution function f (x | θ), which in the case of
independent data is given by

∏n
i=1 f (xi | θ), where, if seen as a function of θ,

it is called likelihood. The frequentist inferential procedure is based entirely
on likelihood, usually through maximisation. See, for example, Mood et al.
(1974).

(2) Frequentist Nonparametric: The assumptions here are that obser-
ved data X = {X1, . . . ,Xn} are a sample from population Xi ∼ f (x) of inde-
pendent random variables and f ∈ F . Sample information about f , or F,
the corresponding cumulative distribution function (CDF), is summarised
as f (x) =

∏n
i=1 f (xi), which is the likelihood for f (and F). For instance,

the maximum likelihood estimator (MLE) of F is the empirical distribu-
tion function F̂(x) = 1

n

∑n
i=1 I(−∞,x](Xi), where IA(x) denotes the indicator

function of set A that takes the value of one if x ∈ A and zero otherwise.
See, for example, Conover (1999).

(3) Bayesian Parametric: The assumptions here are that observed data
X = {X1, . . . ,Xn} are a sample from population Xi | θ ∼ f (x | θ) of
conditional independent random variables and θ ∈ Θ. The word condi-
tional is included because the Bayesian inferential procedure depends on
an axiomatic theory that establishes that all unknown quantities must be
quantified using the researcher’s prior (uncertain) knowledge through f (θ).
This prior knowledge is updated with the observed data through Bayes’s
theorem which states that

f (θ | x) =
f (x | θ) f (θ)

f (x)
, (1.1)

where f (x | θ) is the likelihood for θ and f (x) =
∫
Θ

f (x | θ) f (θ) or
f (x) =

∑
θ∈Θ f (x | θ) f (θ) is a normalising constant. Bayes’s theorem is
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therefore a learning rule and f (θ | x) is called the posterior distribution for
θ that contains all available information. To make decisions, the axiomatic
theory establishes that preferences on consequences must be quantified
by a utility (or loss) function which must be maximised (or minimised)
after marginalising all uncertain quantities using the prior or posterior
distribution, whichever is available. For instance, if we want to estimate
θ with θ̂ we could represent our preferences via a quadratic loss function
v(θ̂, θ) = a(θ̂ − θ)2 for a > 0. If the posterior distribution is available, we
obtain the expected loss as v̄(θ̂) = E{v(θ̂, θ)} =

∫
Θ

a(θ̂ − θ)2 f (θ | x)dθ,
from which, after minimisation, we obtain θ̂ = E{θ | x}; that is, our point
estimate for θ is the posterior mean. See, for example, Bernardo and Smith
(2000).

(4) Bayesian Nonparametric: The assumptions here are that observed
data X = {X1, . . . ,Xn} are a sample from population Xi | θ ∼ f (x) of
conditional independent randomvariables and f ∈ F . The axiomatic theory
establishes that the researcher must quantify prior knowledge on f or F via
P( f ) or P(F). This is usually done via stochastic processes whose paths
are densities or distribution functions. The two most typical choices are
the Dirichlet process with precision parameter c and centring measure
F0, denoted by DP(c,F0), see Ferguson (1973); and the Pólya tree with
precision parameter c, variance function % and centringmeasure F0, denoted
as PT(c, %,F0); see for example, Nieto-Barajas and Núñez-Antonio (2021).
This prior distribution is updated with the observed data through Bayes’s
theorem (1.1), but adapted to stochastic processes, to obtain the posterior
law F | x. If we further represent our preferences via a quadratic loss
function, the posterior point estimate for F will be E(F | x), which is
known as the posterior predictive function. See Hjort et al. (2010).

Therefore, statistical procedures can be summarised as shown in the
diagram of Figure 1.2. The arrow pointing down corresponds to descriptive
statistics, whereas the arrow pointing up corresponds to inferential statistics.

1.2 Common Probability Distributions
In the following chapters we will use several common probability
distributions as well as their first two moments. We summarise them here.

Discrete Distributions

• Bernoulli distribution: this is characterised by the following density:

f (x | θ) = θx(1 − θ)1−x I{0,1}(x),
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Figure 1.2 Diagram of statistics.

valid for θ ∈ (0,1). This is denoted as Ber(θ). The first two moments are

E(X | θ) = θ and Var(X | θ) = θ(1 − θ).

• Binomial distribution: this is characterised by the following density:

f (x | θ) =
(
n
x

)
πx(1 − π)n−x I{0,1,...,n}(x),

with θ = (n, π) and valid for π ∈ (0,1) and n ∈ N. This is denoted as
Bin(n, π). The first two moments are

E(X | θ) = nπ and Var(X | θ) = nπ(1 − π).

