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Abstract. In previous publications, it was shown that finite non-deterministic matrices are
quite powerful in providing semantics for a large class of normal and non-normal modal logics.
However, some modal logics, such as those whose axiom systems contained the Löb axiom or
the McKinsey formula, were not analyzed via non-deterministic semantics. Furthermore, other
modal rules than the rule of necessitation were not yet characterized in the framework.

In this paper, we will overcome this shortcoming and present a novel approach for constructing
semantics for normal and non-normal modal logics that is based on restricted non-deterministic
matrices. This approach not only offers a uniform semantical framework for modal logics, while
keeping the interpretation of the involved modal operators the same, and thus making different
systems of modal logic comparable. It might also lead to a new understanding of the concept of
modality.

§1. Introduction. In this paper, we present a novel approach for constructing
semantics for normal and non-normal modal logics that is based on restricted non-
deterministic semantics. This approach proves to be very versatile in the sense that given
a finite axiomatic characterization of a modal system, we can construct a semantics,
such that the given axiomatic system is sound and complete.

We begin our study with the weakest system of modal logic M. This system is
an expansion of classical propositional logic (CPL) with a unary operator � and is
characterized as follows:

• M contains all (classical) tautologies.
• M is closed under uniform substitution.
• M is closed under Modus Ponens.
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This starting point for investigating modal logics is not new. Logicians like Krister
Segerberg [34], David Makinson [24], Heinrich Wansing [36] and Lloyd Humberstone
[18] started their studies of modal logics with a similar system.1

It is evident from the given characterization that there are no axioms that specifically
mention the (modal) operator �. In particular, there is nothing that characterizes �
as a modal operator. The intended interpretation of � as a modal operator will later
be established by extending M with further axioms and rules, and thus generating the
desired modal properties of �. As already explained in [18], this provides the broadest
possible definition of a modal logic.2

In the presentations for the smallest modal system in [24], [34], [36] and [18]
the interpretation of the modal operator � is not kept for all extensions of the
smallest modal system. In fact, the interpretation of the operator � changes. From
no interpretation in M to a semantics constituted in possible worlds, where in all
extensions, e.g.,�A is true in a world iff A is true in all accessible worlds.3 Similar things
can be said about neighborhood frames or some versions of truth-maker semantics.
These shifts are made rather abruptly to generate the needed behavior of the modal
operator. What then distinguishes our approach is that we keep the interpretation of
� the same, thus establishing a uniform theory of modal operators.

The goal of developing a unified theory of modal operators is not new. In recent
publications, cf. [10, 28], M and some of its normal extensions were investigated as
part of a larger discussion concerning non-deterministic semantics for non-normal
modal logics4 and normal modal logics. There, the authors build upon the framework
of non-deterministic semantics, which was systematically introduced by Arnon Avron
and his collaborators, cf. [3], but already used by Yuri Ivlev and John Kearns in the
context of modal logics in [19, 37] and [20, 21]. These results were further developed
in [11, 17, 25–27, 29–31].

Those publications by the various authors shared the heuristics of systematically
eliminating semantical values or non-determinacy from non-deterministic truth-tables
to validate desired axioms. This approach was successful in providing a uniform
semantics for a broad class of normal and non-normal modal systems, even for some
systems that lack possible worlds semantics, cf. [26]. Hence, the proposed framework is
not only more general, but also conceptually conservative since the meaning of modal
operators was kept constant.

However, the technique of eliminating values or non-determinacy had limitations.
It became apparent that not all modal axioms could be straightforwardly repre-
sented in a non-deterministic truth-table format, such as the Gödel–Löb axiom
�(�A→ A) → �A (GL) or the McKinsey formula, as axioms.5 The possibility of
providing non-deterministic truth-tables for such formulas remains uncertain.

1 They either call it L0, PC or S. In the more recent [17] this system is called 0. The main
difference between their and our starting point is that they interpret � from the beginning
as a necessity operator.

2 The system M differs from CPL, since it cannot be characterized by a finite deterministic
matrix, since any such characterization would designate a formula similar to the well-known
Dugundji construction, which is of course not derivable in M.

3 If we interpret � as necessity.
4 Non-normal in the sense that the rule of necessitation is absent.
5 Coincidentally, those formulas also have no corresponding first-order frame condition,

cf. [35].
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RNMATRICES FOR MODAL LOGICS 3

Our primary objective is to demonstrate that restricted non-deterministic semantics
serves as both a technically viable and conceptually valuable alternative uniform
semantics for modal logic.

Hence, we will develop restricted non-deterministic matrices, or RNmatrices for
short, for modal logics, and we will show how to construct semantics for given axiom
systems and prove decidability of all those systems that do not contain modal rules.
RNmatrices were introduced in [14], as a generalization of Rmatrices, cf. [32], in order
to provide a semantic characterization for some logics of formal inconsistency, such
as those found between mbCcl and Cila, which can not be characterized by finite
(non-deterministic) matrices.

As a byproduct, we will generalize Kearns’ technique [20] of globally restricting the
set of all valuations, in order to validate any global modal rule. This will guarantee not
only the validity of the rule of necessitation but also other well-known modal rules,
like congruentiality, monotonicity or distribution.

This combination of RNmatrices and the generalized technique of globally
restricting the set of all valuations, which leads to a uniform semantical framework
for modal logics, is novel in the sense that it was nowhere presented in previous
publications.

Before we conclude the introduction, we just want to highlight that recently there
is a new development under investigation, a combination of Kripke frames and non-
deterministic semantics, cf. [15]. The main difference between such hybrid frameworks
and our approach is certainly the interpretation of the modal operators, either based on
possible worlds or the restricted non-deterministic semantics. Such hybrid frameworks
promise yet another generalization of Nmatrices.

Based on this, the aim of this paper is then as follows: in §2, we will introduce
RNmatrices for the minimal modal logic M. In §3, we will discuss extensions, without
any rules for the modal operator, of M by making the appropriate restrictions to the set
of all valuations. General soundness and completeness results will be presented for all
the extensions. This will be followed by §4 where all extensions discussed so far will be
enriched with global modal rules, and thus generalizing John Kearns’ level technique.
In §5, we expand the language with another modal operator, introduce the bimodal
minimal logic and its extensions, as well as proofs of soundness and completeness.
And in §6, we conclude with results of decidability for modal system axiomatized
with a finite set of modal axioms, where no global rules, i.e., rules such that the
premises and the conclusion are theorems, are present, that extends the minimal modal
logic M.

We will show that our semantical approach goes beyond Kripke structures and
non-deterministic semantics as considered in previous work. And by focusing on the
weakest modal logic M and investigating its extensions, we introduce a new hierarchy
of (bi-, multi-) modal systems with or without (non-standard, multiple) global
rules.

