
Prologue: Regular Variation

P.1 Introduction

Regular variation is a subject both of theoretical interest and of great use in
a variety of applications. These include analytic number theory (asymptotics
of arithmetic functions, Prime Number Theorem), complex analysis (entire
functions – Levin–Pfluger theory) and, particularly, probability theory (limit
theorems). The standard work here, covering theory and applications, is Bin-
GoT1987 (BGT below for brevity). As it happens, matters left open in BGT –
the foundational question, p. 11 (on measurability and the Baire property), and
the contextual question (Appendix 1, on contexts beyond the real analysis to
which the bulk of the text is devoted) – motivated our joint work. So this book
is motivated by two much earlier and by now well-established texts, Oxtoby
(Oxt1980) and BGT. But these serve only as background and motivation here;
this book is self-contained and may be read without reference to either.
To make the above more specific, here are some instances of ‘what regular

variation can do for the mathematician in the street’.

P.2 Probability Theory

The prototypical limit theorem in the subject is Kolmogorov’s1 strong law of
large numbers: that if (Xn) is a sequence of independent copies of a random
variable X drawn from some distribution (or law) F, the averages Sn/n :=∑n

1 Xk/n converge as n increases to some limit c with probability 1 (‘almost

1 In 2023, the postal address of Moscow State University became 1 Kolmogorov Street; cf. 2
Stefan Banach Street, Warsaw, the postal address of the mathematics department of Warsaw
University.

1
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2 Prologue: Regular Variation

surely’, a.s.) if and only if X has a mean (first moment, expectation) (meaning
E [ |X | ] < ∞), and then the limit is the mean µ = E [X]:

Sn/n → µ (n → ∞) a.s., where µ = E[X]. (LLN)

Second only to this is the central limit theorem: if also one has finite variance,
σ2 say (finite second moment), and centres at means (subtracting E[Sn] = nµ),
the right scaling is by

√
nσ, and one then has a limit distribution, the standard

normal (or Gaussian) law Φ = N (0, 1):

P((Sn − nµ)/σ
√

n ≤ x) → Φ(x) :=
∫ x

−∞

e−
1
2u

2

√
2π

du (n → ∞) for all x ∈ R.

(CLT)
Because these results are so important, and because one does not always have
a (finite) mean and variance, it was of great interest to find versions of them
which held under weaker moment conditions. It was realized by Sakovich in
1956 (Sak1956) that regular variation gave the right language here: what one
needs for the first is that the truncated mean is slowly varying,∫ x

−x

udF (u) ∼ `1(x) (x → ∞),

and for the second that the truncated variance is slowly varying,∫ x

−x

u2dF (u) ∼ `2(x) (x → ∞),

where `1, `2 are slowly varying (below).
Note. Oddly, despite their importance, these results were overlooked at the
time, and they were re-discovered and given prominence in Feller’s book
(Fel1966). The first author saw them there then (‘love at first sight’).
More curiously still, although regular variation dates back to 1930 (below),

the classic monograph by Gnedenko and Kolmogorov (GneK1954) (the Rus-
sian original is from 1949) made no use of it. So its treatment of these and
related matters is unnecessarily complicated, and in particular the analysis and
the probability are not properly separated. We note that Sakovich’s PhD was
supervised by Gnedenko.
For more on Gnedenko’s work, and his very interesting life, see Bin2014.2

Then one has the third member of the trilogy, LLN–CLT–LIL: the law of
the iterated logarithm. Here the norming, which gives the result its name, is
intermediate between those in (LLN) and (CLT), and the conclusion is of a
different type:

lim sup (Sn − nµ)/σ
√

2n log log n = +1 a.s., lim inf · · · = −1 a.s.
2 The text of a talk given by the first author at the Gnedenko Centenary Memorial Meeting,
Moscow State University, 2012.
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Prologue: Regular Variation 3

Indeed,

(Sn − nµ)/σ
√

2n log log n →→ [−1, 1] a.s., (LIL)

meaning that all points in [−1, 1], and no others, are limits of subsequences,
a.s.
Stable laws (limit laws of centred and normed sums of independent copies)

provide another good example. See, e.g., two approaches to the ‘domain of
attraction’ problem here by Pitman and Pitman (PitP2016) and Ostaszewski
(Ost2016a).
For more on the early history of regular variation in probability theory, see

Bin2007.

Extremes The extreme values in a sample – sample maximum andminimum –
have always been of great practical importance (the strength of a chain is that of
its weakest link, etc.). The theory here dates back to Fisher and Tippett in 1928,
so to before regular variation, though the relevance of regular variationwas soon
realized. The area is growing in importance nowadays, e.g. because of climate
change and global warming. There was pioneering early work by Gnedenko in
1943, but the systematic use of regular variation to study extremes stems from
de Haan in 1970 (Haa1970). For background and historical comments, see,
e.g., our recent survey BinO2021b and the references there.

While Hardy himself was not interested in probability, the Tauberian theory
to which he and Littlewood contributed so much has proved very useful in
probability theory; see, e.g., Bin2015b.

P.3 Complex Analysis

Recall (see, e.g., BGT, Ch. 4) that an Abelian theorem passes from a stronger
mode of convergence to a weaker one (such results are usually easy); a Taube-
rian one gives a converse, under an additional condition (a Tauberian condi-
tion); Mercerian theorems (see, e.g., BGT, Ch. 5) are hybrids, going from a
condition on both to a stronger conclusion, under no Tauberian condition. A
prototypical Abelian result will pass from a function

f (x) ∼ xρ`(x) (` ∈ R0) (x → ∞)

to a Mellin convolution

( f ∗ k)(x) :=
∫ ∞

0
k (t) f (x/t)dt/t,
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4 Prologue: Regular Variation

where ρ lies in the vertical strip in the complex s-plane where the Mellin
transform

k̂ (s) :=
∫ ∞

0
t−sk (t)dt/t =

∫ ∞

0
usk (1/u)du/u

converges absolutely, giving

( f ∗ k)(x) ∼ k̂ (ρ)xρ`(x) (x → ∞);

the factor k̂ (ρ) is to be expected, since if f (x) = xρ, ( f ∗ k)(x) = k̂ (ρ)xρ.
The Tauberian converse reverses the implication for kernels satisfyingWiener’s
condition that k̂ (s) be non-vanishing for Re s = ρ ((NV) below), under suit-
able Tauberian conditions on f . The Mercerian (or ‘ratio Tauberian’, below)
statement assumes convergence of the quotient,

