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Abstract

Tail asymptotics of the solutionR to a fixed-point problem of the typeR
D= Q+ ∑N

1 Rm
are derived under heavy-tailed conditions allowing both dependence between Q and N
and the tails to be of the same order of magnitude. Similar results are derived for a
K-class version with applications to multi-type branching processes and busy periods in
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1. Introduction

In this paper we study the tail asymptotics of the solution R to the fixed-point problem

R
D= Q+

N∑
m=1

Rm (1)

under suitable regular variation (RV) conditions and the similar problem in a multidimensional
setting stated below at (6). Here in (1), Q and N are (possibly dependent) nonnegative,
nondegenerate random variables, N being integer valued, R1, R2, . . . are independent and
identically distributed (i.i.d.) and distributed as R, and n̄ = E[N ] < 1 (similar notation for
expected values is used in the following).

In a classical example R is the M/G/1 busy period (cf. [9] and [28]), whereQ is the service
time of the first customer in the busy period and N the number of arrivals during his service.
HereQ andN are indeed heavily dependent, with tails of the same order of magnitude whenQ
has a regularly varying distribution; more precisely, N is Poisson(λq) given Q = q. Another
example is the total progeny of a subcritical branching process, where Q ≡ 1 and N is the
number of children of the ancestor. More generally, R could be the total life span of the
individuals in a Crump–Mode–Jagers process [19], corresponding to Q being the lifetime of
the ancestor and N the number of her children. Related examples are weighted branching
processes (see [20] for references). Note that connections between branching processes and
RV have a long history; for some early work, see [5], [6], [24], and [25].

Recall some definitions of classes of heavy-tailed distributions. A distribution F on the real
line is long tailed, F ∈ L, if, for some y > 0,

F̄ (x + y)

F̄ (x)
→ 1 as x → ∞; (2)
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a functionL ≥ 0 is slowly varying at ∞ ifL(αx)/L(x) → 1 for all finite α > 0; F is regularly
varying, F ∈ RV, if, for some β > 0, F̄ (x) = x−βL(x), where L(x) is slowly varying at ∞;
F is intermediate regularly varying, F ∈ IRV, if

lim
α↑1

lim sup
x→∞

F̄ (αx)

F̄ (x)
= 1. (3)

It is known that L ⊃ IRV ⊃ RV, and if F has a finite mean then L ⊃ S∗ ⊃ IRV, where
S∗ is the class of so-called strong subexponential distributions; see, e.g. [13] or [18] for further
definitions and properties of heavy-tailed distributions.

Tail asymptotics of quantities related to R have been studied earlier in [20] and [27] under
RV conditions (see also [7]). Our main result is the following.

Theorem 1. Assume that n̄ < 1 and q̄ < ∞. Then

(i) there is only one nonnegative solution R to (1) with finite mean; for this solution, r̄ =
q̄/(1 − n̄);

(ii) if further

(C) the distribution of Q + cN is intermediate regularly varying for all c > 0 in the
interval (r̄ − ε, r̄ + ε), where r̄ is as in (i) and ε > 0 is any small number,

then

P(R > x) ∼ 1

1 − n̄
P(Q+ r̄N > x) as x → ∞; (4)

(iii) in particular, condition (C) holds in the following three cases:

(a) (Q,N) has a two-dimensional regularly varying distribution;

(b) Qhas an intermediate regularly varying distribution and P(N > x) = o(P(Q > x));

(c) N has an intermediate regularly varying distribution and P(Q > x) = o(P(N > x)).

Part (i) is well known from several sources and not deep (see the proof of the more general
Proposition 1 below and the references at the end of the section for more general versions).
Part (ii) generalizes and unifies results of [20] and [27] in several ways. Motivated by Google’s
PageRank algorithm, both of these papers consider the more general recursion

R
D= Q+

N∑
m=1

AmRm. (5)

However, [20] does not allow dependence and/or the tails ofQ andN to be equally heavy. These
features are incorporated in [27], but, on the other hand, that paper requires strong conditions on
the Ai which do not allow us to take Ai ≡ 1 when dealing with sharp asymptotics. To remove
all of these restrictions is essential for the applications to queues and branching processes that
we have in mind. Also, our proofs are considerably simpler and shorter than those in [20] and
[27]. The key tool is a general result of [17] giving the tail asymptotics of the maximum of a
random walk up to a (generalised) stopping time.

Remark 1. Theorem 1 considers only the case in which Ai ≡ 1. However, our approach may
work in the more general setting of (5) with i.i.d. positive {Am} that do not depend on Q, N ,
and {Rm}. For example, if we assume, in addition to n̄ < 1, that P(0 < A1 ≤ 1) = 1, then
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the exact tail asymptotics for P(R > x) may be easily found using the upper bound (4) and
the principle of a single big jump. However, the formula for the tail asymptotics in this case is
much more complicated than (4).