§2. RNmatrices for the minimal modal logic M. Consider a modal propositional
signature Σ with unary connectives ¬ and � (classical negation and modality,
respectively) and a binary connective→ (material implication). LetV be a denumerable
set of propositional variablesV = {p0, p1, ...} and letFor(Σ) be the algebra of formulas
over Σ freely generated by V . As usual, conjunction ∧, disjunction ∨ and bi-implication
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4 MARCELO E. CONIGLIO, PAWEL PAWLOWSKI AND DANIEL SKURT

↔ are defined from¬ and→ as follows:A ∧ B := ¬(A→ ¬B),A ∨ B ; = ¬A→ B and
A↔B := (A→ B) ∧ (B → A).6

In this section, we consider a set of four-valued non-deterministic matrices
(Nmatrices, for short) defined from swap structures (see for instance [7, chap. 6]
and [13]) in which each truth-value is an ordered pair (or snapshot) z = (z1, z2)
in 22, for 2 = {0, 1}. Here, z1 and z2 represent, respectively, the truth value of
A and of �A for a given formula A over Σ. From now on, given a snapshot
z = (z1, z2), z1 and z2 represent the first and second coordinate of the truth-value.
This produces four truth-values t– := (1, 0), t+ := (1, 1), f+ := (0, 1) and f– := (0, 0).
Let V4 be the set of such truth-values. Accordingly, the set of designated values will
be D4 = {z ∈ V4 : z1 = 1} = {t–, t+}. On the other hand, the set of non-designated
values is given as ND4 = {f–, f+}.

Because of the intended meaning of the snapshots, negation and implication between
snapshots are computed over 2 in the first coordinate, while the second one can take
an arbitrary value, which will be denoted by ∗. That is:

¬̃ z := (∼z1, ∗);
z →̃w := (z1⇒w1, ∗).

Here, ∼ and ⇒ denote the Boolean negation and the implication in 2. Observe that
the second coordinate is arbitrary since at this moment � remains uninterpreted, i.e.,
there are no axioms ruling the value of �¬A and the value of �(A→ B).

The interpretation of � is a multioperator7 which simply ‘reads’ the second
coordinate, while the second coordinate (corresponding to ��A) will be arbitrary
at this point, as well:

�̃ z := (z2, ∗).

Let M = 〈V4, D4,O〉 be the obtained four-valued Nmatrix, where O(#) = #̃ for every
connective # in Σ. The truth-tables for M can be displayed as follows:

→̃ t+ t– f+ f–

t+ D4 D4 ND4 ND4

t– D4 D4 ND4 ND4

f+ D4 D4 D4 D4

f– D4 D4 D4 D4

A ¬̃A �̃A
t+ ND4 D4

t– ND4 ND4

f+ D4 D4

f– D4 ND4

Definition 1. Now, let F be the set of all the valuations over the Nmatrix M, such that
v ∈ F iff v : For(Σ) → V4 is a function satisfying the following properties:

• v(#A) ∈ #̃ v(A) for # ∈ {¬,�};
• v(A→ B) ∈ v(A) →̃ v(B).

6 Note that we could also take ∧, ∨ and ↔ as primitive rather than defined connectives.
However, due to the non-truth-functional nature of our semantics, presented below, this
would require more care w.r.t. the truth-tables and the formulation of later results. In order
to keep our approach accessible to a broader audience, we decided to take smaller set of
connectives as primitive.

7 The term multioperator (a.k.a. hyperoperator) is an algebraic term for a non-deterministic
function, see [12]. For example, �̃ : V4 → P(V4)\∅. All connectives in this paper are
interpreted as multioperators.
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RNMATRICES FOR MODAL LOGICS 5

The logic M generated by the Nmatrix M is then defined as follows: Γ �M A iff, for
every v ∈ F : if v(B) ∈ D4 for every B ∈ Γ then v(A) ∈ D4.

Let H be the standard Hilbert calculus for CPL, presented in the signature Σ (that
is, no axioms nor rules for � are given, being Modus Ponens, denoted by MP, the only
inference rule). It is easy to prove the following result (a sketch of the proof will be
given in the next subsection).

Theorem 1 (Soundness and completeness of H w.r.t. M). For every Γ ∪ {A} ⊆ For(Σ)
it holds: Γ �H A iff Γ �M A.

Remark 2. The Nmatrix semantics M for M was already introduced by H. Omori
and D. Skurt in [28]. Indeed, the Nmatrix considered in [28] uses also four truth-values
with the same names, the same multioperators and the same designated values than the
ones in M, with the only difference that f+ must be changed to f– and vice-versa, due to
a different interpretation of those truth-values. Furthermore, the idea of expressing the
truth values (and so the corresponding multioperations over it) as snapshots is unique to
this paper.

Being the minimal modal logic, M is nothing else than CPL presented in a language
with an uninterpreted modal operator �. For instance, it does neither satisfy the axiom
(K) : �(A→ B) → (�A→ �B) nor the rule of necessitation. Given that � is supposed
to represent a given modal operator (that it could be, for instance, a possibility operator �)
this feature should be expected. In particular, we will show that the nature of the modality
will strongly depend on our choice of axioms we want to be valid.

In the next section, the valuations considered over the NmatrixMwill be restricted to
certain conditions, in order to satisfy particular modal axioms which will characterize
specific modal logics. It should be observed that a similar investigation was already
done in [28], but with a different approach: instead of restricting the set of valuations,
there the multioperators of the Nmatrix M were restricted.

§3. RNmatrices for extensions of M. In what follows, we will introduce and exploit
what in [14] was called restricted Nmatrices (RNmatrices).

Definition 3 (RNmatrices). RNmatrices have the form RM = 〈M,F ′〉, where M is
an Nmatrix and F ′ ⊆ F and the set F ′ is closed under substitutions.8

As proved in [14], any RNmatrix as above generates a Tarskian and structural
consequence relation defined as expected: Γ �RM A iff, for every v ∈ F ′: if v(B) ∈ D4

for every B ∈ Γ then v(A) ∈ D4. The aim of the restriction is to satisfy certain modal
axiom(s) and, later on, modal rules.

Remark 4. From now on, any valuation v ∈ F over the Nmatrix M (see
Definition 1) will be written as v = (v1, v2) such that v1, v2 : For(Σ) → 2. Hence,
v(A) = (v1(A), v2(A)) for every formula A. This means that, for all formulas A and B:

• v(A) ∈ D4 iff v1(A) = 1;
• v1(¬A) = ∼v1(A);

8 A substitution over the signature Σ of LR is a function � : V → For(Σ). Since For(Σ) is
an absolutely free algebra, each � can be extended to a unique endomorphism in For(Σ)
(which will be also denoted by �). That is, � : For(Σ) → For(Σ) is such that �(#A) = #�(A)
for # ∈ {¬,�}, and �(A→ B) = �(A) → �(B). The set of substitutions over � (seen as
endomorphisms in For(Σ)) will be denoted by Subs(Σ).
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6 MARCELO E. CONIGLIO, PAWEL PAWLOWSKI AND DANIEL SKURT

• v1(�A) = v2(A);
• v1(A→ B) = v1(A)⇒v1(B).

We start by considering the well-known axiom (K), introduce important notions and
prove soundness and completeness of the standard Hilbert-calculus w.r.t. RNmatrices.
Then we will discuss other well-known axioms with one modal operator.

Consider

(K) : �(A→ B) → (�A→ �B).