( f ∗ k)(x)/ f (x) → c (x → ∞)

for some constant c, and deduces regular variation of both as above, with
c = k̂ (ρ).
For entire functions of finite order, one can look (in discs centre 0 and large

radius r) at growth rates of the function, its maximum modulus M (r) and the
zero-counting function n(r) (both in discs centre 0 and radius r). Matters split
between integer and non-integer order. Functions with real negative zeros are
simplest; write Eρ for the class of entire f with order ρ < ∞ and negative
zeros. For f ∈ Eρ, one has the Valiron–Titchmarsh theorem (BGT, §7.2, Th.
7.2.2), proved by Tauberian methods involving regular variation (BGT, Ch. 4),
based on the linear integral transform (Stieltjes transform)

log f (z) =
∫ ∞

0

zn(t)
t + z

dt/t ( | arg z | < π).

For non-integral order, regular variation of either of n(r), log f (reiθ ) implies
regular variation of the other, and convergence of the quotient to a non-zero
limit. For more on the Valiron–Titchmarsh Theorem, see DrasS1970 and the
references cited there.
The question of whether convergence of this quotient implies regular vari-

ation of both functions has been called of ‘ratio Tauberian’ type; it is in fact
Mercerian (BGT, Ch. 5). The first such results are due to Edrei and Fuchs
(EdrF1966) and Shea (She1969), for f ∈ Eρ and the Stieltjes transform
above. Such results were extended by Drasin (Dras1968) and Drasin and Shea
(DrasS1976) to more general kernels, using Wiener Tauberian theory. Drasin
and Shea had non-negative kernels k, for which the relevant Mellin transforms
converge absolutely in their strip of convergence. Matters are more complicated
when the kernel can change sign (as with Fourier sine and cosine transforms,
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Prologue: Regular Variation 5

and Hankel transforms), as here there can be strips of conditional convergence
(or Abel summability) also; see Jor1974. The Fourier and Hankel cases were
considered in detail by Bingham and Inoue (BinI1997; BinI1999).
As may be seen from the Wiener Tauberian Theorem, P.7.1: if regular varia-

tion of index ρ (membership of Rρ) is to appear in the hypothesis and conclu-
sion, the key condition on the kernel is the non-vanishing condition

k̂ (s) , 0 (Re s = ρ). (NV)

In the corresponding Mercerian results, the key condition on k is the no-repeat
condition

k̂ (s) = k̂ (ρ) on Re s = ρ only for s = ρ (NR)

(She1969; Jor1974; cf. PalW1934, IV, (18.09)).
One can also consider the Nevanlinna characteristic

T (r) = T (r, f ) :=
1

2π

∫ π

−π
log+ | f (reiθ ) | dθ

(see, e.g., Haym1964). For f ∈ Eρ, this is given by the non-linear integral
transform

T (r) = sup
{ ∫ ∞

0
P(r/t, θ)N (t)dt/t : θ ∈ (0, π)

}
,

where

N (r) :=
∫ r

0
n(t)dt/t, P(t, θ) :=

1
π

sin θ
t + 2 cos θ + t−1 .

Baernstein (Bae1969) obtained a non-linear Tauberian theorem (the passage
from N to T is Abelian, and simple, EdrF1966): for f entire of genus 0, if
T (r) ∼ rλ`(r) as r → ∞ for ` slowly varying, then

(a) if λ ∈ [0, 1
2 ], then N (r) ∼ rλ`(r);

(b) if λ ∈ [ 1
2, 1], and f has only negative zeros, then N (r) ∼ sin πλ rλ`(r).

The correspondingMercerian (or ratio Tauberian) theoremwas proved by Edrei
and Fuchs (EdrF1966), for λ ∈ [ 1

2, 1]: if the ratio converges, then both N (r)
and T (r) are regularly varying.
Baernstein (Bae1969) conjectured that his results extend to Mρ, the class

of meromorphic functions of finite order ρ, negative zeros and positive poles,
but this is not the case. For counterexamples and discussion, see Dras2010.
However, they do extend to the subclass Jρ ofMρ whose zeros an and poles
bn are symmetrically related, an = −bn (Will1972). Edrei (Edr1969) removes
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6 Prologue: Regular Variation

geometric restrictions on the zeros and poles, but at the cost of obtaining
only ‘locally Tauberian’ results, in which r → ∞ only through the union of a
well-chosen sequence of large intervals.
One can extend to real zeros. One can use the language of proximate orders,

due to Valiron in 1913, which can be shown to be equivalent to that of regular
variation (and thus that Valiron may be credited with initiating the subject).
The resulting Levin–Pfluger theory (A. Pfluger in 1938, B. Ya. Levin in 1964;
BGT, Ch. 7) may be regarded as weakening the severe geometric restriction
that all zeros lie on one ray, or one line, as far as possible.
The contrasts between key examples throw light on the theory, which they

inspired. To quote BGT (end of §7.6): ‘It is instructive to compare the two
examples sin πz and 1/Γ(z). Their rates of growth differ, as above; their zeros
differ not so much in their density as in their geometry. An extensive study
of the integer-order case has been given by Pfluger (1946), motivated by the
contrasts between these examples.’
As well as the maximum modulus, the minimum modulus of an entire func-

tion is of interest:

M (r) := sup{| f (z) | : |z | ≤ r }, m(r) := inf{| f (z) | : |z | ≤ r }.

One has the cos πρ theorem (see BGT, §7.7; Bae1974; Ess1975 and the refer-
ences there for details): if f is entire of order ρ ∈ [0, 1),

lim sup
log m(r)
log M (r)

≥ cos πρ.

Functions extremal here are particularly interesting; see DrasS1969. Here one
encounters exceptional sets, of logarithmic density 0, which cannot be avoided
(Haym1970).