The multivariate version involves a set (R(1), . . . , (R(K)) of random variables satisfying

R(i)
D= Q(i)+

K∑
k=1

N(k)(i)∑
m=1

Rm(k). (6)

In the branching process setting, this relates to K-type processes by thinking of N(k)(i) as
the number of type-k children of a type-i ancestor. One example is the total progeny where
Q(i) ≡ 1, others relate as above to the total life span and weighted branching processes.
A queueing example concerns the busy periods R(i) in the multi-class queue in [14], with i the
class of the first customer in the busy period and Q(i) the service time of a class-i customer;
the model states that during service of a class-i customer, class-k customers arrive at rate λik .
Note that, for this example, [14] gives only lower asymptotic bounds, whereas here we provide
sharp asymptotics.

The treatment of (6) is considerably more involved than for (1), and we defer the details of
the assumptions and results to Section 3. We remark here only that the concept of multivariate
regular variation (MRV) plays a key role; that the analogue of the crucial assumption n̄ < 1
above is subcriticality, ρ = spr(M) < 1, where spr denotes the spectral radius and M is
the offspring mean matrix with elements mik = EN(k)(i); and that the argument involves a
recursive procedure from [16], reducing K to K − 1 so that ultimately we recover the K = 1
case of (1) and Theorem 1.

1.1. Bibliographical remarks

Any R, or its distribution, satisfying (5) is often called a fixed point of the smoothing
transform (going back to [11]). There is an extensive literature on this topic, but rather than on
tail asymptotics, the emphasis is most often on existence and uniqueness questions (these are
easy in our context with all random variables nonnegative with finite mean and we give short
self-contained proofs). Also, the assumption Ai �= 1 is crucial for most of this literature. See
further [1], [2], and [3], and the references therein.

It should be noted that the term ‘multivariate smoothing transform’ (e.g. [8]) refers to a
recursion of vectors, that is, a version of (1) with R and Q ∈ R

K . This differs from our setup
because in (6) we are interested only in the one-dimensional distributions of theR(i). In fact, for
our applications, there is no interpretation of a vector with ith marginal having the distribution
of R(i).

In [26], tail asymptotics for the total progeny of a multi-type branching process are studied
by different techniques in the critical case ρ = 1.

2. One-dimensional case: (1)

The heuristic underlying (4) is the principle of a single large jump: for R to exceed x, either
one or both elements of (Q,N)must be large, or the independent event occurs that Rm > x for
some m ≤ N , in which case N is small or moderate. If N is large,

∑N
1 Rm is approximately

r̄N , so roughly the probability of the first possibility is P(Q + r̄N > x). On the other hand,
results for compound heavy-tailed sums suggest that the approximate probability of the second
possibility is n̄P(R > x). We thus arrive at (4) via

P(R > x) ≈ P(Q+ r̄N > x)+ n̄P(R > x).
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In the proof of Theorem 1, let (Q1, N1), (Q2, N2), . . . be an i.i.d. sequence of pairs dis-
tributed as the (possibly dependent) pair (Q,N) in (1). Then Sn = ∑n

i=1 ξi, i = 0, 1, . . . ,
where ξi = Ni − 1 is a random walk. Clearly, Eξi < 0. Let

τ = min{n ≥ 1 : Sn < 0} = min{n ≥ 1 : Sn = −1}.
Note that, from Sτ = −1 and Wald’s identity, ESτ = Eτ · E(N − 1), we have

Eτ = 1

1 − EN
.

Now either N1 = 0, in which case τ = 1, or N1 > 0 so that S1 = N1 − 1 and to proceed
to level −1, the random walk must go down one level N1 times. This shows that (in obvious
notation)

τ
D= 1 +

N∑
i=1

τi . (7)

That is, τ is a solution to (1) with Q ≡ 1. On the other hand, the total progeny in a Galton–
Watson process with the number of offspring of an individual distributed as N obviously also
satisfies (7), and, hence, by uniqueness, must have the same distribution as τ . This result first
occurs as Equation (4) of [12], but we remark that an alternative representation (1) in that paper
appears to have received the most attention in the literature.

Now define

ϕi = k0 + k1Qi and V =
τ∑
i=1

ϕi,

where k0 and k1 are nonnegative constants with k0 + k1 > 0. In particular, if (k0, k1) = (1, 0)
then V = τ , while

(k0, k1) = (0, 1) implies that V
D= R.

Indeed, arguing as before, we conclude that the equation V
D= ϕ + ∑N

1 Vi has only one inte-
grable positive solution, and, clearly,

V
D= ϕ +

N∑
1

Vi
D= ϕ +

N∑
1

ϕi +
N∑
1

Ni∑
1

ϕi,j +
N∑
1

Ni∑
1

Ni,j∑
1

ϕi,j,k + · · · D=
τ∑
1

ϕi,

where, as before, (ϕ,N), (ϕi, Ni), (ϕi,j , Ni,j ), etc. are i.i.d. vectors. In particular, V becomes
R on replacing ϕ by Q.

Proof of Theorem 1. It remains to find the asymptotics of P(V > x) as x → ∞. Throughout
the proof, we assume that k1 > 0.

Let r0 be the solution to the equation

Eϕ1 + r0Eξ1 = 0.