Then, a valuation v ∈ F satisfies (K) iff, by Remark 4, v1(�(A→ B) → (�A→
�B)) = 1 for every A,B iff v1(�(A→ B))⇒(v1(�A)⇒v1(�B)) = 1 for every A,B
iff v1(�(A→ B)) ≤ v1(�A)⇒v1(�B) for every A,B iff v2(A→ B) ≤ v2(A)⇒v2(B)
for every A,B . Hence, the logic MK satisfying axiom (K) is characterized by the
RNmatrix RMK = 〈M,FK〉 such that

FK = {v ∈ F : v2(A→ B) ≤ v2(A)⇒v2(B) for every A,B}.
Clearly, RMK is structural. Indeed, let � be a substitution and let v ∈ FK. Observe
that v ◦ � = (v1 ◦ �, v2 ◦ �). Then, for every A,B : v2 ◦ �(A→ B) = v2(�(A→ B)) =
v2(�(A) → �(B)) ≤ v2(�(A))⇒v2((�(B)) = v2 ◦ �(A)⇒v2 ◦ �(B). Hence v ◦ � ∈ FK.

Definition 5 (The Hilbert calculus HK). Let HK be the Hilbert calculus over Σ obtained
from H by adding axiom schema (K).

Definition 6 (Bivaluation semantics for HK). A bivaluation for HK is a function
b : For(Σ) → 2 such that, for every A,B :

(val 1) b(¬A) = ∼b(A);
(val 2) b(A→ B) = b(A)⇒b(B);
(val 3) b(�(A→ B)) ≤ b(�A)⇒b(�B).

The consequence relation �K
2 w.r.t. bivaluations for HK is defined as follows: Γ �K

2 A
iff, for every b: if b(B) = 1 for every B ∈ Γ then b(A) = 1.

Remark 7. Recall that, given a Tarskian and finitary logic L, a set of formulas Δ is
said to be A-saturated (where A is a formula) if Δ �L A but Δ, B �L A for every formula
B such thatB /∈ Δ. If Δ is A-saturated then it is a closed theory, that is: Δ �L B iffB ∈ Δ.
It is well-known that, in any Tarskian and finitary logic L, if Γ �L A then there exists
an A-saturated set Δ such that Γ ⊆ Δ. Since the logic generated by HK is Tarskian and
finitary, it has this property.

Proposition 1. Let Δ be an A-saturated set in HK. Then, for every formulas A,B :

(1) ¬A ∈ Δ iff A �∈ Δ;
(2) A→ B ∈ Δ iff either A �∈ Δ or B ∈ Δ;
(3) if �(A→ B) ∈ Δ and �A ∈ Δ then �B ∈ Δ.

Proof. Immediate, by definition of HK and the fact that Δ is a closed theory.

Corollary 1. Let Δ be an A-saturated set in HK. Then, the characteristic function
b : For(Σ) → 2 of Δ, given by b(B) = 1 iff B ∈ Δ, is a bivaluation for HK.

Proof. It is immediate from Proposition 1.

Theorem 2 (Soundness and completeness of HK w.r.t. bivaluation semantics). Let
Γ ∪ {A} ⊆ For(Σ). Then: Γ �HK

A iff Γ �K
2 A.
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RNMATRICES FOR MODAL LOGICS 7

Proof. (Soundness): Clearly every axiom of HK is valid w.r.t. bivaluations, and
bivaluations preserve trueness through MP, that is: if b(A→ B) = b(A) = 1 then
b(B) = 1. Hence, by induction on the length of a derivation in HK of A from Γ, it is
easy to see the following: Γ �HK

A implies that Γ �K
2 A.

(Completeness): Suppose that Γ �HK
A. As observed above, there exists an

A-saturated set Δ such that Γ ⊆ Δ. By Corollary 1 the characteristic map b of Δ is
a bivaluation for HK such that b(B) = 1 for every B ∈ Γ but b(A) = 0. This shows
that Γ �

K
2 A.

Lemma 1. Let b be a bivaluation for HK. Then, the function v : For(Σ) → V4 given by
v(A) = (b(A), b(�A)) for every A belongs to FK. In addition: b(A) = 1 iff v(A) ∈ D4,
for every A.

Proof. Let us first prove that v ∈ F . By definition of v and by (val 1), v(¬A) =
(b(¬A), b(�¬A)) = (∼b(A), b(�¬A)) ∈ ¬̃ v(A). By (val 2), v(A→ B) = (b(A→
B), b(�(A→ B))) = (b(A)⇒b(B), b(�(A→ B))) ∈ v(A) →̃ v(B). By definition,
v(�A) = (b(�A), b(��A)) ∈ �̃ v(A). This shows that v ∈ F . Now, by (val 3),
v2(A→ B) = b(�(A→ B)) ≤ b(�A)⇒b(�B) = v2(A)⇒v2(B). Hence, v ∈ FK.
Clearly, b(A) = 1 iff v(A) ∈ D4, for every A.

Lemma 2. Let v ∈ FK. Then, the function b : For(Σ) → 2 given by b(A) = v1(A) for
every A is a bivaluation for HK. In addition: b(A) = 1 iff v(A) ∈ D4, for every A.

Proof. By Remark 4, b satisfies (val 1) and (val 2). Now, observe that
b(�(A→ B)) = v1(�(A→ B)) = v2(A→ B) ≤ v2(A)⇒v2(B) = v1(�A)⇒v1(�B)
= b(�A)⇒b(�B). Hence, b also satisfies (val 3). It is immediate to see that b(A) = 1
iff v(A) ∈ D4, for every A.

Theorem 3 (Soundness and completeness of HK w.r.t. the RNmatrix RMK). Let
Γ ∪ {A} ⊆ For(Σ). Then: Γ �HK

A iff Γ �RMK
A.

Proof. By Lemmas 1 and 2, it follows that Γ �RMK
A iff Γ �K

2 A. The result follows
by Theorem 2.

Remark 8. By simplifying the proof above Theorem 1 can be proven. Indeed, it is
enough replacing FK by F and consider bivaluations just satisfying (val 1) and (val 2).
Clearly, the calculus H is sound and complete w.r.t. such bivaluations semantics. The
proof of this fact is analogous to that of Theorem 2, just by stating a simplified version of
Proposition 1 in which item (3) is not considered. The rest of the proof follows from here
as in the case of HK, with suitable simplifications.

We will now consider the following well-known axioms with one modal operator
and present to corresponding restrictions on the RNmatrices in order to show their
versatility. Note that, this list can be easily extended:

• (Kw) : A→ (�(A→ B) → (�A→ �B)).
• (T) : �A→ A.
• (Tc) : A→ �A.
• (4) : �A→ ��A.
• (4c) : ��A→ �A.
• (GL) : �(�A→ A) → �A.
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8 MARCELO E. CONIGLIO, PAWEL PAWLOWSKI AND DANIEL SKURT

By analysis similar to the one given for (K), it is immediate to see that the conditions
imposed by these axioms on valuations and bivaluations are, respectively, the following,
where � is the boolean meet:

Axiom Valuations Bivaluations

(Kw) v1(A) � v2(A→ B) � v2(A) b(A) � b(�(A→ B)) � b(�A)
≤ v2(B) ≤ b(�B)

(T) v2(A) ≤ v1(A) b(�A) ≤ b(A)
(Tc) v1(A) ≤ v2(A) b(A) ≤ b(�A)
(4) v2(A) ≤ v2(�A) b(�A) ≤ b(��A)
(4c) v2(�A) ≤ v2(A) b(��A) ≤ b(�A)
(GL) v2(�A→ A) ≤ v2(A) b(�(�A→ A)) ≤ b(�A)

A general method for obtaining conditions for valuations and bivaluations from a
given axiom will be given after Example 14.