Pólya Peaks. Pólya peaks (of the ‘first and second kinds’) are a device in
real analysis, introduced by Pólya (Poly1923) for the study of entire func-
tions. They were named by Edrei in the 1960s. Their use was extended
to meromorphic functions by Hayman (Haym1964, §4.4); for details, see
DrasS1972. It turns out that they are intimately linked to the Matuszewska
indices (BGT, §2.1) α( f ), β( f ) of regular variation: both kinds of peak ex-
ist in the interval [β( f ), α( f )] and nowhere else (the Pólya Peak Theorem;
BGT1987, Th. 2.5.2).
In fact, the use of Pólya peaks in the results above (Edrei, Drasin and Shea,

Jordan) may be avoided; see Bingham and Inoue (BinI2000a). This may be
preferred on thematic grounds in complex analysis, as well as to simplify the
proofs.
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Prologue: Regular Variation 7

Recently, essential use of O-regular variation has been made in the the-
ory of ultraholomorphic functions; see JimSS2019 for background and
details.

P.4 Analytic Number Theory

For background on Abelian, Tauberian and Mercerian theorems as mentioned
above, see, e.g., BGT, §4.5; Kor2004.
Tauberian theorems such as the Hardy–Littlewood–Karamata theorem are

extensively used in analytic number theory (see, e.g., Ten2015; BGT, Ch. 4).
So too is e.g. Kohlbecker’s Tauberian Theorem on asymptotics of partitions
(BGT, Th. 4.12.1). Tauberian (and Mercerian) theorems can be used to give
short proofs of the Prime Number Theorem (BGT, §6.2).
The prime divisor functions,

ω(n) := # distinct prime divisors of n,

Ω(n) := # prime divisors of n (counted with multiplicity)

(Ten2015, I.2.2), illustrate our approachwell. The classical estimates are (Hardy
and Ramanujan in 1917; Ten2015, I.3.6,7)

1
x

∑
n≤x

ω(n) = log log x + c1 +O(1/ log x) (x → ∞),

with c1 a known constant, and similarly forΩ(n) with a different known constant
c2 > c1. One also has the classical Erdős–Kac central limit theorem of 1939,
1
x
|{n ≤ x : ω(n) ≤ log log x+λ

√
log log x}| → Φ(λ) (x → ∞ for all λ ∈ R),

the beginning of probabilistic number theory, and its refinement of Berry–
Esseen type, due to Rényi and Turán in 1958, with error term O(1/

√
log log x)

uniform in λ (Ten2015, III.4.15). Our methods give (BinI2000b)
1
λx

∑
n≤λx

ω(n) −
1
x

∑
n≤x

ω(n) ∼
log λ
log x

(x → ∞ for all λ ∈ R).

This is a statement of regular-variation type, so it has a representation theorem,
namely

1
x

∑
n≤x

ω(n) = C +
∫ x

2
(1 + o(1)

dt
t log t

+ o(1/ log x)

(note the two error terms, one inside the integral, one outside). This is not com-
parable to the classical results. There, it is the size of the error terms that counts,
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8 Prologue: Regular Variation

but there is no information on behaviour under differencing; here, matters are
reversed. Similarly for results of Mertens (Ten2015, I.1.4; HarW2008, Th. 425,
427) on sums over primes p (BinI2000b),∑

p≤x

log p
p

,
∑
p≤x

1/p.

P.5 Regular Variation: Preliminaries

The subject of regular variation originates with the Yugoslav mathematician
Jovan Karamata (1902–1967) in 1930 (Kar2009). It concerns limiting relations
of the form

f (λx)/ f (x) → g(λ) (x → ∞) ∀ λ > 0, (K)

for positive functions f on R+. Relevant here is the multiplicative group of
positive reals, (R+,×), with Haar measure dx/x. While this formulation is the
one useful for applications, for theory it is more convenient to pass to the
additive group of reals, (R,+), Haar measure Lebesgue measure dx, where we
write this as

h(u + x) − h(x) → k (u) (x → ∞) ∀ u ∈ R. (K+)

We can pass at will between these two formulations via the exp/log isomor-
phism. The core of the resulting theory is treated in full in Chapter 1 of BGT,
with further results (e.g. with lim replaced by lim sup – where one may lose
measurability, by ‘character degradation’) in Chapter 2 of BGT.
The limit function g in (K) satisfies the Cauchy functional equation

g(λµ) = g(λ)g(µ) (λ, µ > 0). (CFE)

For background on functional equations, see AczD1989; the classic context is
Ban1920.

P.6 Topological Regular Variation

Solutions to (CFE), as is typical with functional equations, exhibit a sharp di-
chotomy: they are either very nice (continuous, here) or very nasty (pathological
– unbounded above and below on every interval, or even on any non-meagre
Baire set or non-null measurable set). Since (as we shall see below) such ‘bad’
solutions can be manufactured at will from a Hamel basis (of the reals, as a
vector space over the rationals), we will call this the Hamel pathology.
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Prologue: Regular Variation 9

Under mild regularity conditions (such as measurability, the Baire property,
No Trumps NT, etc.), this gives

g(λ) ≡ λρ

for some ρ ∈ R. Then f is called regularly varying with index ρ, f ∈ Rρ.
Functions in class R0 are called slowly varying, written ` (for lente, or langsam).

By taking logarithms, (K)maybewritten in terms of the limit of the difference
of a function at arguments λx and x. It turns out that this may be fruitfully
generalized by introducing a denominator ` ∈ R0:

[ f (λx) − f (x)]/`(x) → k (λ) (x → ∞) ∀λ > 0 (BK/DH)

(using a denominator in Rρ for ρ , 0 gives nothing new; see, e.g., BGT, §3.2).
This study goes back to Bojanic and Karamata (BojK1963), and independently
to de Haan (Haa1970), whence the name (BK/DH); see BGT, Chapter 3 for a
full account.
There are three key theorems that underlie any form of regular variation (there

are two forms above; more will follow). These are (under mild conditions):

the Uniform Convergence Theorem, UCT: the convergence in (K), (BK/DH)
takes place uniformly on compact λ-sets in R+;

the Representation Theorem: giving that ` ∈ R0 if and only if it may be written
in the form

`(x) = c(x) exp{
∫ x

1
ε (u) du/u} (x ≥ 1) (RT)

where
c(x) → c ∈ R+, ε (x) → 0 (x → ∞)

(here ε (. ) may be taken as smooth as desired, while c(. ) may be as
rough as the mild regularity conditions allow);

the Characterization Theorem: giving the form of g(λ) as λρ as above and
that of k in (BK/DH) as

k (λ) = chρ (λ), c ∈ R+; hρ (λ) :=
∫ λ

1
uρ−1 du = (λρ−1)/ρ (λ > 0),

with the usual ‘l’Hospital convention’ that the right-hand side above
is taken as log λ when ρ = 0.