Note that in the particular case that (k0, k1) = (0, 1),

r0 = EQ

1 − EN
= r. (8)
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Choose r > r0 and as close to r0 as needed (see before (9)), and let

ψi = ϕi + rξi .

We find upper and lower bounds for the asymptotics of P(V > x) and show that they are
asymptotically equivalent. Since k1 > 0 andQ+Nr/k1 has an IRV distribution, the distribution
of k1Q+ rN is IRV, too.

Upper bound. The key is to apply the main result of [17] to obtain the following upper
bound:

P(V > x) = P

( τ∑
i=1

ϕi > x

)

= P

( τ∑
i=1

ψi > x + rSτ

)

= P

( τ∑
i=1

ψi > x − r

)

≤ P

(
max

1≤k≤τ

k∑
i=1

ψi > x − r

)

∼ EτP(ψ1 > x − r)

∼ EτP(ψ1 > x − r + k0)

= EτP(k1Q+ rN > x).

Here the first equivalence follows from [17], noting that the distribution of ψ1 belongs to the
class S∗ and that [17] only requires ϕ1, ϕ2, . . . to be i.i.d. with respect to some filtration with
respect to which τ is a stopping time. For the second equivalence, we use the long-tail property
(2) of the distribution of ψ1.

Let F be the distribution function of k1Q+ r0N . Then, as x → ∞,

F̄ (x) ≤ P(k1Q+ rN > x) ≤ P

(
rk1Q

r0
+ rN > x

)
≤ F̄ (αx) ≤ (1 + o(1))c(α)F̄ (x),

where α = r0/r < 1 and c(α) = lim supy→∞ F̄ (αy)/F̄ (y).
Now we assume that the IRV condition holds, let r ↓ r0, and apply (3) to obtain the upper

bound
P(R > x) ≤ (1 + o(1))EτP(k1Q+ r0N > x). (9)

In particular, if (k0, k1) = (0, 1) then r0 = r̄ is as in (8).
Lower bound. Here we setψn = ϕn+ rξn, where r > 0 and is strictly smaller than r0. Then

the ψn are i.i.d. random variables with common mean Eψ1 < 0.
For any fixed C > 0, L > 0, n = 1, 2, . . ., and x ≥ 0, we have

P(V > x) ≥ P

( τ∑
i=1

ψi > x

)
≥

n∑
i=1

P(Di ∩ Ai), (10)

where

Di =
{ i−1∑
j=1

|ψj | ≤ C, τ ≥ i, ψi > x + C + L

}
and Ai =

⋂
�≥1

{ �∑
j=1

ψi+j ≥ −L
}
.

https://doi.org/10.1017/apr.2018.69 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2018.69


52 S. ASMUSSEN AND S. FOSS

Indeed, the first inequality in (10) holds since Sτ is nonpositive. Next, the eventsDi are disjoint
and, given Di , we have

∑i
1 ψj > x + L. Then, given Di ∩ Ai , we have

∑k
1 ψj ≥ x for all

k ≥ i and, in particular,
∑τ
j=1 ψj > x. Thus, (10) holds.

The events {Ai} form a stationary sequence. Appealing to the strong law of large numbers
(SLLN), for any ε > 0, we can choose L = L0 so large that P(Ai) ≥ 1 − ε. For this ε, choose
n0 and C0 such that

n0∑
i=1

P

( i−1∑
j=1

|ψj | ≤ C0, τ ≥ i

)
≥ (1 − ε)Eτ.

Since the random variables ({ψj }j<i, I(τ ≤ i)) are independent of {ψj }j≥i , we further obtain,
for any ε ∈ (0, 1) and any n ≥ n0, C ≥ C0, and L ≥ L0,

P(V > x) ≥
n∑
i=1

P

( i−1∑
j=1

|ψj | ≤ C, τ ≥ i

)
P(ψi > x + C + L)P(Ai)

≥ (1 − ε)2P(ψ1 > x + C + L)

n∑
i=1

P(τ ≥ i)

∼ (1 − ε)2P(ψ1 > x)

n∑
i=1

P(τ ≥ i) as x → ∞.

Here the final equivalence follows from the long tailedness of ψ1. Letting first n → ∞ and
then ε → 0, we obtain lim infx→∞(P(V > x)/EτP(ψ1 > x)) ≥ 1. Then we let r ↑ r0 and use
the IRV property (3). In the particular case (k0, k1) = (0, 1), we obtain an asymptotic lower
bound that is equivalent to the upper bound derived above. �
Remark 2. A slightly more intuitive approach to the lower bound is to bound P(R > x) below
by the sum of the contributions from the disjoint events B1, B2, and B3, where

B1 = B ∩ {r̄N > εx}, B2 = B ∩ {A < r̄N ≤ εx}, B3 = {r̄N ≤ A},
and B = {Q+ r̄N > (1 + ε)x}. Here, for large x and A, and small ε,

P(R > x;B1) ∼ P(Q+ r̄N > x, r̄N > εx),

P(R > x;B2) ≥ P(Q > x, r̄N ≤ εx) ∼ P(Q+ r̄N > x, r̄N ≤ εx),

P(R > x;B3) ≥
A/r̄∑
n=0

P(R1 + · · · + Rn > x)P(N = n)

≥
A/r̄∑
n=0

P(max(R1, . . . , Rn) > x)P(N = n)

∼
A/r̄∑
n=0

nP(R > x)P(N = n)

∼ E

[
N ∧ A
r̄

]
P(R > x)

∼ n̄P(R > x).