• Geometric distribution: this is characterised by the following density:

f (x | θ) = θ(1 − θ)x I{0,1,...}(x),

valid for θ ∈ (0,1). This is denoted as Geo(θ). The first two moments are

E(X | θ) =
(1 − θ)
θ

and Var(X | θ) =
(1 − θ)
θ2 .
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• Negative Binomial distribution: this is characterised by the following
density:

f (x | θ) =
(
r + x − 1

x

)
πr (1 − π)x I{0,1,...}(x),

with θ = (r, π) and valid for π ∈ (0,1) and r ∈ N. This is denoted as
NB(r, π). The first two moments are

E(X | θ) =
r(1 − π)

π
and Var(X | θ) =

r(1 − π)
π2 .

• Poisson distribution: this is characterised by the following density:

f (x | θ) = e−θ
θx

x!
I{0,1,...}(x),

valid for θ > 0. This is denoted as Po(θ). The first two moments are

E(X | θ) = θ and Var(X | θ) = θ.

• Beta-Binomial distribution: this is characterised by the following density:

f (x | θ) =
(
n
x

)
Γ(a + b)
Γ(a)Γ(b)

Γ(a + x)Γ(b + n − x)
Γ(a + b + n)

I{0,...,n}(x),

where Γ(·) is the gamma function that satisfies Γ(a) = (a − 1)Γ(a − 1),
with θ = (a, b,n) and valid for a, b > 0 and n ∈ N. This is denoted as
BBin(a, b,n). The first two moments are

E(X | θ) =
na

a + b
and Var(X | θ) =

nab(a + b + n)
(a + b)2(a + b + 1)

.

• Beta-Negative Binomial distribution: this is characterised by the follow-
ing density:

f (x | θ) =
(
r + x − 1

x

)
Γ(a + b)
Γ(a)Γ(b)

Γ(a + r)Γ(b + x)
Γ(a + b + r + x)

I{0,1,...}(x),

with θ = (a, b,r) and valid for a, b > 0 and r ∈ N. This is denoted as
BNB(a, b,r). The first two moments are

E(X | θ) =
rb

a − 1
if a > 1, and

Var(X | θ) =
rb(a + r − 1)(a + b − 1)
(a − 1)2(a − 2)

if a > 2.
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• Gamma-Poisson distribution: this is characterised by the following
density:

f (x | θ) =
ba

Γ(a)
Γ(a + x)cx

x!(b + c)a+x
I{0,1,...}(x),

with θ = (a, b, c) and valid for a, b, c > 0. This is denoted as Gpo(a, b, c).
The first two moments are

E(X | θ) =
ca
b

and Var(X | θ) =
ca(b + c)

b2 .

• Multinomial distribution: this is a multivariate distribution characterised
by the following density:

f (x | θ) = n!
k∏
j=1

π
x j

j

xj!
I

(
k∑
j=1

xj = n

)
,

with x = (x1, . . . , xk), xj ∈ N, θ = (n,π) and valid for πj ∈ (0,1),∑k
j=1 πj = 1 and n ∈ N. This is denoted as Mult(n,π). The first two

moments are

E(Xj | θ) = nπj, Var(Xj | θ) = nπj(1 − πj) and
Cov(Xi,Xj) = −nπiπj

for i , j.
• Dirichlet-Multinomial distribution: this is a multivariate distribution

characterised by the following density:

f (x | θ) =
Γ(n + 1)Γ(a0)

Γ(a0 + n)

k∏
j=1

Γ(aj + xj)

Γ(aj)Γ(xj)
I

(
k∑
j=1

xj = n

)
,

with x = (x1, . . . , xk), xj ∈ N, θ = (n,a) where a = (a1, . . . ,ak) and valid
for aj > 0 and n ∈ N, with a0 =

∑k
j=1 aj . This is denoted as DMult(a,n).

The first two moments are

E(Xj | θ) = n
aj

a0
, Var(Xj | θ) =

n(n + a0)aj(a0 − aj)

a2
0(a0 + 1)

and Cov(Xi,Xj) = −
n(n + a0)aiaj

a2
0(a0 + 1)

for i , j.
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Continuous Distributions

• Uniform distribution: this is characterised by the following density:

f (x | θ) =
1

b − a
I(a,b)(x),

with θ = (a, b) and valid for a < b ∈ R. We denote it as Un(a, b). The
first two moments are

E(X | θ) =
a + b

2
and Var(X | θ) =

(b − a)2

12
.

• Beta distribution: this is characterised by the following density:

f (x | θ) =
Γ(a + b)
Γ(a)Γ(b)

xa−1(1 − x)b−1I(0,1)(x),

with θ = (a, b) and valid for a, b > 0. We denote it as Be(a, b). The first
two moments are

E(X | θ) =
a

a + b
and Var(X | θ) =

ab
(a + b)2(a + b + 1)

.