Even with the simplest functional equation that arises here (the Cauchy),
some mild regularity condition is required. There is a dichotomy: as above
solutions are either very nice (powers λρ or the hρ (λ) as above) or very nasty
– pathological (e.g. unbounded above and below on any non-negligible set).
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10 Prologue: Regular Variation

Exceptional Sets. There are situations in which the passage to the limit in
slow and regular variation needs to avoid some exceptional set; see BGT, §2.9.
Examples arise in complex analysis: BGT, Th. 7.2.4 (a result of Titchmarsh in
1927), and in work of Drasin and Shea (DrasS1976) on functions extremal for
the cos πρ theorem of Wiman and Valiron mentioned above. We will need such
exceptional sets below, in dealing with sequential aspects of regular variation.

Thinning (Quantifier Weakening). Another key question, going back to a
conjecture ofKaramata, concernsweakening the quantifier,∀, in (K), (BK/DH):
requiring the convergence to take place for some but not all λ > 0. Rather than
having a continuum of conditions to check, one may be able to reduce this to
finitely many, or even to just two (of course, one could not expect just one to
suffice!). Results of this kind – which one might call thinning results, as they
involve thinning of the λ-set on which convergence is required (cf. BinO2010a)
– go back to Heiberg (Hei1971) and Seneta (Sen1973). Interestingly, given
the side-condition of Heiberg–Seneta type, one no longer needs to impose the
regularity condition needed above to eliminate pathology.
Matters were taken further in Bingham and Goldie (BinGo1982a) and Bing-

ham and Ostaszewski (BinO2018a; BinO2020a): with

g∗(λ) := lim sup
x→∞

f (λx)/ f (x),

assume

lim sup
λ↓1

g∗(λ) ≤ 1.

Then the following are equivalent (for positive f ):

(i) there exists ρ ∈ R such that

f (λx)/ f (x) → λρ (x → ∞) ∀λ > 0;

(ii) g(λ) := limx→∞ f (λx)/ f (x) exists, finite, for a λ-set of positive measure
[a non-meagre Baire set];

(iii) g(λ) exists, finite, in a λ-set dense in R+;
(iv) g(λ) exists, finite, for λ = λ1, λ2 with (log λ1)/ log λ2 irrational.

The reader may recognize that Kronecker’s Theorem (HarW2008, Ch. XXIII)
lies behind (iv) here.
There are corresponding thinning results for (BK/DH); see BGT, Th. 3.2.5,

Th. 1.4.3. As remarked there, the result for (K) is no easier, despite its simpler
context. This is because the thinning takes place in the quantifier over λ, which
affects only the numerator in (BK/DH). The effect is that the general ` in the
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Prologue: Regular Variation 11

denominator is no harder to handle than ` ≡ 1, when (BK/DH) reduces to the
logarithmic form of (K).

Remark The proofs of these two thinning results from BGT are the hardest in
that book on the theory of regular variation as such (that of the Drasin–Shea–
Jordan theorem, BGT, §5.2, is harder, but belongs rather to Mercerian theory).
The search for simpler proofs was the motivation behind several of our papers,
on thinning (BinO2010a) and quantifier weakening (BinO2018a; BinO2020a).

Frullani Integrals. The Frullani integral (G. Frullani, 1828; see Ostr1976 for
the history) of a locally integrable function ψ on R+ is the improper integral

I = I (ψ; a, b) :=
∫ ∞−

0+
{ψ(λt) − ψ(t)}dt/t = lim

ε ↓0,X↑∞

∫ X

ε
{ψ(λt) − ψ(t)}dt/t .

Writing bt = u, we see that I (ψ; a, b) = I (ψ; a/b, 1) = I (ψ, a/b), say. So we
may restrict attention to

I = I (ψ; λ) :=
∫ ∞−

0+
{ψ(λt) − ψ(t)}dt/t = lim

ε ↓0,X↑∞

∫ X

ε
{ψ(λt) − ψ(t)}dt/t .

Now ∫ X

ε
{ψ(λt) − ψ(t)}dt/t =

∫ λX

X

ψ(t)dt/t −
∫ λε

ε
ψ(t)dt/t .

So the two limits, concerning behaviour at ∞ and at 0, may be handled sepa-
rately. One obtains (BinGo1982b, §6; BGT Th. 1.6.6):

Theorem For ψ and its Frullani integral I (ψ; λ) as above, the following are
equivalent:

(i) I (ψ; λ) exists for all λ ∈ R+;
(ii) I (ψ; λ) exists for λ in a set of positive measure [a non-meagre Baire set];
(iii) I (ψ; λ) exists for λ in a dense set in R+ (or for λ = λ1, λ2 with

(log λ1)/ log λ2 irrational), and

lim inf
λ↓1

lim inf
x→∞

∫ λx

x

ψ(t)dt/t ≥ 0,

lim inf
λ↓1

lim inf
x→∞

∫ λx

x

ψ(1/t)dt/t ≥ 0.

Each of (i)–(iii) holds if and only if both of the following finite limits exist for
some (all) σ > 0:
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12 Prologue: Regular Variation

M = M (ψ) = lim
x→∞

σx−σ
∫ x

1
uσψ(u)du/u,

m = m(ψ) = lim
x→∞

σx−σ
∫ x

1
uσψ(1/u)du/u.

Then the Frullani integral is given by

I (ψ, λ) = (M − m) log λ (λ ∈ R+).