Now, letAx ∈ {Kw,T,Tc, 4, 4c,GL}, then it is easy to see that all RNmatricesRMAx

are structural. Furthermore, the Hilbert calculi HAx for MAx are obtained by adding
the axiom (Ax) to H. The consequence relation w.r.t. bivaluations will be denoted
by �Ax

2 .
An A-saturated set Δ in HAx satisfies conditions (1) and (2) of Proposition 1 plus

the following, respectively:

• if A ∈ Δ, �(A→ B) ∈ Δ and �A ∈ Δ then �B ∈ Δ
• if �A ∈ Δ, then A ∈ Δ
• if A ∈ Δ, then �A ∈ Δ
• if �A ∈ Δ, then ��A ∈ Δ
• if ��A ∈ Δ, then �A ∈ Δ
• if �(�A→ A) ∈ Δ then �A ∈ Δ.

From this, it is easy to adapt the corresponding proofs for HK in order to obtain the
following results.

Theorem 4 (Soundness and completeness of HAx w.r.t. bivaluation semantics). Let
Γ ∪ {A} ⊆ For(Σ). Then: Γ �HAx

A iff Γ �Ax
2 A.

Theorem 5 (Soundness and completeness of HAx w.r.t. the RNmatrix RMAx). Let
Γ ∪ {A} ⊆ For(Σ). Then: Γ �HAx

A iff Γ �RMAx
A.

Remark 9. We only note that all the results carry over to extensions of M by sets of
axioms, as well.

We end this section by showing that it is possible to extend Theorem 5 to any
axiomatic extension of the basic system H (which corresponds to the Nmatrix M).
That is, any modal axiom (or, in general any finite set Ax of modal axioms) can be
added to H, in such a manner that it is possible to obtain conditions on the valuations
(and on the bivaluations) faithfully characterizing the resulting Hilbert calculus HAx

by the corresponding bivaluation semantics and Nmatrix RMAx. In order to do this,
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RNMATRICES FOR MODAL LOGICS 9

observe first that, in the given modal signature, any formula A satisfies one and only
one of the following conditions:

- A is atomic; or
- A = ¬B for a unique formula B; or
- A = �B for a unique formula B; or
- A = A1 → (A2 → (...→ (An → B) ...)) for a unique n ≥ 1 and unique formu-

lasAi (for 1 ≤ i ≤ n) and B such that either B is atomic, orB = ¬C orB = �C
for a unique formula C.

Definition 10. Given a valuation v = (v1, v2) ∈ F and a formula A, we define the
immediate unary reduction of v and A as follows:

- if A is atomic then vi (A) reduces to vi (A), for i = 1, 2;
- if A = ¬B then v1(A) reduces to ∼v1(B);
- if A = �B then v1(A) reduces to v2(B); and
- if A = A1 → (A2 → (...→ (An → B) ...)) then v1(A) reduces to (v1(A1) � ... �
v1(An))⇒v1(B); in particular, v1(A1 → B) reduces to v1(A1)⇒v1(B).

Definition 11. Given v and A as above, the unary reduction of v and A is obtained
by applying iteratively the immediate unary reductions until no additional immediate
reductions can be applied. Since length of the formulas finite, it is always possible to find
the unary reduction for any v and A.

Definition 12. Given v and A as above, the immediate reduction of v and A is defined
as follows:

- if A is atomic and j ∈ {0, 1} then the equation vi (A) = j reduces to vi (A) = j,
for i = 1, 2;

- if A = ¬B and j ∈ {0, 1} then the equation v1(A) = j reduces to v1(B) = ∼j;
- if A = �B and j ∈ {0, 1} then the equation v1(A) = j reduces to v2(B) = j;
- if A = A1 → (A2 → (...→ (An → B) ...)) then the equation v1(A) = 1 reduces

to the condition v1(A1) � ... � v1(An) ≤ v1(B); and
- if A = A1 → (A2 → (...→ (An → B) ...)) then the equation v1(A) = 0 reduces

to the conditions v1(Ak) = 1 ( for 1 ≤ k ≤ n) and v1(B) = 0.

Definition 13. The reduction of v and A is obtained from an equation vi(A) = j by
applying iteratively the immediate reductions to the obtained equations and the unary
reduction to the involved terms inside the conditions.

Then, starting from the equation v1(A) = 1, it is possible to reduce, in a finite number
of steps, any axiom A to a finite set of conditions over valuations in F .

Example 14. Consider the axiom A = (�B → B) ∧ (�B → ��B) such that B
is a propositional variable. Let E = (�D → D) ∧ (�D → ��D) = ¬((�D → D) →
¬(�D → ��D)) be a generic instance of A. Hence, the equation v1(E) = 1 immediately
reduces to v1((�D → D) → ¬(�D → ��D)) = 0. The latter immediately reduces to
the conditions v1(�D → D) = 1, v1(¬(�D → ��D)) = 0. This immediately reduces to
v1(�D) ≤ v1(D), v1(�D → ��D) = 1. This immediately reduces to v2(D) ≤ v1(D),
v1(�D) ≤ v1(��D). Finally, this reduces to v2(D) ≤ v1(D), v2(D) ≤ v2(�D). Observe
that, since D is an unspecified formula, it is treated as a propositional variable in the
reductions.
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10 MARCELO E. CONIGLIO, PAWEL PAWLOWSKI AND DANIEL SKURT

Clearly, and by using a similar technique, it is possible to obtain in a finite
number of steps a finite set of conditions on bivaluations from any axiom or
finite set of axioms. Specifically, given a bivaluation b: b(A) and b(A) = j reduce,
respectively, to b(A) and b(A) = j, if A ∈ V or A = �B for some B, for j = 0, 1;
b(¬A) and b(¬A) = j reduce, respectively, to ∼b(A) and b(A) = ∼j, for j = 0, 1;
b(A1 → (A2 → (...→ (An → B) ...))) and b(A1 → (A2 → (...→ (An → B) ...))) = 1
reduce, respectively, to (b(A1) � ... � b(An))⇒b(B) and b(A1) � ... � b(An) ≤ b(B);
and b(A1 → (A2 → (...→ (An → B) ...))) = 0 reduces to the conditions b(Ak) = 1
(for 1 ≤ k ≤ n) and b(B) = 0. Of course these reductions are applied iteratively,
arriving in a finite number of steps to a set of conditions over b starting from b(A) = 1
for a given axiom A.