• Inverse beta distribution: this is also known as beta prime or beta of the
second kind and is characterised by the following density:

f (x | θ) =
Γ(a + b)
Γ(a)Γ(b)

xa−1(1 + x)−a−b I(0,∞)(x),

with θ = (a, b) and valid for a, b > 0. We denote it as Ibe(a, b). The first
two moments are

E(X | θ) =
a

b − 1
and Var(X | θ) =

a(a + b − 1)
(b − 2)(b − 1)2

if b > 1 and b > 2, respectively.
• Exponential distribution: this is characterised by the following density:

f (x | θ) = θe−θx I(0,∞)(x),

valid for θ > 0. We denote it as Exp(θ). The first two moments are

E(X | θ) =
1
θ

and Var(X | θ) =
1
θ2 .

• Gamma distribution: this is characterised by the following density:

f (x | θ) =
ba

Γ(a)
xa−1e−bx I(0,∞)(x),
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with θ = (a, b) and valid for a, b > 0. We denote it as Ga(a, b). The first
two moments are

E(X | θ) =
a
b

and Var(X | θ) =
a
b2 .

• Inverse gammadistribution: this is characterised by the following density:

f (x | θ) =
ba

Γ(a)
x−a−1e−b/x I(0,∞)(x),

with θ = (a, b) and valid for a, b > 0. We denote it as Iga(a, b). The first
two moments are

E(X | θ) =
b

a − 1
and Var(X | θ) =

b2

(a − 1)2(a − 2)
if a > 1 and a > 2, respectively.
• Gamma-gamma distribution: this is characterised by the following

density:

f (x | θ) =
baΓ(a + c)xc−1

Γ(a)Γ(c)(b + x)a+c
I(0,∞)(x),

with θ = (a, b, c) and valid for a, b, c > 0. We denote it as Gga(a, b, c).
The first two moments are

E(X | θ) =
cb

a − 1
and Var(X | θ) =

b2c(a + c − 1)
(a − 1)2(a − 2)

if a > 1 and a > 2, respectively.
• Normal distribution: this is characterised by the following density:

f (x | θ) =
(

2π
τ

)−1/2

exp
{
−
τ

2
(x − µ)2

}
IR(x),

with θ = (µ, τ) and valid for µ ∈ R and τ > 0. We denote it as N(µ, τ).
The first two moments are

E(X | θ) = µ and Var(X | θ) =
1
τ
.

• Pareto distribution: this is characterised by the following density:

f (x | θ) =
aba

xa+1 I[b,∞)(x),

with θ = (a, b) and valid for a, b > 0. We denote it as Pa(a, b). The first
two moments are

E(X | θ) =
ba

a − 1
and Var(X | θ) =

b2a
(a − 1)2(a − 2)

if a > 1 and a > 2, respectively.
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• Inverse Pareto distribution: this is characterised by the following density:

f (x | θ) = abaxa−1I(0,1/b)(x),

with θ = (a, b) and valid for a, b > 0. We denote it as Ipa(a, b). The first
two moments are

E(X | θ) =
a

b(a + 1)
and Var(X | θ) =

a
b2(a + 1)2(a + 2)

.

• Student-t: this is characterised by the following density:

f (x | θ) =
Γ ((ν + 1)/2)
Γ (ν/2)

( τ
νπ

)1/2
(
1 +

τ(x − µ)2

ν

)−(ν+1)/2

IR(x),

with θ = (µ, τ, ν) and valid for µ ∈ R and τ, ν > 0. We denote it as
St(µ, τ, ν). The first two moments are

E(X | θ) = µ and Var(X | θ) =
ν

τ(ν − 2)

if ν > 1 and ν > 2, respectively.
• Generalised Scaled Student-t: this is characterised by the following

density:

f (x | θ) = k(µ, τ)
exp{tan−1(x)τµ}
(1 + x2)1+τ/2

IR(x),

with k(µ, τ) a normalising constant, θ = (µ, τ) and valid for µ ∈ R and
τ > 0. We denote it as GSSt(µ, τ). The first two moments are

E(X | θ) = µ and Var(X | θ) =
1 + µ2

τ − 1

if τ > 1.
• Generalised Hyperbolic Secant distribution: this is characterised by the

following density:

f (x | θ) =
2τ−2

Γ(τ)

∞∏
k=0

{
1 +

x2

(τ + 2k)2

}−1 exp{tan−1(µ)x}
(1 + µ2)τ/2

IR(x),

with θ = (µ, τ) and valid for µ ∈ R and τ > 0. We denote it as GHS(µ, τ).
The first two moments are