We omit further detail because the arguments are close those given in Section 5 for the
multivariate case.
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3. Multivariate version

The assumptions for (6) are that all the Rm(k) are independent of the vector

V (i) = (Q(i), N(1)(i), . . . , N(K)(i)), (11)

that they are mutually independent, and that Rm(k)
D= R(k). Recall that we are interested only

in the one-dimensional distributions of the R(i). Accordingly, for a solution to (6), we require
the validity only for each fixed i.

Denote the offspring mean matrix by M = (mik), mik = EN(k)(i). Recall thatρ = spr(M),
where ρ is the Perron–Frobenius root if M is irreducible, but we do not need to assume this.
No restrictions on the dependence structure of the vectors in (11) need to be imposed for the
following result to hold (but later we do need MRV!).

Proposition 1. Assume that ρ < 1. Then

(i) the fixed-point problem (6) has a unique nonnegative solution with r̄i = ER(i) < ∞ for
all i; and

(ii) the r̄i = ER(i) < ∞ constitute the unique solution to the set of linear equations

r̄i = q̄i +
K∑
k=1

mikr̄k, i = 1, . . . , K. (12)

Proof. (i) Assume first that Q(i) ≡ 1, i = 1, . . . , K . The existence of a solution to (6)
is then clear since we may take R(i) as the total progeny of a type-i ancestor in a K-type
Galton–Watson process, where the vector of children of a type-j individual is distributed as
(N(1)(j), . . . , N(K)(j)). For uniqueness, let (R(1), . . . , R(K)) be any solution and consider
the K-type Galton–Watson trees G(i), i = 1, . . . , K , where G(i) corresponds to an ancestor
of type i. If we define R(0)(i) = 1,

R(n)(i)
D= 1 +

K∑
k=1

N(k)(i)∑
m=1

R(n−1)
m (k),

with similar conventions as for (6), then R(n)(i) is the total progeny of a type-i ancestor under
the restriction that the depth of the tree is at most n. Induction easily gives R(n)(i) �st R(i)

(‘�st’ denotes the stochastic order) for each i. Since also R(n)(i) � R(n+1)(i), limits R(∞)(i)

exist,R(∞)(i)must simply be the unrestricted vector of the total progeny of different types, and
R(∞)(i) �st R(i). Assuming that the R(i) have finite mean, (12) clearly holds with q̄i = 1,
and so the 
i = r̄i − ER(∞)(i) satisfy 
i = ∑K

1 mik
k . But ρ < 1 implies that I − M is
invertible, so the only solution is 
i = 0, which in view of R(∞)(i) �st R(i) implies that
R(∞)(i)

D= R(i) and the stated uniqueness when Q(i) ≡ 1.
For more generalQ(i), we equip each individual of type j in G(i) with a weight distributed

as Q(j), such that the dependence between her Q(j) and her offspring vector has the given
structure. The argument is then a straightforward generalization and application of what was
done above for Q(i) ≡ 1.

(ii) Taking expectations in (6) yields (12), which in matrix notation reads r = q +Mr . Note
as before that I − M is invertible. �

For tail asymptotics, we need an MRV assumption. The definition of MRV exists in some
equivalent variants (cf. [4], [21], [22], and [23]); we use the definition in polar L1-coordinates
adapted to deal with several random vectors at a time as in (11). Fix here and in the following
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a reference randomly varying tail F̄ (x) = L(x)/xα on (0,∞). For v = (v1, . . . , vp), define
‖v‖ = ‖v‖1 = |v1| + · · · + |vp| and let B = Bp = {v : ‖v‖ = 1}. We then say that a random
vector V = (V1, . . . , Vp) satisfies MRV(F ) (or, has property MRV(F )) if P(‖V ‖ > x) ∼
bF̄ (x), where either b = 0 or b > 0 and the angular part �V = V /‖V ‖ satisfies

P(�V ∈ · | ‖V ‖ > x)
D−→ μ as x → ∞

for some measure μ on B (the angular measure). Our basic condition is then that, for the given
reference randomly varying tail F̄ (x), the following holds:

(MRV) for any i = 1, . . . , K , the vector V (i) in (11) satisfies MRV(F ), where b = b(i) > 0
for at least one i.

Note thatF is the same for all i, but the angular measuresμi not necessarily so. We also assume
that the mean z̄ of F is finite; this ensures that all expected values occurring below are finite.

Assumption MRV(F ) implies the RV of linear combinations, in particular of marginals.
More precisely (see the appendix),

P(a0Q(i)+ a1N
(1)(i)+ · · · + aKN

(K)(i) > x) ∼ ci(a0, . . . , aK)F̄ (x), (13)

where ci(a0, . . . , aK) = b(i)
∫
B (a0θ0 + · · · + aKθK)

αμi(dθ0, . . . , dθK).