Example 15. Consider the axiom A from Example 14, as well as a generic instance
E of it. Then, the following conditions for a bivaluation b, starting from the equation
b(E) = 1, are obtained: b((�D → D) → ¬(�D → ��D)) = 0, which reduces to the
conditions b(�D → D) = 1, b(¬(�D → ��D)) = 0. This reduces to b(�D) ≤ b(D),
b(�D → ��D) = 1, which reduces to b(�D) ≤ b(D), b(�D) ≤ b(��D). It should
be clear that Lemma 1 can be adapted to the axiomatic extension HA of H, taking
into consideration Remark 4, showing that the bivaluation semantics obtained for HA
coincides with the Nmatrix generated in Example 14.

In general, let Ax be a finite set of modal axioms. By adapting the results above, it
follows that the logic generated from the bivaluation semantics obtained from Ax by
means of the reductions above coincides with the one generated from the restricted
Nmatrix obtained from Ax by the corresponding reductions.

In order to prove completeness ofHAx w.r.t. the bivaluation semantics generated from
Ax, the following observation is crucial: if Δ is a C-saturated set forHAx then it is a closed
theory that contains any instance of any axiom in Ax. This, combined with conditions
(1) and (2) of Proposition 1, produces general conditions for Δ (by considering a
generic instance of each axiom). Such conditions correspond to the conditions for
bivaluations obtained from Ax; that is, Corollary 1 can be adapted to HAx. This shows
that the proposed method works for any set Ax of modal axioms.

Example 16. Consider once again the axiom A, analyzed in Example 14. Let Δ
be a C-saturated set in the axiomatic extension HA of H. Then, any instance
E = (�D → D) ∧ (�D → ��D) of A belongs to Δ. This means that (�D → D) →
¬(�D → ��D) /∈ Δ, by Proposition 1(1). By Proposition 1(2), �D → D ∈ Δ and
¬(�D → ��D) /∈ Δ, which implies that�D → ��D ∈ Δ. Then, two general properties
of Δ are obtained: (P1) if �D ∈ Δ thenD ∈ Δ; and (P2) if�D ∈ Δ then ��D ∈ Δ. It is
clear that (P1) and (P2) correspond to the conditions for bivaluations obtained from A in
Example 15, by identifying ‘F ∈ Δ’ with ‘b(F ) = 1’. This allows us to adapt Corollary 1
to HA, obtaining so soundness and completeness of HA w.r.t. bivaluation semantics, and
so w.r.t. its RNmatrix semantics, by Example 15.

§4. Extensions of M by global inference rules. In this section, the logic M and
its axiomatic extensions will be enriched with various global inference rules for �,
and so we will obtain a vast class of modal logics. In all previous works, e.g., [9],
[20] or [25], and follow-up articles, the only global inference rule was the rule of
necessitation. In this section, however, we will show how to generalize John Kearns’
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RNMATRICES FOR MODAL LOGICS 11

original level-valuations technique, in order to capture any global inference rule. We
will present furthermore, a generalized soundness and completeness proof and thus
showing that any of the Hilbert systems presented before, are sound and complete
w.r.t. the corresponding semantics. On top of that, the results below present a general
recipe for constructing semantics for various normal and non-normal modal logics.

Throughout this section, L will denote any of the modal logics considered in §3. That
is, L is characterized by a Hilbert calculusHAx obtained by adding the (set of) axiom(s)
(Ax) to H. The RNmatrix characterizing L will be denoted by RMAx = 〈M,FAx〉.
Definition 17. Let L be an extension of M characterized by a Hilbert calculus HAx. We
say that HRAx is the Hilbert calculus obtained from HAx by adding the (global ) inference
rule

E1 E2 ... Es
E

(R)

The logic characterized by HRAx will be denoted by LR.

Remark 18. By a global inference rule we mean any inference rule, where premises
and conclusion are theorems.

Observe that the previous definition can be easily generalized to capture more than
one global inference rule (we left the details to the reader). However, to keep matters
accessible we restrict ourselves to just one global rule at this point.9

The next definition will show the definitions of the notion of derivation in Hilbert
calculi that one obtains by adding a global rule. For convenience, some technical
notions will be recalled here.

Definition 19. 1. We say that A is derivable or a theorem in HRAx, written as �HR
Ax
A,

if there exists a finite sequence of formulas A1 ... Am such that Am = A and, for every
1 ≤ i ≤ m, either Ai = �(B) for some substitution � and some axiom B in HAx, or there
exists j, k < i such that Aj = Ak → Ai (hence Ai is obtained from Aj and Ak by MP),
or there exist some substitution � and j1, ... , js < i such that Ajk = �(Ek) for every
1 ≤ k ≤ s , and Ai = �(E) (hence Ai is obtained from Aj1 , ... , Ajs by R).

Such a sequence is called a derivation of A in HRAx.
2. We say that A is derivable in HRAx from a set Γ of formulas, written as Γ �HR

Ax
A,

if either �HR
Ax
A, or there exists a nonempty finite set {B1, ... , Bk} ⊆ Γ such that

B1 → (B2 → (...→ (Bk → A) ...) is derivable in HRAx.
It is worth noting that ∅ �HR

Ax
A iff �HR

Ax
A.

Remark 20. It is straightforward to prove that the logic LR generated by HRAx is
Tarskian and finitary. Hence, as observed in Remark 7, if Γ �HR

Ax
A then there exists an

A-saturated set Δ in HRAx such that Γ ⊆ Δ.

Following [9, 20, 28] we define the set of valuations over the RNmatrix RMAx =
〈M,FAx〉 as follows.

9 In Example 27, two global rules for two different modalities are considered.
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12 MARCELO E. CONIGLIO, PAWEL PAWLOWSKI AND DANIEL SKURT

Definition 21 (R-Level valuations). We define the set FRAx inductively as follows:

• F0
Ax = FAx

• Fm+1
Ax =

{
v ∈ FmAx : ∀A ∈ For(Σ), ∀ � ∈ Subs(Σ), if A = �(E)

and ∀ 1 ≤ i ≤ s, ∀w ∈ FmAx(w1(�(Ei )) = 1), then v1(A) = 1
}

• FRAx =
∞⋂

m=0
FmAx.

Definition 22.

(1) A is valid in LR, denoted by |=LR A, if v1(A) = 1 for every v ∈ FRAx.
(2) A is a semantical consequence of Γ in LR, denoted by Γ |=LR A, if either A is valid

in LR, or B1 → (B2 → (...→ (Bk → A) ...) is valid in LR for some nonempty
finite set {B1, ... , Bk} ⊆ Γ.

Lemma 3. If �HR
Ax
A with a derivation of length m + 1, then v1(A) = 1, for every

v ∈ FmAx.

Proof. By induction onm ≥ 0. Ifm = 0 thenm + 1 = 1, hence A is an instance of an
axioms of HRAx. This means that for any v ∈ F0

Ax = FAx, v1(A) = 1, by the soundness
of HAx w.r.t. RMAx.

Assume the result holds for m, and let A be a theorem of HRAx with a derivation of the
form A1 ... Am+2, where Am+2 = A. If A is an axiom the proof is as above, considering
that Fm+1

Ax ⊆ F0
Ax. We need to check now that the application of any rule preserves the

result, that is, v1(A) = 1 for every v ∈ Fm+1
Ax .