E(X | θ) = µ and Var(X | θ) = τ + µ2/τ.
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• Dirichlet distribution: This is a multivariate distribution characterised by
the following density:

f (x | θ) =
Γ(

∑k
j=1 θ j)∏k

j=1 Γ(θ j)

k∏
j=1

xθ j−1
j I

(
k∑
j=1

xj = 1

)
,

where x = (x1, . . . , xk), xj ∈ (0,1) for j = 1, . . . , k, with θ = (θ1, . . . , θk)

and valid for θ j > 0 for j = 1, . . . , k. We denote it as Dir(θ). The first
two moments are

E(Xj | θ) =
θ j∑k
j=1 θ j

, Var(Xj | θ) =
θ j(

∑
i,j θi)

(
∑k

i=1 θi)
2(
∑k

i=1 θi + 1)
and

Cov(Xi,Xj) =
−θiθ j

(
∑k

l=1 θl)
2(
∑k

l=1 θl + 1)
for i , j.
• Multivariate normal distribution: This is a multivariate distribution

characterised by the following density:

f (x | θ) = (2π)−p/2 |C|1/2 exp
{
−

1
2
(x − µ)′C(x − µ)

}
IRp (x),

with x = (x1. . . , xp), θ = (µ,C) and valid for µ ∈ Rp and C a precision
matrix of dimension p × p. We denote it as Np(µ,C). The first two
moments are

E(X | θ) = µ and Var(X | θ) = C−1.

In general, we will use a tilde ‘∼’ to denote ‘distributed as’, for example
X ∼ Ber(θ) means that the random variable X has a Bernoulli distribution
with parameter θ. We will put an argument in front to denote density, for
exampleBer(x | θ) denotes theBernoulli density. In some cases, tomake our
statements clear, we will explicitly denote the random variables involved as
well as the arguments for densities, for example fX(x) denotes the density
for random variable X evaluated at value x and fX |Y (x | y) denotes the
conditional density of random variable X given random variable Y = y

evaluated at value x. Whenever we can, we will avoid the sub-indexes.

1.3 Moments
In Section 1.1 we used the notation f (x | θ) to denote a parametric density.
In this section we remove the explicit dependence on the parameter θ to
avoid burdening the notation and simply denote a density as f (x).
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Let us recall the definition of moments, marginal and joint. Let X be a
real random variable with probability distribution f (x) and let g(·) be a real
function. Then the expectation operator E of function g of X is defined as

E{g(X)} =
∫
R

g(x) f (x) dx or
=

∑
x∈R

g(x) f (x) (1.2)

according to whether X is continuous or discrete.
There are two particular cases for g. These are:

• If g(x) = x, then E{g(X)} = E(X) = µ and it is called the mean. This is
also known as the first non-central moment.
• If g(x) = (x − µ)2, then E{g(X)} = E{(X − µ)2} = σ2 and it is called the

variance. This is also known as the second central moment.

The mean is a measure of central tendency of the values in a random
variable, whereas the variance is a measure of dispersion. It is common to
consider the squared root of the variance σ, called standard deviation, to
measure the dispersion in the same units as the random variable.

Let (X,Y ) be a random vector with joint probability distribution f (x, y)
and let g be a real function such that g : R2 → R. Then the expectation of
g of (X,Y ) is defined as

E{g(X,Y )} =
∫
R2
g(x, y) f (x, y) dx dy or

=
∑
(x,y)∈R2

g(x, y) f (x, y) (1.3)

according to whether the vector (X,Y ) is continuous or discrete. Mixture
nature of the random variables is also possible with the appropriate changes
to expression (1.3). There is one particular case for g that we are interested
in. This is

• If g(x, y) = (x − µx)(y − µY ), with µX and µY the mean of X and Y ,
respectively, then E{g(X,Y )} = E{(X− µX)(Y − µY )} = E(XY )− µX µY =
Cov(X,Y ) and is called the covariance. This is also known as the second
cross central moment.

The covariance is a measure of the linear dependence between the two
random variables X and Y and it can take any real value. To better interpret
the linear dependence, it is customary to compute the covariance of the
standardised variables, which produces the correlation, denoted by ρ, and
defined as

ρ = Corr(X,Y ) = E
{(

X − µX
σX

) (
Y − µY
σY

)}
=

Cov(X,Y )
σXσY

.
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The correlation satisfies ρ ∈ [−1,1], which makes it easier to determine
when the correlation is strong, for values close to −1 or 1, or weak, for
values close to zero.

