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LETTERS TO THE EDITOR

A NOTE ON REPEATED SEQUENCES IN MARKOV CHAINS

J. D. BIGGINS, * University of Sheffield

Abstract
If (non-overlapping) repeats of specified sequences of states in a

Markov chain are considered, the result is a Markov renewal process.
Formulae somewhat simpler than those given in Biggins and Can­
nings (1987) are derived which can be used to obtain the transition
matrix and conditional mean sojourn times in this process.

SEQUENCE PATrERNS; MARKOV RENEWAL PROCESS

This note forms a continuation of Biggins and Cannings (1987), which will be
referred to as BC, and uses the same notation.

A realization of a finite Markov chain (whose state space forms the alphabet of
available letters) is cut in the following way. A set of words, none of which is contained
in any other, is given. The realization of the underlying chain is now viewed as a
sequence of letters to be read, from its start, until the end of one of the words is
reached, at which point the realization is cut to produce a fragment. This procedure is
then repeated on the remainder of the realization, and so on. Each time a particular
word occurs in the realization its end forms the site of a potential cut; only some of
these words actually result in cuts, the remainder being inhibited by some other cut
occurring within the word in question. Both the sequences of potential cuts and that of
the actual cuts form Markov renewal processes, with the type of a cut being identified
with the word causing it. The mechanism for obtaining the second of these processes
from the first is essentially that of a Type- I counter. The generating function of the
semi-Markov matrix for the process of potential cuts is denoted by a(z) and that for
actual cuts by aO(z). The types of the actual cuts develop as a Markov chain with
transition matrix aO(l), whilst the conditional mean fragment lengths (conditional on
the ty~es at the end) are simply related to o" (1). In BC formulae for obtaining aO(l)
and a ' (1) from the transition matrix of the underlying chain were developed. These
formulae involved first finding a(l) and a'(l) and then using BC(S·2) which relates
aO(z) and a(z). Here simpler, more direct formulae are obtained for aO(l) and aO'(l),
and the same idea also yields slightly simpler formulae for a(l) and a'(l) too. Besides
their computational advantage, these formulae also afford some structural insight, in
particular into the validity of certain approximations for aO(l) and aO'(l) used by
Bishop et al. (1983). In obtaining the formulae we draw heavily on the ideas in Section
4 of BC, but here the structure of the transform of the renewal function, r, will be
exploited rather more.
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We have, from BC(3·2) and BC(6·7), (/- a)-l = r = (q + s) so that

(1) a(q+s)=q+s-I,

and, from BC(6·12),

(2) aO(q + s) = s.

Here q is given by BC(6,4) and s by BC(6,11), and the important point is that the
denominator of S;j' which causes a singularity in Equations (1) and (2) at Z = 1, does
not depend on i. Denote this denominator by ej(z )JrjZdj-l so that

ej(z) = vA(j) (1 - f:~~A(j)(Z)) .
Jrjz J

We will rewrite (1) and (2) with the denominators cleared. To facilitate this let

~~(z) =f F(;)A(j)(Z),

(3) 1];j(z) = ej(z)(q;j(z) + S;j(z)) = ej(z)q;lz) + ~~(z),

~;j(z) = 1];j(z) + I;jej(z) = (q;j(z) - I;j)ej(z) + ~~(z).

Then (1) and (2) become

(4)

(6)

respectively. These equations are similar to BC(4'3), and differentiating the first one
once and twice, setting Z = 1, and using BC(4'6) and BC(4·11) gives

(5) CM=L and CM=L

where, using I for a vector of ones,

(
0 IT)

C=(k:a(1)) M= I ,,'(1) L=(I:~'(1))

C= (u : a'(1)) and L = (k: ~(~"(1) - a(1),,"(1))),

which are of course similar to BC(4'7) and BC(4·12). Similarly, differentiating aO" = ~o

gives

(7)

with definitions analogous to (6) (henceforth (6)°).
It can be shown that M is invertible when its entries are finite (which they must be

here as the underlying chain is finite and irreducible) and, excluding its diagonal terms,
each row of ,,' (1) has a non-zero entry. The proof of this is similar to that used in
Section 4 of BC which is in turn similar to that given by Gerber and Li (1981). The
Equations (7) constitute the main result here, providing a more direct route to the
quantities of interest, aO(1) and aO'(1), than that used in BC. Of course similar
equations hold for the case, discussed in Section 8 of BC, where partial overlaps are
permitted.

It is routine to establish, using (3) and BC(6·15), that

(8) fJ:j(l) = ,uij _1.. qij(l) and ~Z'(l) = ,uij,
Jrj

and, using BC(6·16) and BC(6·17), that

(9) fJij(l) = Pij - ~ q~(l) +1.. {2(dj - 1) - ;j}qij(l) and ~~'(1) = Pij,
Jrj Jrj
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which are needed for (7). To use (5) one also needs

'~(1) = 11:i1)+ I ij .! and 'ij(l) = l1ij(l) _.! {2(dj - 1) - ~j}Iij'
J'Cj J'Cj

741

These formulae can be used on the example discussed in Section 9 of Be.
Substitution into (8) and then into (6)° gives

(
0 1 1)

M= 1 -4 0
1 0 -10

so that

M-
1
= 1~ (:~ ~: _~) and CO = LOM-

1
=2~ G~~ :: :~),

and deleting the first column of CO gives aO(l). The deleted column forms the
first column of L 0

, the rest of which is obtained by substituting into (9) and then into
(6)° to give

to =~ (86 118 -103) and to = tOM- 1 = _1_ (4208 639 565)
14 78 52 -62 196 3392 666 426 '

and deleting the first column of to gives aO, (1).
To illustrate, without going into details, the usefulness of having the comparatively

explicit formula (7) available let n = diag {J'Ci } and Z = (I - ,unq(l)-l)-l then straight­
forward algebra using (6)°, (7) and (8) gives

(10)

Now suppose the underlying Markov chain, a realization of which is to be cut, is such
that the expected number of transitions to reach any state from any other is not large in
comparison with the distance between cuts, so that the terms of ,u are not large in
comparison with the inverse of the elements of J'C. It is then plausible that the transition
probabilities ag(l) are in fact nearly independent of i, for the underlying Markov chain
will have 'forgotten' that the previous cut was of type i long before the next cut occurs,
and so they should be given approximately by the stationary probability aJ.

This argument can now be made more precise for if ,unq(l)-l is small, so that Z ==1,
then, using BC(6·6) and (10).

ITnq(l)-l J'C 0T

aO(l) ""IlTnq(l)-ll = I n DTl = lll'OT.

This is one of the aproximations proposed by Bishop et al. (1983). (In the cases they
consider the terms of ,un will be small and q(l) == I.) Notice that when this
approximation is acceptable only BC(6·6) is needed to obtain aO(l). Similar, but more
complicated, discussion of the approximation of (J'C

0T l )aO' (l ) by laoT is possible, and
bounds on both approximations using a matrix norm can also be obtained; details are
given in Biggins (1986).

I would like to thank Chris Cannings for numerous helpful discussions on this topic,
and the referee for his useful comments on an earlier version.
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