MP Let v ∈ Fm+1
Ax . In this case, there is Ai := (Aj → A), where i, j ≤ m. By

the induction hypothesis (IH), w1(Aj) = w1(Ai) = 1 for any w ∈ FmAx. By
the definition of the level valuations, v1(Aj) = v1(Ai) = 1. This implies that
v1(A) = 1 simply because of the way →̃ has been defined.

R Let v ∈ Fm+1
Ax . Assume that there exists a substitution � such that A = �(E),

and that there exists j1, ... , js < i such that Ajk = �(Ek) for every 1 ≤ k ≤ s .
By IH, w1(Ajk ) = 1 for every 1 ≤ k ≤ s and every w ∈ FmAx. Hence, v1(A) = 1,
by definition of Fm+1

Ax .

Theorem 6 (Soundness of HRAx w.r.t. level valuation semantics). If Γ �HR
Ax
A then

Γ |=LR A.

Proof. Suppose that Γ �HR
Ax
A. If �HR

Ax
A, there must be a derivation of length

m + 1 ≥ 1 of A. By Lemma 3, v′1(A) = 1, for every v′ ∈ FmAx and since FRAx ⊆ FmAx we
get |=LR A and so Γ |=LR A. Now, if there is some nonempty finite set {B1, ... , Bk} ⊆ Γ
such that �HR

Ax
C , where C := B1 → (B2 → (...→ (Bk → A) ...), it follows as above

that |=LR C and so Γ |=LR A.

Lemma 4. Let Δ be an A-saturated set in HRAx, and let bΔ : For(Σ) → 2 given by
bΔ(B) = 1 iff B ∈ Δ, for every B. Then bΔ is a bivaluation for HAx and so the function
vΔ : For(Σ) → V4 given by vΔ(B) = (bΔ(B), bΔ(�B)), for every B, belongs to FAx.
In addition, the following holds for every B: vΔ

1 (B) = 1 iff B ∈ Δ.

Proof. Observe that Proposition 1 describes formal properties of A-saturated sets
Δ′ in HK which can be obtained by analyzing MP and the axioms of H (which give
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RNMATRICES FOR MODAL LOGICS 13

conditions (1) and (2)) together with axiom K, which gives condition (3). These
conditions imply that the function bΔ′

, the characteristic function of Δ′, satisfies the
clauses defining bivaluation semantics for HK, proving so Corollary 1. As discussed at
the end of §3, the same technique can be applied to Δ′-saturated sets in HAx, for any
set Ax of modal axioms.

Now, let Δ be an A-saturated set in HRAx, and let bΔ be the characteristic function of
Δ. Since HAx ⊆ HRAx, it follows that bΔ satisfies the formal properties for a Δ-saturated
set in HAx (collected in the analogous of Proposition 1 for HAx) which imply that bΔ is
a bivaluation for HAx (recalling that the formal properties of such a bivaluations can
be obtained by reductions applied to the axioms in Ax). Hence, by adapting the proof
of Lemma 1 to FAx (which is obtained from Ax as described at the end of §3), it follows
that vΔ ∈ FAx. By the very definitions, for every B, it holds: vΔ

1 (B) = 1 iff B ∈ Δ.

Lemma 5. Let A be a formula and let Δ be an A-saturated set in HRAx. Let vΔ be the
valuation defined as in Lemma 4. Then, vΔ ∈ FnAx for every n ≥ 0 and so vΔ ∈ FRAx.

Proof. Let Δ be an A-saturated set in HRAx. The result will be proved by induction
over n. If n = 0 then the result holds, by Lemma 4 and the fact thatF0

Ax = FAx. Suppose
that, for every B and every B-saturated set Δ′ in HRAx, vΔ′ ∈ FkAx for every k ≤ n (IH).
From this, vΔ ∈ FnAx. Now, let � be a substitution and D = �(E) such that, for every
w ∈ FnAx, w1(�(Ei)) = 1, for 1 ≤ i ≤ s . It will proven by reductio ad absurdum that
�HR

Ax
D. Thus, suppose that �HR

Ax
D. By Remark 20, there exists a D-saturated set Δ′

inHRAx and soD /∈ Δ′. But, by IH, vΔ′ ∈ FnAx, hence vΔ′
1 (�(Ei)) = 1, for 1 ≤ i ≤ s . That

is, �(Ei) ∈ Δ′, for 1 ≤ i ≤ s . Since Δ′ is a closed theory in HRAx, it follows by rule R that
D = �(E) ∈ Δ′, a contradiction. This shows that �HR

Ax
D. But then D ∈ Δ, since Δ is

a closed theory. This means that vΔ
1 (D) = 1. From this, it follows that vΔ ∈ Fn+1

Ax .

Theorem 7 (Completeness of HRAx w.r.t. level valuation semantics). If Γ |=LR A then
Γ �HR

Ax
A.

Proof. Suppose that Γ �HR
Ax
A. By Remark 20, there exists an A-saturated set Δ in

HRAx such that Γ ⊆ Δ. By Lemma 5, vΔ ∈ FRAx. Moreover, vΔ
1 (A) �= 1, by Lemma 4.

Now, let {B1, ... , Bk} be a finite nonempty subset of Γ. Hence, vΔ
1 (Bi) = 1 for every i

and then, by definition of →̃, vΔ
1 (B1 → (B2 → (...→ (Bk → A) ...)) �= 1. This shows

that B1 → (B2 → (...→ (Bk → A) ...) is not valid in LR for every nonempty finite set
{B1, ... , Bk} ⊆ Γ. From this, we conclude that Γ �|=LR A.

From Theorems 6 and 7, we obtain that the modal logic LR, which is axiomatized
by HRAx, is semantically characterized by the RNmatrix RMR

Ax = 〈M,FRAx〉.
In the rest of this section, some well-known modal (and so, global) inference rules,

see, for example, [6], will be considered in the present framework.

Example 23 (Necessitation rule). Let HNAx the Hilbert calculus obtained from HAx by
adding the necessitation inference rule:

A

�A (N).
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14 MARCELO E. CONIGLIO, PAWEL PAWLOWSKI AND DANIEL SKURT

By Definition 21, the set FNAx of level valuations for LN can be defined as follows:

• F0
Ax = FAx

• Fm+1
Ax =

{
v ∈ FmAx : ∀B ∈ For(Σ), if ∀w ∈ FmAx(w1(B) = 1)

then v2(B) = 1
}

• FNAx =
∞⋂

m=0
FmAx.

Observe that FNAx coincides with the original definition of level valuations introduced by
Kearns (see [20], [9], [25]).

Example 24 (Distributive rule). Let HDAx the Hilbert calculus obtained from HAx by
adding the following distributive inference rule:

�A �B
�(A ∧ B)

(D).

By Definition 21, the set FDAx of level valuations for LD can be defined as follows:

• F0
Ax = FAx

• Fm+1
Ax =

{
v ∈ FmAx : ∀A,B ∈ For(Σ)

if ∀w ∈ FmAx(w2(A) = w2(B) = 1), then v2(A ∧ B) = 1
}

• FDAx =
∞⋂

m=0
FmAx.