The conditional distributions of X given Y , denoted as f (x | y), and the
conditional distribution of Y given X , denoted as f (y | x) are defined as

f (x | y) =
f (x, y)
f (y)

and f (y | x) =
f (x, y)
f (x)

if the denominators f (y) and f (x) are positive, respectively.
Then, the theorem of total probability states that

f (x) =
∫
R

f (x | y) f (y) dy or
=

∑
y∈R

f (x | y) f (y) = EY { f (x | Y )}, (1.4)

that is, we can recover the marginal distribution of X by taking the expected
value with respect to Y of the conditional distribution of X given Y . Simi-
larly, f (y) = EX{ f (y | X)}. With the conditional distributions we can
define conditional moments. Let g be a real function; then the expected
value of the function g of x with respect to the conditional distribution of
X given Y is given by

E{g(X) | y} =
∫
R

g(x) f (x | y) dx or
=

∑
x∈R

g(x) f (x | y).

We note that this conditional expected value E{g(X) | y} is a function of
the conditioning variable Y . There are two particular cases of interest:

• If g(x) = x, then E{g(X) | y} = E{X | y} = µX |y is the conditional
mean of X given Y .

• If g(x) = (x−µX |y)2, thenE{g(X) | y} = E{(X−µX |y)2 | y} = Var(X | y)
is the conditional variance of X given Y .

Let (X,Y, Z) be a vector of dimension three with joint distribution func-
tion f (x, y, z). The conditional distribution of (X,Y ) given Z is defined
as

f (x, y | z) =
f (x, y, z)

f (z)
.

Let g(x, y) = (x − µX |z)(y − µY |z); then the conditional covariance of (X,Y )
given Z is defined as
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Cov(X,Y | z) = E{g(X,Y ) | z} = E{(X − µX |z)(Y − µY |z) | z}

=

∫
R2
(x − µX |z)(y − µY |z) f (x, y | z) dx dy

or
=

∑
(x,y)∈R2

(x − µX |z)(y − µY |z) f (x, y | z)

= E{XY | z} − E(X | z)E(Y | z).

From the conditional mean, variance and covariance, we can recover the
marginal mean, variance and covariance, via the iterative result, which is
given as follows.

Proposition 1.1 Mood et al. (1974)Let (X,Y, Z) be a random vector of
dimension three. If the conditional expectations, variances and covariances
exist, then

i). E(X) = EY {E(X | Y )}
ii). Var(X) = EY {Var(X | Y )} + VarY {E(X | Y )}
iii). Cov(X,Y ) = EZ{Cov(X,Y | Z)} + CovZ{E(X | Z),E(Y | Z)}

Proposition 1.1 is the most important result of this section that we will
exploit throughout the remaining chapters of the book. Let us present some
examples.

Example 1.2 Let (X,N) be a bivariate random vector, whose probabil-
ity distribution is given by X | N = n ∼ Bin(n, p) and N ∼ Bin(m,q).
Explicitly, we have

f (x | n) =
(
n
x

)
px(1 − p)n−x I{0,1,...,n}(x)

and

f (n) =
(
m
n

)
qn(1 − q)m−nI{0,1,...,m}(n).

The objective is to find E(X) and Var(X) in two ways: (a) obtaining the
marginal distribution of X using the theorem of total probability (1.4); and
(b) using the iterative mean and variance formulae given in Proposition
(1.1). For (a) we use the theorem of total probability:

f (x) = E{ f (x | N)} =
∑
n

f (x | n) f (n)

=

m∑
n=x

n!
(n − x)!x!

m!
(m − n)!n!

px(1−p)n−x(1−q)m
(

q
1−q

)n
I{0,1,...,m}(x).
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After cancelling some factorials, doing the change of variable u = n − x
and completing the combinations, we get

f (x) = (pq)x(1 − q)m−x
(
m
x

)
I{0,1,...,m}(x)

m−x∑
u=0

(
m − x

u

) (
q(1 − p)

1 − q

)u
.

After computing the last sum with Newton’s theorem, we get

f (x) =
(
m
x

)
(pq)x(1 − pq)m−x I{0,1,...,m}(x).

Therefore, the marginal distribution of X is another binomial of the form
X ∼ Bin(m, pq). In this case, E(X) = mpq and Var(X) = mpq(1 − pq).
Now, for (b) we use the iterative results and obtain that the mean becomes

E(X) = E{E(X | N)} = E(Np) = pE(N) = mpq

and the variance is

Var(X) = E{Var(X | N} + Var{E(X | N)} = E(Np(1 − p)) + Var(Np)

= p(1 − p)E(N) + p2Var(N) = p(1 − p)mq + p2mq(1 − q)

= mpq − mp2q + mp2q − mp2q2 = mpq(1 − pq),

which correspond to the previous computed values. As a further illustration,
we can compute the conditional distribution f (n | x) by using Bayes’s
theorem (1.1):

f (n | x) =

(n
x

)
px(1 − p)n−x I{0,1,...,n}(x)

(m
n

)
qn(1 − q)m−nI{0,1,...,m}(n)(m

x

)
(pq)x(1 − pq)m−x I{0,1,...,m}(x)

.