This result extends those of Hardy and Littlewood (HarL1924), whereσ = 1.
Frullani integrals occur in probability theory, e.g. in the fluctuation theory

of Lévy processes; see, e.g., Bert1996, III.1, p. 73.

Convergence and Cesàro Convergence. The mathematics of the Frullani
integral above yields as a by-product the results below (BinGo1982b, §6),
showing exactly what is needed for a Cesàro convergent function or sequence
to converge. For functions: for φ locally integrable on [0,∞),

1
x

∫ x

0
φ(t)dt → c (x → ∞)

if and only if

φ(x) = a(x) + b(x), where a(x) → c,
∫ ∞

1
b(t)dt/t is convergent.

For sequences:

1
n

n∑
1

sk → c (n → ∞)

if and only if

sn = an + bn, where an → c,
∞∑
1

bn/n is convergent.

We include the proof (due to G. E. H. Reuter) as it is so short.

Proof If
∑

bn/n converges, (b1 + · · · + bn)/n → 0 by Kronecker’s Lemma.
So if sn = an + bn as above, sn → c (C1).
Conversely, if sn → c (C1), set an+1 := (s1 + · · · + sn)/n. Then sn = an +

n(an+1−an), and this is the required decomposition, since if bn := n(an+1−an),∑
bn/n converges. �
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Prologue: Regular Variation 13

Beurling Slow Variation. For φ : R → R+ Baire or measurable, φ is called
Beurling slowly varying if

φ(x) = o(x) and φ(x + tφ(x))/φ(x) → 1 for all t ∈ R, (x → ∞). (BSV)

This originated in unpublished lecture notes of Beurling in 1957 on his Taube-
rian theorem (below); see Kor2004, IV.11.
If also the convergence in (BSV) is locally uniform in t, φ is called self-

neglecting, written φ ∈ SN. The term and the concept arose in probability
theory; see, e.g., BinO2021b and the references there.
It was shown by Bloom (Blo1976) that for φ continuous, the convergence in

(BSV) is indeed locally uniform. In fact Bloom’s proof needs only theDarboux
property, or intermediate-value property, that φ takes every value between any
two values it attains. For this and other results, see BinO2014; Ost2015a. Here
it is enough to require that φ takes a dense set of values between any two values
attained, but the question of whether a Darboux-like property can be dropped
altogether remains open.
The Representation Theorem gives the Beurling slowly varying φ as those

positive functions of the form

φ(x) = c(x)
∫ x

0
ε (u)du (x ∈ R),

where ε is C∞ with ε (x) → 0 as x → ∞, and c is Baire/measurable with
c(x) → c ∈ (0,∞) as x → ∞ (BGT Th. 2.11.3; BinO2014, §9; Ost2015a,
p. 731).

P.7 Tauberian Theorems

We first recallWiener’s Tauberian Theorem (see, e.g., Har1949, XII; Kor2004,
II):

Theorem P.7.1 (Wiener’s Tauberian Theorem) Suppose K ∈ L1(R) with
Fourier transform K̂ non-vanishing on R, and H ∈ L∞(R). If∫

K (x − y)H (y) dy → c
∫

K (y) dy (x → ∞),

then, for all G ∈ L1(R),∫
G(x − y)H (y) dy → c

∫
G(y) dy (x → ∞).
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14 Prologue: Regular Variation

Here integrals are over R and we use additive notation; one may work multi-
plicatively with

∫ ∞
0 K (x/y)H (y)dy/y, etc. The Tauberian condition here is of

O-type: H ∈ L∞(R), or H = O(1).
Beurling’s Tauberian Theorem generalizes Wiener’s Tauberian Theorem, to

which it reduces in the special case φ ≡ 1:

Theorem P.7.2 (Beurling’s Tauberian Theorem) Suppose K ∈ L1(R) with
Fourier transform K̂ non-vanishing on R, with φ Beurling slowly varying and
H ∈ L∞(R). If∫

K
(

x − y

φ(x)

)
H (y) dy/φ(x) → c

∫
K (y) dy (x → ∞),

then, for all G ∈ L1(R),∫
G

(
x − y

φ(x)

)
H (y) dy/φ(x) → c

∫
G(y) dy (x → ∞).

Note that the arguments x − y in Theorem P.7.1 involve the additive group
(R,+), and the x/y of its multiplicative version that of the multiplicative group
(R+,×), while the (x − y)/φ(x) of Theorem P.7.2 involve the ring structure of
R. The two results are thus structurally distinct.
For a short and elegant reduction of Beurling’s Tauberian Theorem to

Wiener’s, see Kor2004, IV, Th. 11.1. For an early use of Beurling’s Taube-
rian Theorem in probability theory, see Bin1981.

The Borel–Tauber Theorem
The twomost basic families of summability methods are theCesàroCα (α > 0)
and Abelmethods A; see, e.g., Har1949, V–VII; Kor2004, I. Perhaps next in im-
portance, though harder, are the Euler Ep (p ∈ (0, 1)) and Borel methods; see,
e.g., Har1949, VIII, IX; Kor2004, VI. The Euler and Borel methods (plus those
of Taylor and Meyer–König) belong to the family of circle methods (German:
Kreisverfahrung; see MeyK1949). The name derives from the circle of conver-
gence of a power series; such methods were used for analytic continuation by
power series.
The key Tauberian theorem for the Borel method – ‘Borel–Tauber Theorem’

– is:

Theorem P.7.3 (Borel–Tauber Theorem) For sn :=
∑n

0 ak: if

e−x
∞∑
0

snxn/n! → s (x → ∞)

and an = O(1/
√

n), then

sn → c (n → ∞).
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Prologue: Regular Variation 15

The setting of Theorem P.7.3 is discrete, involving a sum, while that of
Theorems P.7.1 and P.7.2 is continuous, involving an integral. To pass between
them, one may either use ‘Wiener’s second theorem’: see, e.g., Har1949, 12.7,
which demands less of the integrand (so H (y)dy becomes a Stieltjes integral,
dU (y), say) but more of the kernel K ; or use an auxiliary approximation
argument. There is much more to be said here, but we must refer for further
detail to, e.g., Kor2004, VI.