Example 25 (Congruentiality rule). Let HCAx the Hilbert calculus obtained from HAx

by adding the congruentiality inference rule:

A↔B
�A↔�B (C).

By Definition 21, the set FCAx of level valuations for LC can be defined as follows:

• F0
Ax = FAx

• Fm+1
Ax =

{
v ∈ FmAx : ∀A,B ∈ For(Σ)

if ∀w ∈ FmAx(w1(A) = w1(B)), then v2(A) = v2(B)
}

• FCAx =
∞⋂

m=0
FmAx.

Example 26 (Monotonicity rule). Let HMAx the Hilbert calculus obtained from HAx

by adding the monotonicity inference rule:

A→ B
�A→ �B (M).

By Definition 21, the set FMAx of level valuations for LM can be defined as follows:

• F0
Ax = FAx

• Fm+1
Ax =

{
v ∈ FmAx : ∀A,B ∈ For(Σ)

if ∀w ∈ FmAx(w1(A) ≤ w1(B)), then v2(A) ≤ v2(B)
}

• FMAx =
∞⋂

m=0
FmAx.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020325100737
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 22 Aug 2025 at 20:49:18, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020325100737
https://www.cambridge.org/core


RNMATRICES FOR MODAL LOGICS 15

Proposition 2. If �HN
Ax
A then, for every v ∈ FNAx, v2(A) = 1, and so v(A) = t+ =

(1, 1).

Proof. Suppose that �HN
Ax
A. Then �HN

Ax
�A, by N-rule. Let v ∈ FNAx. Hence,

v2(A) = v1(�A) = 1.

§5. RNmatrices for the minimal bimodal logic Mb. Modal logics usually contain
more than one modal operator in their language, e.g., alethic modal operators � and �,
deontic modal modalities O and P or the multitude of temporal modal operators. While
usually those operators are interdefinable, typically �A := ¬�¬A, there are systems
where this does not need to be the case, for example, in intuitionistic modal logics. In
this section, we introduce bimodal systems, where the different modal operators can
be independent of each other or, depending on the modal axioms, are interdefinable.

We will consider a bimodal version of the minimal modal logic M, namely, the
minimal bimodal logic Mb.10 This logic is defined over a signature Σb obtained from
Σ by replacing � with two modal operators, which will be denoted by � and ⊗.11 As
expected, the snapshots are now triples z = (z1, z2, z3) over 2 in which each coordinate
represents a possible truth-value for the formulas A, �A and ⊗A, respectively. Hence,
eight truth-values are obtained in this way, namely, t–– := (1, 0, 0), t–+ := (1, 0, 1),
t+– := (1, 1, 0), t++ := (1, 1, 1), f++ := (0, 1, 1), f+– := (0, 1, 0), f–+ := (0, 0, 1) and
f–– := (0, 0, 0). LetV8 be the set of such truth-values, and letD8 = {z ∈ V8 : z1 = 1} =
{t–+, t++, t––, t+–} be the set of designated values. Hence, ND8 = {f–+, f++, f––, f+–}.

The definition of the multioperators over V8 interpreting the connectives of Σb is a
natural generalization of the four-valued case:

¬̃ z := (∼z1, ∗, ∗);
�̃ z := (z2, ∗, ∗);
⊗̃ z := (z3, ∗, ∗);

z →̃w := (z1⇒w1, ∗, ∗).

Let Mb = 〈V8, D8,Ob〉 be the obtained eight-valued Nmatrix, where Ob(#) = #̃ for
every connective # in Σb . Thus, the truth-tables for Mb are the following:

→̃ t++ t+– t–+ t–– f++ f+– f–+ f––

t++ D8 D8 D8 D8 ND8 ND8 ND8 ND8
t+– D8 D8 D8 D8 ND8 ND8 ND8 ND8
t–+ D8 D8 D8 D8 ND8 ND8 ND8 ND8
t–– D8 D8 D8 D8 ND8 ND8 ND8 ND8
f++ D8 D8 D8 D8 D8 D8 D8 D8
f+– D8 D8 D8 D8 D8 D8 D8 D8
f–+ D8 D8 D8 D8 D8 D8 D8 D8
f–– D8 D8 D8 D8 D8 D8 D8 D8

10 Note that in principle we could add finitely many primitive modal operators, as the previous
results will carry over.

11 As in the previous sections, we will leave the interpretation of the modal operators unspecified.
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16 MARCELO E. CONIGLIO, PAWEL PAWLOWSKI AND DANIEL SKURT

A ¬̃A �̃A ⊗̃A
t++ ND8 D8 D8
t+– ND8 D8 ND8
t–+ ND8 ND8 D8
t–– ND8 ND8 ND8
f++ D8 D8 D8
f+– D8 D8 ND8
f–+ D8 ND8 D8
f–– D8 ND8 ND8

Let Fb be the set of all the valuations over the Nmatrix Mb . Thus, v ∈ Fb iff
v : For(Σb) → V8 is a function satisfying the following properties:

• v(#A) ∈ #̃ v(A) for # ∈ {¬,�,⊗};
• v(A→ B) ∈ v(A) →̃ v(B).

Now, any valuation v ∈ Fb will be written as v = (v1, v2, v3) such that v1, v2, v3 :
For(Σb) → V8 and so v(A) = (v1(A), v2(A), v3(A)) for every formula A. This means
that, for every formulas A and B:

• v(A) ∈ D8 iff v1(A) = 1;
• v1(¬A) = ∼v1(A);
• v1(�A) = v2(A);
• v1(⊗A) = v3(A);
• v1(A→ B) = v1(A)⇒v1(B).

The logic Mb generated by the Nmatrix Mb is defined as follows: Γ �Mb A iff, for
every v ∈ Fb , v(A) ∈ D8 whenever v(B) ∈ D8 for every B ∈ Γ.

The proof of the following result can be adapted from the respective one for M. So,
let Hb be the standard Hilbert calculus for CPL, presented in the signature Σb (that is,
no axioms nor rules for � nor for ⊗ are given, being MP the only inference rule).

Theorem 8 (Soundness and completeness of Hb w.r.t. Mb). For every Γ ∪ {A} ⊆
For(Σb), it holds: Γ �Hb A iff Γ �Mb A.

Axiomatic extensions of Hb (over the signature Σb) can be considered, obtaining in
each case an eight-valued and structural characteristic RNmatrix. The definition of
the restricted set of valuations, in each extension, is exactly as in the case of M, taking
obviously into account that they are subsets of Fb instead of subsets of F and that
the signature is Σb instead of Σ, where � is replaced by � or ⊗ in each axiom of the
previous examples (of course axioms containing both� and⊗ can also be considered).

Observe that the technique for reducing terms and equations for valuations and
bivaluations presented at the end of §3, see Definitions 10–13, can be easily adapted to
the bimodal setting.

For instance, consider the following axioms:12

(Di) ⊗A↔ ¬�¬A
(Bo) �A↔ ¬⊗¬A

12 Note that if we interpret � and ⊗ as � and �, respectively, we obtain well-known axioms
for modal logics.
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(D) �A→ ⊗A
(B) A→ �⊗A
(5) ⊗A→ �⊗A
(C) ⊗�A→ �⊗A.