After re-writing the product of indicator variables in the numerator as
I{x,x+1,...,m}(n)I{0,1,...,m}(x) and cancelling some common terms, we get

f (n | x) =
(
m − x
m − n

) {
(1 − p)q
1 − pq

}n−x (
1 − q

1 − pq

)m−n
I{x,x+1,...,m}(n),

which can be identified as a shifted binomial, that is, N − x | X = x ∼
Bin

(
m − x, (1−p)q1−pq

)
.

Example 1.3 Let (X,N) be a bivariate random vector, whose probability
distribution is given by X | N = n ∼ Bin(n, p) and N ∼ Po(λ). Explicitly,
we have

f (x | n) =
(
n
x

)
px(1 − p)n−x I{0,1,...,n}(x)
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and

f (n) = e−λ
λn

n!
I{0,1,...}(n).

As in the previous example, the objective is to find E(X) and Var(X) via (a)
the marginal distribution of X using the theorem of total probability and (b)
using the iterative mean and variance formulae. For (a) we use the theorem
of total probability (1.4):

f (x) = E{ f (x | N)} =
∑
n

f (x | n) f (n)

=

∞∑
n=x

n!
(n − x)!x!

1
n!

px(1 − p)n−xe−λλnI{0,1,...}(x).

After cancelling some factorials, doing the change of variable u = n − x,
we get

f (x) =
e−λ

x!

(
p

1 − p

) x
I{0,1,...}(x)

∞∑
u=0

1
u!
(λ(1 − p))u+x .

After computing the last sum with Taylor expansion of the exponential
function and cancelling some elements, we get

f (x) = e−λp
(λp)x

x!
I{0,1,...}(x).

Therefore, the marginal distribution of X is a Poisson of the form X ∼
Po(λp). In this case, E(X) = λp and Var(X) = λp. Now, for (b) we use
Proposition (1.1) and obtain that the mean becomes

E(X) = E{E(X | N)} = E(Np) = pE(N) = pλ

and the variance is

Var(X) = E{Var(X | N} + Var{E(X | N)} = E(Np(1 − p)) + Var(Np)

= p(1 − p)E(N) + p2Var(N) = p(1 − p)λ + p2λ

= pλ(1 − p + p) = pλ.

We can compute the conditional distribution f (n | x) by using Bayes’s
theorem (1.1):

f (n | x) =
f (x | n) f (n)

f (x)

=

(n
x

)
px(1 − p)n−x I{0,1,...,n}(x)e−λλn 1

n! I{0,1,...}(n)

e−λp(λp)n 1
n! I{0,1,...}(x)

.
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After re-writing the product of indicator variables in the numerator as
I{x,x+1,...}(n)I{0,1,...}(x) and cancelling some common terms, we get

f (n | x) = e−λ(1−p)
{λ(1 − p)}n−x

(n − x)!
I{x,x+1,...}(n),

which can be identified as a shifted Poisson, that is, N − x | X = x ∼
Po (λ(1 − p)) .

1.4 Stochastic Processes
Definition 1.4 A stochastic process, denoted by {X(t) : t ∈ T}, is a family
or collection of random variables, where t is a parameter that takes values
in T. For each t, X(t) is a random variable.

In general, themost common parameter t that indexes a stochastic process
is time. In this case X(t)would be the state of the process at time t. However,
t could be space in any dimension, for instance in R2, if t = (t1, t2) then
X(t) would be the state of the process at location (t1, t2). Sometimes we
interchange X(t) with Xt to simplify the notation, avoiding the use of
parentheses.
T is the index set of the process. If T is enumerable, then X(t) is a process

in discrete time, for example {X(t) : t ∈ N}. If T is a non-enumerable subset
of R, then X(t) is a process in continuous time, for example {X(t) : t > 0}.

The state of the process is the set of all possible values X(t) ∈ X for all
t ∈ T. The state space X can be discrete or continuous.

One particular type of process of interest is the Markov process. We
define it here.

Definition 1.5 A stochastic process {X(t) : t ∈ T} is a Markov process if
it satisfies the Markovian property that states given the present, X(t), the
values of the future, X(s) for s > t, do not depend on the past, X(u) for
u < t. In notation,

P{X(s) ∈ A | X(u0) = xu0,X(u1) = xu1, . . . ,X(un) = xun
,X(t) = xt}

= P{X(s) ∈ A | X(t) = xt}

for arbitrary A ⊂ X and u0 < u1 < · · · < un ≤ t < s.