The Tauberian Condition. Here the Tauberian condition is an = O(1/
√

n),
and this is best-possible in that no weaker O-condition would suffice here.
But because the weights e−x xn/n! (of course those of the Poisson distribution
P(x) with parameter x) are non-negative, a one-sided Tauberian condition
suffices: an = OL (1/

√
n), meaning that

√
nan is bounded below (or with OR

and bounded above). In fact such ‘pointwise’ conditions on the individual an

are not needed, but rather ‘averaged’ forms of them involving differences of the
sn. The classical one is of ‘slow-decrease’ type, due to R. Schmidt in 1925 (see
Kor2004, VI.12):

lim inf (sm − sn) ≥ 0 (m, n → ∞, 0 ≤
√

m −
√

n → 0).

Such one-sided Tauberian conditions are studied at length in Bingham and
Goldie (BinGo1983).

ValironMethods. For β ∈ (0, 1), writeVβ for theValiron summabilitymethod
(Bin1984b), given by writing

1
xβ
√

2π

∞∑
0

sk exp
{
−

1
2

(x − k)2/x2β
}
→ s (x → ∞)

as

sn → s. (Vβ)

Our principal concern is with the case β = 1
2 (see BinT1986). One sees that the

sum above is a discrete form of the condition in Theorem P.7.2 with K (x) =
e−x

2/2/
√

2π. This is the standard normal probability density Φ or N (0, 1), with
Fourier transform (characteristic function) exp{− 1

2 t2}, which is non-vanishing
as in Theorems P.7.1 and P.7.2. This K may thus serve as a Wiener kernel. In
the notation of Theorems P.7.1 and P.7.2, one can obtain boundedness of H (. )
from the other conditions; see Har1949, p. 220 for the pointwise Tauberian
condition an = O(1/

√
n) and Har1949, p. 225 for a reference to Vijayaraghan’s

method of monotoneminorants for the slow-decrease Tauberian condition. This
allows an easy proof of Theorem P.7.3 from Theorem P.7.2.
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16 Prologue: Regular Variation

That themethodsV1
2
and B are intimately linked has been known since Hardy

and Littlewood in 1916 (HarL1916). In probabilistic language, this link reflects
the central limit theorem: the Poisson law P(x) with large parameter x is an
n-fold convolution of P(x/n) with itself, and so approaches normality. Much
more is true: the rapid tail-decay of the Poisson laws allows the use of large-
deviation methods. See Kor2004, VI, Th. 6.1, where the range |n − x | < xγ

occurs, where 1/2 < γ < 2/3. As Korevaar remarks, this parameter range is
the ‘signature’ of large deviations.

Jakimovski and Karamata–Stirling Methods. There are other summability
methods whose weights exhibit central-limit behaviour. We consider indepen-
dent random variables Xn, integer-valued (so that the weights will form a
matrix, below), with partial sums Sn =

∑n
1 Xk ; write

ank := P(Sn = k),

and write A = (ank ) for the summability matrix. The classical case is of
Jakimovski methods (Jak1959; ZelB1970, §70); here the Xn are Bernoulli (0–1
valued), with

P(Xn = 1) = pn, P(Xn = 0) = qn := 1 − pn.

Writing pn = 1/(1 + dn) (dn ≥ 0), this gives
n∏
j=1

(
x + d j

1 + d j

)
=

n∑
k=0

ank xk,

and the Jakimovski method [F, dn]. The motivating examples are:

(i) the Euler methods, with dn = 1/λ, say written E(λ);
(ii) the Karamata–Stirling methods KS(λ), with dn = (n − 1)/λ. Here

ank = λ
kSnk/(λ)n,

with (Snk ) the Stirling numbers of the second kind and

(λ)n := λ(λ + 1) · · · (λ + n − 1).

See Bin1988 for their Tauberian theory and BinS1990 for LLN and LIL
results.

Turning from the non-identically distributed Bernoulli case to the identi-
cally distributed general integer-valued case gives the random-walk methods
(Bin1984a).
All the summability methods considered here are closely enough linked to

be equivalent for bounded sequences (as are Euler and Borel, and indeed as are
Cesàro and Abel).
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Prologue: Regular Variation 17

RieszMeans andMovingAverages. WithK as above, taking H (x) = Ha (x) :=
a−1I[0,a](x) gives conclusions of the form

1
a
√

n

∑
n≤k<n+a

√
n

sk → s (n → ∞),

passing back from integrals to sums as above. These areRieszmeans (HarR1915,
IV; Har1949, §4.16, §5.16); ‘typical means’ there and in ChanM1952, or mov-
ing averages in the language of probability and statistics. For more on Riesz
means and Beurling moving averages, see Bin1981; Bin2019. For related mov-
ing averages, see BinG2015; BinO2016a; BinG2017.
The Fourier transform of Ha here is Ĥa (t) = (exp(iat)−1)/(iat), which has

real zeros, so H cannot be used as aWiener kernel. But two such Ha with a1/a2
irrational may be used, as their Fourier transforms have no common zeros (see,
e.g., Wie1933, §10 Th. 6; BinI2000b).
In addition to Riesz means and moving averages, there is a third mode

of convergence relevant here, ‘perturbed Cesàro convergence with rate’. For
β ∈ (0, 1), one has (BinT1986, Th. 3) the equivalence as n → ∞ of

sn → σ R(exp
(
n1−β

)
, 1),

1
unβ

∑
n≤k<n+unβ

sk → s, for some (all) u > 0,

1
n + 1

n∑
0

(sk + εk ) = s + o
(
1/n1−β

)
for some εn → 0.

The most important case, β = 1
2 , is in Bin1981, Th. 2 and BinGo1983, Th. 3.

It has distinguished antecedents. That the third statement is sufficient for Borel
(and so Euler) convergence without the εn terms (so is clearly sufficient with
them) is due to Hardy (Har1904, p. 55; Har1949, Th. 149: the first predates
Karamata’s work, the second does not). An approach via regular variation gives
sufficiency of the general result: the relevant Representation Theorem gives the
εn, which plays the role of the error term within the sum or integral there.