Theorem 2. Assume that ρ < 1, z̄ < ∞, and that (MRV) holds. Then there are constants
d1, . . . , dK such that

P(R(i) > x) ∼ diF̄ (x) as x → ∞. (14)

Here the di constitute the unique solution to the set of linear equations

di = ci(1, r̄1, . . . , r̄K)+
K∑
k=1

mikdk, i = 1, . . . , K, (15)

where the r̄i are as in Proposition 1 and the ci as in (13).

The proof follows in Sections 4–7.

4. Outline of the proof of Theorem 2

WhenK > 1, we have not found a random walk argument extending the proof in Section 2.
Instead, we use a recursive procedure, going back to [16] in a queueing setting, for eventually
being able to infer (14). Identification (15) of thedi then follows immediately from the following
result to be proved in Section 5 (the p = 1 case is Lemma 4.7 of [15]).

Proposition 2. Let N = (N1, . . . , Np) be MRV with P(‖N‖ > x) ∼ cN F̄ (x), and let the
random variables Z(i)m , i = 1, . . . , p, m = 1, 2, . . . , be independent with distribution Fj
forZ(j)i , independent of N and with finite means z̄j = EZ

(j)
m . Define S(j)m = Z

(j)
1 + · · · + Z

(j)
m .

If F̄j (x) ∼ cj F̄ (x) then

P(S
(1)
N1

+ · · · + S
(p)
Np

> x) ∼ P(z̄1N1 + · · · + z̄1Np > x)+ c0F̄ (x),

where c0 = c1EN1 + · · · + cpENp.

The recursion idea in [16] amounts in a queueing context to letting all class-K customers
be served first. We implement it here in the branching process setting. Consider the multi-type
Galton–Watson tree G. For an ancestor of type i < K and any of her daughters
m = 1, . . . , N(K)(i) of typeK , consider the family tree Gm(i) formed bym and all her type-K
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descendants in direct line. For a vertex g ∈ Gm(i) and k < K , let N(k)
g (K) denote the number

of type-k daughters of g.
Note that Gm(i) is simply a one-type Galton–Watson tree starting from a single ancestor and

with the number of daughters distributed asN(K)(K). In particular, the expected size of Gm(i)
is 1/(1 −mKK). We further have

R(i)
D= Q̃(i)+

K−1∑
k=1

Ñ(k)(i)∑
m=1

Rm(k), i = 1, . . . , K − 1, (16)

where

Q̃(i) = Q(i)+
N(K)(i)∑
m=1

∑
g∈Gm(i)

Qg(K), Ñ(k)(i) = N(k)(i)+
N(K)(i)∑
m=1

∑
g∈Gm(i)

N(k)
g (K),

that is, a fixed-point problem with one type less.

Example 1. Let K = 2, and consider the two-type family tree in Figure 1, where type-1
individuals are denoted by either filled squares or filled triangles, type-2 descendants of the
ancestor in direct line are denoted by open squares, and the remaining type-2 individuals
are denoted by open triangles. Type-1 individuals denoted by filled triangles are those that
are counted as extra type-1 children in the reduced recursion (16). We have N(2)(1) = 2,
and if m is the upper open-square individual of type 2 then Gm(2) has size 4. Furthermore,∑
g∈Gm(1) N

(1)
g = 2, with m herself and her upper daughter each contributing one individual.

The offspring mean in the reduced one-type family tree is m̃ = m11 +m12m21/(1 −m22).
Indeed, the first term is the expected number of original type-1 offspring of the ancestor, and in
the second term, m12 is the expected number of type-2 offspring of the ancestor, 1/(1 −m22)

the size of the direct line type-2 family tree produced by each of them, and m21 the expected
number of type-1 offspring of each individual in this tree.

Since the original two-type tree is finite, the reduced one-type tree must necessarily also be
so, so that m̃ ≤ 1. A direct verification of this is instructive. First note that

m̃ ≤ 1 ⇐⇒ m11 −m11m22 +m12m21 ≤ 1 −m22

⇐⇒ tr(M)− det(M) ≤ 1.

However, the characteristic polynomial of the two-type offspring mean matrix M equals
λ2 − λtr(M)+ det(M), and the dominant eigenvalue ρ of M satisfies ρ < 1 so that

tr(M)− det(M) ≤ ρtr(M)− det(M) = ρ2 < 1.

Figure 1: Reducing from a two-type to a one-type family tree.
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5. Proof of Proposition 2

We need the following result of Nagaev et al. (see the discussion in [15] around Equation (4.2)
therein for references).

Lemma 1. Let Z1, Z2, . . . be i.i.d. and regularly varying with finite mean z̄, and define Sk =
Z1 + · · · + Zk . Then, for any δ > 0,

sup
y≥δk

∣∣∣∣P(Sk > kz̄+ y)

kF̄ (y)
− 1

∣∣∣∣ → 0 as k → ∞.