Another property of interest of stochastic processes is stationarity. This
is a condition that can be achieved strictly or weakly.
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Definition 1.6 A stochastic process {X(t) : t ∈ T} is strictly stationary
if it satisfies that for all n, s, t1, . . . , tn, the vectors (X(t1), . . . ,X(tn)) and
(X(t1 + s), . . . ,X(tn + s)) have the same joint distribution.

In other words, Definition 1.6 says that there must be a kind of invariant
distribution if we shift the process a specific amount of time. In particular,
it must be satisfied that X(t) and X(t + s) must have the same distribution.

A weaker version of stationarity is defined as follows.

Definition 1.7 A stochastic process {X(t) : t ∈ T} is weakly stationary,
or second-order stationary, if for s, t ∈ T, X(t) satisfies the following two
conditions:

i). E{X(t)} = µ, and
ii). Cov{X(t),X(t + s)} = σ(s),

That is, the first two moments do not depend on t.

Second-order stationarity, given in Definition 1.7, only requires that the
first two moments of the process, mean and variance, remain constant for
all times. And after shifting the process, the covariance does not depend on
the specific time t, it only depends on the time difference s.

Let us consider a first example.

Example 1.8 Autoregressive process of order 1, AR(1). Let Z1, Z2, . . . be
random variables such that E(Zt) = 0 for all t, Var(Zt) = σ2 for t = 0,
Var(Zt) = (1 − θ2)σ2 for t ≥ 1, and Cov(Zt, Zs) = 0 for all t , s. Let

X0 = Z0 and Xt = θXt−1 + Zt, for t ≥ 1.

Therefore {Xt : t ∈ N} is an autoregressive process of order 1. If we iterate,
we can re-write the process as

Xt = θ(θXt−2 + Zt−1) + Zt

= θ2Xt−2 + θZt−1 + Zt

...

=

t∑
i=0

θt−iZi =

t∑
i=0

θiZt−i .

With this expression we can easily compute the first two moments of the
process Xt and the covariance. The mean is

E(Xt) =

t∑
i=0

θt−iE(Zi) = 0.
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The variance is

Var(Xt) =

t∑
i=0

θ2(t−i)Var(Zi) = θ
2t

{
σ2 +

t∑
i=1

θ−2i(1 − θ2)σ2

}
= σ2θ2t

[
1 + (1 − θ2)

{
1 − (θ−2)t+1

1 − θ−2 − 1
}]

= σ2.

The covariance is

Cov(Xt,Xt+s) = Cov

(
t∑

i=0

θn−iZi,

t+s∑
j=0

θt+s−jZ j

)
=

t∑
i=0

t+s∑
j=0

θ2t+s−i−jCov(Zi, Z j)

=

t∑
i=0

θ2t+s−i−jVar(Zi) = θ
2t+s

{
σ2 +

t∑
i=1

θ−2i(1 − θ2)σ2

}
= σ2θs

for s ≥ 0. Additionally,

Corr(Xt,Xt+s) = θ
s .

Since the mean and variance of Xt are constant and the covariance between
(Xt,Xt+s) only depends on the shift s, {Xt} is a second-order stationary
process. A further question would be, is {Xt} a Markov process? The
answer is yes if we add the independence assumption in the {Zt}. In such a
case

f (xt | xt−1, xt−2, . . . , x0) = f (xt | xt−1).

Note that the version of the autoregressive process of order one presented
in Example 1.8 is a finite version of the process, in the sense that it is defined
for t = 0,1,2, . . . ,nwith n finite or infinite. In such a case, to achieve second-
order stationarity in {Xt}, the innovation terms Zt have different variance
for t = 0 than for t ≥ 1. Common specifications of an AR(1) process, for
example Chatfield (2003), define the process for non-bounded times, that
is, for t ∈ Z. In such a case we do not need different variances to achieve
second order stationarity.

Let us now consider a second example.
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Example 1.9 Moving average process of order q, M A(q). Let Z1, Z2, . . .

be random variables such that E(Zt) = 0, Var(Zt) = σ
2 and Cov(Zt, Zs) = 0

for all t , s. Let

Xt = θ0Zt + θ1Zt−1 + · · · + θqZt−q for t ∈ Z.

Therefore {Xt : t ∈ Z} is a moving average process of order q. We can
re-write the process in two different ways

Xt =

q∑
i=0

θiZt−i =

t∑
j=t−q

θt−jZ j .

With these expressions we can compute the first twomoments of the process
Xt as well as the covariance. The mean is

E(Xt) = E

(
q∑
i=0

θiZt−i

)
=

q∑
i=0

θiE(Zt−i) = 0.