P.8 General Regular Variation

One can usefully combine and generalize all three forms of regular varia-
tion (Karamata, Bojanic–Karamata/de Haan, Beurling) encountered above. In
BinO2020a we study general regular variation, in which one has

[ f (x + tφ(x)) − f (x)]/h(x) → K (t) locally uniformly in t . (GRV)
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18 Prologue: Regular Variation

Here f is the function under study, φ ∈ BSV and h are auxiliary, and the limit
K is called the kernel. By using the algebraic machinery of Popa groups, one
can substantially reduce the theory to those of the earlier three. In addition,
one encounters a number of functional equations: Cauchy, Gołąb–Schinzel,
Chudziak–Jabłońska, Beurling–Goldie, Goldie. See BinO2020a for further de-
tail (and the planned sequel to this book).

Sequential Results: Kendall’s Theorem. As above, regular variation is a
continuous-variable theory, while our preferred tool, the Baire Category The-
orem, is a discrete-variable theorem about sequences. But it has long been
recognized that sequential results are possible and useful; see, e.g., BGT, §1.9.
One finds there reference to earlywork byCroft (Cro1957), Kingman (Kin1964)
and Kendall (in particular Ken1968, Th. 16):

Theorem (Kendall’s Theorem) If

lim sup
x→∞

xn = ∞, lim sup
x→∞

xn+1/xn = 1

and, for some continuous positive functions f and g, interval I = (a, b),
0 < a < b < ∞ and sequence (an),

an f (λxn) → g(λ) ∈ R+ (n → ∞) for all λ ∈ (a, b),

then f varies regularly.

If then f (x) ∼ xρ`(x), one has (BinO2020b)

an ∼ cx−ρn `(xn).

Because of the importance of Kendall’s Theorem in applications, we should
thus generalize this result as far as possible, in the light of what is now known.
It turns out that one can generalize all three of f , g, I above, but at the cost of
introducing an exceptional set (BGT, §2.9; DrasS1976). For a function f , say
that f (x) has essential limit L = L( f ), finite, as x → ∞,

ess-lim f (. ) = L,

if for all ε > 0 there exist X = X (ε, f ) ∈ R and meagre M = M (ε, f ) such that

| f (x) − L | < ε for all x > X, x < M .

Then (BinO2020b, Th. 2.3) one can weaken continuity of f to being Baire,
continuity of g to being positive, and I an interval to being a non-meagre Baire
set. The weakened conclusion is that

K (s) := ess-limx→∞ f (sλ)/ f (λ)
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Prologue: Regular Variation 19

exists, finite and multiplicative. One calls such f weakly quasi-regularly vary-
ing. If further g is Baire, then (BinO2020b, Th. 2.5)

K (s) ≡ sκ for some κ ∈ R;

one calls such f strongly quasi-regularly varying.
There is also a character-degradation theorem (BinO2020b, Th. 8.1): if k =

k (. , . ) is Borel, then K , where

K (s) := ess-limx→∞ k (s, x)

is of ambiguous analytic class ∆1
2 (see Chapter 7).

Functional Equations: Hamel Bases. The definition

f (λx)/ f (x) → g(λ) (x → ∞) for all λ ∈ (0,∞)

leads immediately to

g(λµ) = g(λ)g(µ) for all λ, µ ∈ (0,∞)

(BGT, 1.4.1). This is the Cauchy functional equation, in multiplicative form.
While this is the form preferred for applications, for theory it is better to change
from this multiplicative setting in (R+,×) to the corresponding additive setting
in (R,+) by writing h(x) := log f (ex ), k (x) := log g(ex ), giving

k (u + v) = k (u) + k (v) for all u, v ∈ R, (CFE)

the Cauchy functional equation on the line. Such functions k are called additive.
From (CFE), one obtains

k (mu) = mk (u), k (u/n) = k (u)/n for all u ∈ R, m ∈ N, n ∈ N \ 0,

so
k (qu) = q k (u) for all u ∈ R, q ∈ Q.

Thus, writing c := k (1),

k (x) = c x for all x ∈ R

if k is continuous, by approximation. So, continuous additive functions are
linear.
One can easily extend this result vastly beyond continuity (BGT1987, 1.1.3).

One obtains (Ostr1929, for measurable k; Meh1964, for the Baire case) that if
an additive function k is bounded above or below on a non-null measurable set
[a non-meagre Baire set], k is linear. Thus, an additive function k is linear or
(highly) pathological.
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20 Prologue: Regular Variation

To proceed, we need to invoke the Axiom of Choice, AC, in some form
(e.g. Zorn’s Lemma); that is, to extend the axiom system we work with from
ZF (Zermelo–Fraenkel) to ZFC (i.e. ZF + AC). One can now prove easily that
every vector space has a basis (see, e.g., Jec1973, 2.2.2). Conversely, it was
shown by Blass in 1984 that existence of bases implies AC (Bla1984).
Regarding the real line R as a vector space over the rationals Q as ground

field, R(Q) say, if we work in ZFC this shows (G. Hamel in 1905, Ham1905)
that we have a basis, H say (‘H for Hamel’, below) for R over Q. Of course,
H is uncountable; indeed, it has the power c of the continuum (Kucz1985, Th.
IV.2.3, p. 82).
We may now define, at will, any function g : H → R. This may be extended

uniquely to a homomorphism f : R 7→ R: each x ∈ R may be written uniquely
as a finite linear combination

x =
∑

αibi (ci ∈ Q, bi ∈ H).

Then

f (x) :=
∑

αig(bi).

If x ∈ H , the above representation of x reduces to x = x, so

f | H = g.

Also, if y ∈ R has the representation

y =
∑

βibi,

f (y) =
∑

βig(bi).