Corollary 1. Under the assumptions of Lemma 1,

d(F, ε) = lim sup
x→∞

sup
k<εx

P(Sk > x)

kF̄ (x)
< ∞ for 0 < ε <

1

z̄
.

Proof. Define δ = (1 − εz̄)/ε. We can write x = kz̄+ y, where

y = y(x, k) = x − kz̄ ≥ x(1 − εz̄) = xεδ ≥ δk.

Lemma 1 therefore implies that, for all large x, we can bound P(Sk > x) by CkF̄ (y), where C
does not depend on x. Now just note that, by RV,

F̄ (y) ≤ F̄ (xεδ) ∼ (εδ)−αF̄ (x). �

Proof of Proposition 2. For ease of exposition, we start with the p = 2 case. We split the
probability in question into four parts:

p1(x) = P(S
(1)
N1

+ S
(2)
N2
> x, N1 ≤ εx, N2 ≤ εx),

p21(x) = P(S
(1)
N1

+ S
(2)
N2
> x, N1 > εx, N2 ≤ εx),

p22(x) = P(S
(1)
N1

+ S
(2)
N2
> x, N1 ≤ εx, N2 > εx),

p3(x) = P(S
(1)
N1

+ S
(2)
N2
> x, N1 > εx, N2 > εx).

Here

p1(x) =
εx∑

k1,k2=0

P(S
(1)
k1

+ S
(2)
k2
> x)P((N1, N2) = (k1, k2)).

Since S(1)k1
and S(2)k2

are independent, standard RV theory implies that

P(S
(1)
k1

+ S
(2)
k2
> x) ∼ (k1c1 + k2c2)F̄ (x) as x → ∞.

Furthermore, Corollary 1 shows that, for k1, k2 ≤ εx and all large x,

P(S
(1)
k1

+ S
(2)
k2
> x) ≤ P

(
S
(1)
k1
> 1

2x
) + P

(
S
(2)
k2
> 1

2x
)

≤ 2(d(F1, 2ε)k1 + d(F2, 2ε)k2)F̄ (x).

Hence, by dominated convergence, as x → ∞,

p1(x)

F̄ (x)
→

∞∑
k1,k2=0

(k1c1 + k2c2)P((N1, N2) = (k1, k2)) = c1EN1 + c2EN2.
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For p3(x), let Aj(m) denote the event that S(j)kj /kj ≤ z̄j /(1 − ε) for all kj > m. Then, by
the SLLN, there are constants r(m) converging to 0 as m → ∞ such that P(Aj (m)

c) ≤ r(m)

for j = 1, 2. It follows that, as x → ∞,

p3(x) ≤ (P(A1(εx)
c)+ P(A2(εx)

c))P(N1 > εx, N2 > εx)

+ P(S
(1)
N1

+ S
(2)
N2
> x, N1 > εx, N2 > εx,A1(εx), A2(εx))

≤ r(εx)O(F̄ (x))+ P

(
z̄1N1 + z̄2N2

1 − ε
> x, N1 > εx, N2 > εx

)

≤ o(F̄ (x))P(z̄1N1 + z̄2N2 > ηx, N1 > εx, N2 > εx),

where η < 1 − ε is specified shortly.
For p21(x), write p21(x) = p′

21(x)+ p′′
21(x), where, with γ = 2εz̄2,

p′
21(x) = P(S

(1)
N1

+ S
(2)
N2
> x, S

(2)
N2

≤ γ x, N1 > εx, N2 ≤ εx),

p′′
21(x) = P(S

(1)
N1

+ S
(2)
N2
> x, S

(2)
N2
> γx, N1 > εx, N2 ≤ εx).

Here
p′′

21(x) ≤ P(S
(1)
N1

+ S(2)εx > x, S(2)εx > γ x, N1 > εx, N2 ≤ εx)

≤ P(S(2)εx > γ x, N1 > εx)

= P(S(2)εx > γ x)P(N1 > εx)

= o(1)O(F̄ (x))

= o(F̄ (x)),

using the LLN in the fourth step. Furthermore, as in the estimates above,

p′
21(x) ≤ P(S

(1)
N1
> x(1 − γ ), N1 > εx, N2 ≤ εx)

≤ o(F̄ (x))+ P(z̄1N1 > x(1 − γ )(1 − ε), N1 > εx, N2 ≤ εx)

≤ P(z̄1N1 + z̄2N2 > x(1 − γ )(1 − ε), N1 > εx, N2 ≤ εx).

We can now finally put the above estimates together. For ease of notation, write η = η(ε) =
(1 − γ )(1 − ε) and note that η ↑ 1 as ε ↓ 0. Using a similar estimate for p12(x) as for p21(x)

and noting that, for small enough ε,

P(z̄1N1 + z̄2N2 > ηx, N1 ≤ εx, N2 ≤ εx) = 0,

we get

lim sup
x→∞

P(S
(1)
N1

+ S
(2)
N2
> x)

F̄ (x)
= c1EN1 + c2EN2 + lim sup

x→∞
P(z̄1N1 + z̄2N2 > ηx)

F̄ (x)

= c1EN1 + c2EN2 + c(z̄1, z̄2) lim sup
x→∞

F̄ (ηx)

F̄ (x)

= c1EN1 + c2EN2 + c(z̄1, z̄2)
1

ηα
.