The variance is

Var(Xt) =

q∑
i=0

θ2
iVar(Zt−i) = σ

2
q∑
i=0

θ2
i .

The covariance is, for s ≤ q,

Cov(Xt,Xt+s) = Cov

(
t∑

i=t−q

θt−iZi,

t+s∑
j=t+s−q

θt+s−jZ j

)
t∑

i=t−q

t+s∑
j=t+s−q

θt−iθt+s−jCov(Zi, Z j)

=

t∑
i=t+s−q

θt−iθt+s−iVar(Zi)

= σ2
t∑

i=t+s−q

θt−iθt+s−i for s ≤ q.

By doing the change of variable j = i − t − s + q in the previous sum, we
have

Cov(Xt,Xt+s) = σ
2
q−s∑
j=0

θq−s−jθq−j for s ≤ q

and Cov(Xt,Xt+s) = 0 if s > q. Additionally, the correlation becomes

Corr(Xt,Xt+s) =

∑q−s

j=0 θq−s−jθq−j∑q

i=0 θ
2
i

for s ≤ q
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and Corr(Xt,Xt+s) = 0 if s > q. Since the mean and variance of Xt are
constants and the covariance does not depend on t, {Xt} is a second-order
stationary process. But, is {Xt} aMarkov process? The answer is no because
there is no way of writing Xt in terms of Xt−1 exclusively.

Let us consider a third example of a stochastic process in space instead
of time.

Example 1.10 Conditionally autoregressive (CAR) process (Besag, 1974).
Let {Xi : i = 1, . . . ,n} be a stochastic process such that each randomvariable
Xi is associated to an area i in a region. Let each Xi be defined conditionally
on the other areas j , i through a normal distribution of the form

Xi | Xj = xj, j , i ∼ N

(∑
j

bi j xj , τi

)
.

We know that any joint distribution f (x1, . . . , xn) induces well-defined con-
ditional densities f (xi | xj, j , i); However, the converse is not always
possible. Brook’s lemma (Brook, 1964) states the conditions for obtaining
a joint distribution based on its conditional distributions. In this case, it can
be proved that

f (x) ∝ exp
{
−

1
2

x′D(I − B)x
}
,

where B = (bi j) and D = diag(τ1, . . . , τn). For this to be a well-defined joint
density, we need the matrix D(I − B) to be symmetric. This is satisfied if
bi jτi = bjiτj for all i and j. In particular, if bi j = wi j/wi+ and τi = τwi+,
where wi j = I(i ^ j) with “^” denoting neighbour, and wi+ =

∑
j wi j is

the number of neighbours of area i. In this case the conditional distributions
become

f (xi | xj, j , i) = N

(∑
j

wi j

wi+

xj , τ wi+

)
(1.5)

and the joint distribution is

f (x1, . . . , xn) ∝ exp
{
−
τ

2
x′(Dw −W)x

}
, (1.6)

where W = (wi j) and Dw = diag(w1+, . . . ,wn+). We note that (Dw −W)
1 = 0, that is, the precision matrix (Dw − W) is singular, so the joint
distribution (1.6) is improper. Expressions (1.5) and (1.6) define a stochastic
process that is known as an intrinsic CAR process.
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According to Banerjee et al. (2010), the impropriety condition can
be corrected by adding an association parameter ρ such that the preci-
sion matrix C = Dw − ρW becomes non-singular. This is achieved if
ρ ∈ (1/λ(1),1/λ(n)), where λ(1) and λ(n) are the minimum and maximum
eigenvalues of D−1/2

w WD−1/2
w . In this case the conditional distributions

become

f (xi | xj, j , i) = N

(
ρ
∑
j

wi j

wi+

xj , τ wi+

)
and the joint distribution is X ∼ N(0, τ(Dw − ρW)). Alternatively, Cressie
(1993) suggested correcting the impropriety condition by considering a
parameter α ∈ (1/λ(1),1/λ(n)), where λ(1) and λ(n) are the minimum and
maximum eigenvalues of the adjacency matrix W and defining a joint
distribution X ∼ N(0, τ(I − αW)). Either of these two latter processes is
called a proper CAR process.

On the other hand, none of the first two CAR processes are stationary.
The first one because it is improper and the second one because E(Xi) = 0
and Var(Xi) = 1/(τwi+) and the marginal distribution is not invariant,
that is, Xi ∼ N(0, τwi+). However, the third specification does define a
stationary process with invariant distribution Xi ∼ N(0, τ). Moreover, the
three CAR processes satisfy a Markov property in space, because their law
only depends on neighbours of the first kind. Therefore intrinsic and proper
CAR models are known asMarkov random fields.
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