Then x + y has the representation
∑

i (αi + βi)bi (the range of summation here
being the union of those in the two finite sums for x and y), so

f (x + y) =
∑

(αi + βi)g(bi) =
∑

αig(bi) +
∑

βig(bi) = f (x) + f (y) :

f is additive. Were f continuous, we could make it discontinuous by changing
its value at one point. But then by the Ostrowski and Mehdi results, f would
be unbounded above and below on every interval, say. As no such change can
be induced in a continuous function by changing its value at one point, we
conclude that f is already discontinuous. Thus a Hamel basis gives us a way
of manufacturing pathological (discontinuous) additive functions at will. We
call this behaviour the Hamel pathology. Such pathological functions – or,
identifying a function with its graph, functions with graph a Hamel basis in the
plane – are called Hamel functions.
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Prologue: Regular Variation 21

The argument above can be presented for additive functions k : Rd → R
(Kucz1985, V.2); we take d = 1 here for simplicity.

Additive functions thus have the property that even a little regularity forces
great regularity (the form c x). Ostaszewski (Ost2015a, p. 729) lists ways in
which this can happen: additive functions are continuous if they are:

• Baire (Ban1932, I §3 Th.4);
• measurable (Fre1913; Fre1914);
• bounded on a non-null measurable set (Ostr1929);
• bounded on a non-meagre Baire set (Meh1964).

See BinO2011a for details and references.

P.9 Hamel Bases

Despite the pathological behaviour of the Hamel functions above, Hamel bases
as sets may not themselves be pathological. In 1920 Sierpiński (Sie1920)
showed that:

• a Hamel basis H can be (Lebegue-)measurable;
• (Th. I) any measurable Hamel basis has measure 0;
• any Hamel basis has inner measure 0;
• a Hamel basis can be non-measurable.

Thus the classes H1, H2 of measurable and non-measurable Hamel bases are
both non-empty. Sierpiński also showed (Th. II) that no Hamel base can be an
analytic set – indeed, it cannot even be a Borel set. He ends with a corollary of
his proofs: There exist two measurable sets X,Y ⊆ R such that the set of sums
{x + y : x ∈ X, y ∈ Y } is non-measurable.
Being a Hamel basis is a purely algebraic concept, while we can switch

between the measure and category cases by switching between the density
topology (Chapter 7) and the Euclidean topology. We conclude that the classes
of Hamel bases with and without the Baire property are both non-empty:

• a Hamel basis may or may not have the Baire property, both cases being
possible.

• Sierpiński (Sie1935) also showed this, assuming the Continuum Hypothesis,
CH, for part of it.

F. Burton Jones showed in 1942 that an additive function continuous on a set
T which is analytic and contains a Hamel basis is continuous (Jon1942b); see
also Jon1942b. Kominek proved in 1981 the analogous result with ‘continuous’
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replaced by ‘bounded’ (Kom1981). Motivated by the analogy between these
two results, the present authors (BinO2010a) gave a result with both the Jones
andKominek theorems as corollaries, using Choquet’s Capacitability Theorem.
They also deduced Jones’ theorem from Kominek’s and gave another proof of
the Uniform Convergence Theorem for slowly varying functions.
Płotka (Plo2003) showed that every function f : R → Q can be represented

as the pointwise sum of two Hamel functions.
Recall that a perfect set is a non-empty closed set with no isolated points.

A subset A of a Polish space X is called Marczewski measurable if for every
perfect set P ⊆ X either P∩ A or P\ A contains a perfect set. If every perfect set
P contains a perfect subset which misses A, then A is called Marczewski null.
Marczewski (Mar1935) (writing as E. Szpilrajn) showed that the Marczewski
measurable sets form a σ-field, and the Marczewski null sets form a σ-ideal.
Miller and Popvassilev (MillP2000) show:

• (Th. 10) There exists a Hamel basis H for R which is Marczewski null.
• (Th. 8) There exists a Hamel basis H for R2 which is Marczewski null.
• (Th. 14) There exists a Hamel basis H forRwhich isMarczewski measurable
and perfectly dense.

Dorais, Filipów and Natkaniec (DorFN2013) show (Th. 4.2) ‘deep differ-
ences between Lebesgue or Baire measurability and Marczewski measurability
by constructing a discontinuous additive function that is Marczewski mea-
surable’. They also show (Ex. 4.1) that there exist additive (discontinuous)
functions that are not Marczewski measurable. For further background, see
Kha2004.

P.10 Scaling and Fechner’s Law

Fechner’s Law (Gustav Fechner (1801–1887) in 1860) may be viewed as stating
that, when two related physically meaningful functions f and g have no natural
scale in which to measure their units, and are reasonably smooth, then their
relationship is given by a power law:

f = cgα . (F)

For background, see, e.g., Bin2015a; Han2004, §5.6.
Fechner’s Law emerges naturally from regular variation, as follows (we re-

strict attention to the basic case, with f , g positive, increasing and unbounded).
They satisfy some unknown functional relationship, say,

f (x) = φ(g(x)) : f = φ ◦ g.
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As there is no natural scale, then at least asymptotically this relationship should
be scale-independent regarding x. So changing scale by λ,

f (λx) ∼ ψ(λ) f (x) for all λ > 0 (RV)

for some functionψ(.) > 0. Under aminimal smoothness assumption (the Baire
property or measurability suffice), f is regularly varying with index α > 0, and
ψ is a power:

f ∈ Rα ⊆ R :=
⋃
α>0

Rα .

Similarly from g = φ← ◦ f , g ∈ R, and from ψ = f ◦ g← with f , g ∈ R, φ ∈ R
also:

φ(λ) = λα`(λ) ∈ Rα,

with ` ∈ R0.
The classically important special case is the simplest one, ` constant, ` ≡ c:

φ(x) = cxα; f (x) = cg(x)α : f = cgα,

giving Fechner’s Law.

Illustrative Example: Athletics Times. For aerobic running below ultra dis-
tances (800 m to the marathon, say), time t and distance d show Fechner
dependence:

t = cdα .

Here c (time per unit distance) reflects the quality of the athlete, while α is
approximately constant between athletes. This is illustrated on a real data set
(the first author’s half-marathon and marathon times) in Bingham and Fry
(BinF2010, §8.2.3).
The statistics needed (regression) extends to the study of ageing also. The

Rule of Thumb for ageing athletes (over 40, say) is: expect to lose a minute a
year on your marathon time through ageing alone. It is well borne out by this
data set (BinF2010, Ex. 1.3, Ex. 9.6).
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