Letting ε ↓ 0 shows that the lim sup is bounded by c0+c(z̄1, z̄2). Similar estimates for the
lim inf complete the proof for p = 2.

If p > 2, the only essential difference is that p21(x) and p22(x)must be replaced by 2p − 2
terms corresponding to all combinations of some Ni being smaller or equal to εx and others
being greater than εx, with the two exceptions where either all are smaller or equal to εx or all
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are greater than εx. However, for each of these two cases, estimates similar to those above for
p21(x) apply. �

6. Preservation of MRV under sum operations

Before giving our main auxiliary result, Proposition 4, it is instructive to recall two extremely
simple examples of MRV. The first is two i.i.d. RV(F ) random variables X1 and X2, where a
large value ofX1+X2 can occur only if one variable is large and the other small; this gives MRV
with the angular measure concentrated on the points (1, 0), (0, 1) ∈ B2 with mass 1

2 for each.
The second example is slightly more complicated as follows.

Proposition 3. Let N , Z,Z1, Z2, . . . be nonnegative random variables such that N ∈ N and
Z,Z1, Z2, . . . are i.i.d., nonnegative, and independent ofN . Assume that P(N > x) ∼ cN F̄ (x)

and P(Z > x) ∼ cZF̄ (x) for some regularly varying tail F̄ (x) = L(x)/xα , and write S =∑N
1 Zi , n̄ = EN , and z̄ = EZ, where cN + cZ > 0. Then

(i) P(S > x) ∼ (cN z̄
α + cZn̄)F̄ (x); and

(ii) the random vector (N, S) is MRV with

P(‖(N, S)‖ > x) ∼ cN,SF̄ (x), where cN,S = cN(1 + z̄α)+ cZn̄,

and angular measure μN,S concentrated on the points b1 = (1/(1 + z̄), z̄/(1 + z̄)) and
b2 = (0, 1), with

μN,S(b1) = cN

cN + cZn̄
, μN,S(b2) = cZn̄

cN + cZn̄
.

Proof. Part (i) is Lemma 4.7 of [15] (see also [10]). The proof in [15] also shows that if
S > x then, approximately, eitherNz̄ > x, occurring with probability cN F̄ (x/z̄) ∼ cN z̄

αF̄ (x),
or N ≤ εx and Zi > x, occurring with probability cZE[N ∧ εx]F̄ (x). The first possibility
gives the atom of μN,S at b1 and the second gives the atom at b2 since E[N ∧ εx] ↑ n̄. �
Proposition 4. Let V = (T , N) ∈ [0,∞)p×N satisfy MRV(F ), let Z,Z1,Z2, . . .∈ [0,∞)q

be i.i.d., independent of (T , N), and satisfying MRV(F ), and define S = ∑N
1 Zi . Then V ∗ =

(T , N,S) satisfies MRV(F ).

Proof. Let z ∈ [0,∞)q be the mean of Z. Arguments similar to those in Section 5 show
that ‖V ∗‖ > x basically occurs when either ‖T ‖ + N + N‖z‖ > x or ‖V ‖ ≤ εx and some
‖Zi‖ > x. The probabilities of these events are approximately of the form c′F̄ (x) and c′′F̄ (x),
so the radial part of V ∗ is randomly varying with asymptotic tail cV ∗ F̄ (x), where cV ∗ = c′ + c′′.
Now

P

(
(T , N)

‖(T , N)‖ ∈ ·
∣∣∣∣ ‖T ‖ +N +N‖z‖ > x

)
→ μ′

for some probability measure μ′ on the (p + 1)-dimensional unit sphere Bp+1; this follows
from the facts that ‖T ‖+N+N‖z‖ is a norm and the MRV property of a vector is independent
of the choice of norm. Letting δ′0 be the Dirac measure at (0, . . . , 0) ∈ R

q , δ′′0 be the Dirac
measure at (0, . . . , 0) ∈ R

p+1, andμ′′ = μZ be the angular measure of Z, we obtain the desired
conclusion with cV ∗ = c′ + c′′ and the angular measure of V ∗ given by

μV ∗ = c′

c′ + c′′
μ′ ⊗ δ′′0 + c′′

c′ + c′′
δ′0 ⊗ μ′′. �

In calculations that follow in Lemma 2, extending some V to some V ∗ in a number of steps,
expressions for cV ∗ andμV ∗ can be deduced along the lines of the proof of Propositions 3–4, but
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the expression and details become extremely tedious. Fortunately, they are not needed and we
therefore omit them—all that matters is existence. If α is not an even integer, the MRV alone of
V ∗ can be obtained alternatively (and slightly more easily) from Theorem 1.1(iv) of [4], stating
that, by nonnegativity, it suffices to verify MRV of any linear combination.

7. Proof of Theorem 2 completed

Lemma 2. In the setting of (16), the random vector

V ∗(i) = (Q̃(i), Ñ (1)(i), . . . , Ñ (K−1)(i))

satisfies MRV(F ) for all i.

Proof. Let |Gm(i)| be the number of elements of Gm(i), and let

M1(i) =
N(K)(i)∑
m=1

|Gm(i)|, M2(i) =
N(K)(i)∑
m=1

∑
g∈Gm(i)

(Qg(K),N
(1)
g (K), . . . , N(1)

g (K − 1)).

Recall our basic assumption that the

V ∗(i) = (Q(i), N(1)(i), . . . , N(K)(i)) (17)

satisfy MRV(F ). The connection to a Galton–Watson tree and Theorem 1 with Q ≡ 1 and
N = N(K)(i) therefore implies that so does any |Gm(i)|, and since these random variables are
i.i.d. and independent of N(K)(i), it follows from Proposition 4 that V 1(i) = (V (i),M1(i))

satisfies MRV(F ). Now the MRV(F ) property of (17) with i = K implies that the vectors
(Qg(K),N

(1)
g (K), . . . , N

(K−1)
g (K)), being distributed as (Q(K),N(1)(K), . . . , N(K−1)(K))

again satisfy MRV(F ). But M2(i) is a sum of M1(i) such vectors that are i.i.d. given M1(i).
Using Proposition 4 again shows that V 2(i) = (V (i),M1(i),M2(i)) satisfies MRV(F ). But
V ∗(i) is a function of V 2(i). Since this function is linear, property MRV(F ) of V 2(i) carries
over to V ∗(i). �

Proof of Theorem 2. We use induction in K . The K = 1 case is just Theorem 1, so assume
we have shown Theorem 2 for K − 1.

The induction hypothesis and Lemma 2 imply that P(R(i) > x) ∼ diF̄ (x) for i = 1, . . . ,
K − 1. Rewriting (6) for i = K as

R(K)
D= Q∗(K)+

N(K)(K)∑
m=1

Rm(K), where Q∗(K) =
K−1∑
k=1

N(k)(K)∑
m=1

Rm(k),

we have a fixed-point problem of type (1) and can then use Theorem 2 to also conclude that
P(R(K) > x) ∼ dKF̄ (x), noting that the MRV condition needed on (Q∗(K),N(k)(K)) follows
by another application of Proposition 4.

Finally, to identify the di via (15), appeal to Proposition 2 with N = (Q(i), N(1)(i), . . . ,

N(K)(i)), writing the right-hand side of (6) as

O(1)+
�Q(i)�∑
m=1

1 +
K∑
k=1

N(k)(i)∑
m=1

Rm(k).

Existence and uniqueness of a solution to (15) follows by again noting that ρ < 1 implies that
I − M is invertible. �
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Appendix A. Proof of (13)

The RV of linear combinations subject to MRV assumptions has received considerable
attention (see, e.g. [4]), but we could not find explicit formulae like (13) for the relevant
constants, so we give a self-contained proof; the formula is a special case of the following. If
X = (X1, . . . , Xn) ∈ R

n is a random vector such that P(‖X‖ > t) ∼ L(t)/tα and� = X/‖X‖
has conditional limit distribution μ in B1 given ‖X‖ > t as t → ∞, then

P(a · X > t) = P(a1X1 + · · · + anXn > t) ∼ L(t)

tα

∫
B1

I(a · θ > 0)(a · θ)αμ(dθ).

To see this, note that, given � = θ ∈ B1, a · X = ‖X‖(a · θ) exceeds t > 0 precisely when
a · θ > 0 and ‖X‖ > t/(a · θ). Thus, we expect that

P(a · X > t) ∼
∫

B1

I(a · θ > 0)P

(
‖X‖ > t

a · θ

)
μ(dθ)

∼
∫

B1

I(a · θ > 0)
L(t/(a · θ))

(t/(a · θ))α
μ(dθ)

∼ L(t)

tα

∫
B1

I(a · θ > 0)(a · θ)αμ(dθ),

which is the same as asserted.
A rigorous proof can be carried out either by involving Riemann sums, or by using the

so-called limit measure or exponent measure ν (see [23]), defined by

a(t)P

(
X

t
∈ ·

)
→ ν (18)

for some suitable function a(t), with ν nondegenerate. If X is MRV as above then (18) holds
and we can take

a(t) = 1

P(‖X‖ > t)
. (19)

Furthermore, ν is a product measure in polar coordinates (‖x‖, θ) and subject to (19), ν can be
expressed in terms of α and μ as

ν{‖x‖ ∈ dz, θ ∈ dθ} = αz−α−1dz× μ(dθ).

For the proof of (13), observe that, by (18) and (19),

P(a · X > t) ∼ 1

a(t)
ν{a · x > 1} ∼ L(t)

tα
ν{a · x > 1}.

But
∫ ∞

0 I(z > b)αz−α−1 dz = b−α for b > 0, and so taking b = 1/θ · a gives

ν{a · x > 1} =
∫

B1

dθ

∫ ∞

0
I(z θ · a > 1)αz−α−1 dz =

∫
B1

I(a · θ > 0)(a · θ)αμ(dθ).
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