The conditions imposed by these axioms on valuations and bivaluations are,
respectively, the following:

Axiom Valuations Bivaluations

(Di) v2(¬A) = ∼v3(A) b(�¬A) = ∼b(⊗A)
(Bo) v3(¬A) = ∼v2(A) b(⊗¬A) = ∼b(�A)
(D) v2(A) ≤ v3(A) b(�A) ≤ b(⊗A)
(B) v1(A) ≤ v2(⊗A) b(A) ≤ b(�⊗A)
(5) v3(A) ≤ v2(⊗A) b(⊗A) ≤ b(�⊗A)
(C) v3(�A) ≤ v2(⊗A) b(⊗�A) ≤ b(�⊗A)

Let us analyze the case of (Di) in detail: if B = ⊗A↔ ¬�¬A = ¬((⊗A→ ¬�
¬A) → ¬(¬�¬A→ ⊗A)) then v1(B) = 1 reduces to v1((⊗A→ ¬�¬A) →
¬(¬�¬A→ ⊗A)) = 0, which reduces to v1(⊗A→ ¬�¬A) = 1, v1(¬(¬�¬A→
⊗A)) = 0, which reduces to v1(⊗A) ≤ v1(¬�¬A), v1(¬�¬A→ ⊗A) = 1. The latter
reduces to v3(A) ≤ ∼v1(�¬A), v1(¬�¬A) ≤ v1(⊗A), which reduces to v3(A) ≤
∼v2(¬A),∼v1(�¬A) ≤ v3(A), which reduces to v3(A) ≤ ∼v2(¬A),∼v2(¬A) ≤ v3(A).
The latter is equivalent to the condition v2(¬A) = ∼v3(A).

Concerning bivaluations, b(B) = 1 reduces to b((⊗A→ ¬�¬A) → ¬(¬�¬A→
⊗A)) = 0, which reduces to b(⊗A→ ¬�¬A) = 1, b(¬(¬�¬A→ ⊗A)) = 0, which
reduces to b(⊗A) ≤ b(¬�¬A), b(¬�¬A→ ⊗A) = 1. The latter reduces to
b(⊗A) ≤ ∼b(�¬A), b(¬�¬A) ≤ b(⊗A), which reduces to b(⊗A) ≤ ∼b(�¬A),
∼b(�¬A) ≤ b(⊗A). The latter is equivalent to the condition b(�¬A) = ∼b(⊗A).

It is worth noting that, if axioms (Di) and (Bo) are taken together then
v(¬A) = (∼v1(A),∼v3(A),∼v2(A)) for every A. That is, the restricted valuations are
deterministic for negated formulas.

Let Ax be a finite set of modal axioms in the signature Σb . Let Lb be the bimodal
logic given by means of the Hilbert calculus HbAx, obtained by Hb by adding all the
axioms in Ax. By adapting the proofs for the monomodal case, it is easy to prove that
this logic is semantically characterized by the RNmatrix RMbAx = 〈M,FbAx〉. The
adaptations to be done with respect to the monomodal case are simple.

Lemma 6. Let Δ be an A-saturated set in HbAx, and let bΔ : For(Σb) → 2 given by
bΔ(B) = 1 iff B ∈ Δ, for every B. Then, bΔ is a bivaluation for Lb.

Lemma 7. Let b be a bivaluation for for Lb. Then, the function v : For(Σb) → V8 given
by v(A) = (b(A), b(�A), b(⊗A)) for every A belongs to FbAx. In addition: b(A) = 1 iff
v1(A) = 1, for every A.

Lemma 8. Let v be a valuation in FbAx. Then, the function b : For(Σb) → 2 given by
b(A) = v1(A) for every A is a bivaluation for Lb such that, for every B, b(B) = 1 iff
v1(B) = 1.
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18 MARCELO E. CONIGLIO, PAWEL PAWLOWSKI AND DANIEL SKURT

Theorem 9 (Soundness and completeness of HbAx w.r.t. bivaluation semantics and the
RNmatrix RMbAx). Γ �HbAx A iff Γ |=Lb

2 A iff Γ |=RMbAx
A.

As before it is possible, as well, to add global inference rules to any bimodal logic Lb
as defined above. It is worth noting that the technique for defining level valuation
semantics from a given global inference rule R presented in §4 does not depend
on the modal signature of the underlying logic. This being so, the soundness and
completeness results obtained in §4 can be easily adapted to the bimodal (or, in general,
the multimodal) case. The only difference will appear in concrete examples of modal
inference rules, in which the reduction of the conditions for the level valuations must be
done for the bimodal case. By adapting the proofs of Theorems 6 and 7 to the bimodal
setting, we obtain the following result

Theorem 10 (Soundness and completeness of HRbAx w.r.t. level valuation semantics).
Γ �HR

bAx
A if and only if Γ |=LbR A.

Example 27 (Necessitation rules). Consider the following global inference rules:

N�-rule
A

�A N⊗-rule
A

⊗A.

Let HN�
bAx,H

N⊗
bAx,H

N�⊗
bAx be the extensions of the Hilbert calculus HbAx by adding the

N�-rule, the N⊗-rule, or both. The notion of derivation is then analogous to the one given
in Definition 19. The addition of one or both of those rules will be denoted by LbN� ,LbN⊗

or LbN�⊗ , respectively. The semantics for those system will be given, as in the previous
cases, by considering level valuations over the corresponding RNmatrices. The set of

level valuations will be given, respectively, by FN�
bAx =

∞⋂

m=0
F�,m
bAx , FN⊗

bAx =
∞⋂

m=0
F⊗,m
bAx and

FN�⊗
bAx =

∞⋂

m=0
F�⊗,m
bAx . The sets of level valuations are such that F�,0

bAx = F⊗,0
bAx = FbAx,

and

• F�,m+1
bAx =

{
v ∈ F�,m

bAx : ∀B ∈ For(Σb), if ∀w ∈ F�,m
bAx (w1(B) = 1)

then v2(B) = 1
}

• F⊗,m+1
bAx =

{
v ∈ F⊗,m

bAx : ∀B ∈ For(Σb), if ∀w ∈ F⊗,m
bAx (w1(B) = 1)

then v3(B) = 1
}

• F�⊗,m
bAx = F�,m

bAx ∩ F⊗,m
bAx for every m, then FN�⊗

bAx = FN�
bAx ∩ FN⊗

bAx.

Corollary 2. All the systems we have considered (including those with global rules)
so far are subsystems of S5. This means they are all consistent, i.e., they have A-saturated
sets.

The above corollary does not entail that any possible extension of the logics discussed
will be a subsystem of S5; in particular, trivial logics are not excluded as possible
extensions.

Corollary 3. If �
HN�⊗
bAx

A then v2(A) = v3(A) = 1, and so v(A) = t++ = (1, 1, 1),

for every v ∈ FN�⊗
bAx .

Proof. Suppose that �
HN�⊗
bAx

A. Then �
HN�⊗
bAx

�A and �
HN�⊗
bAx

⊗A, by the rules for

� and ⊗. Let v ∈ FN�⊗
bAx . Hence, v2(A) = v1(�A) = 1 and v3(A) = v1(⊗A) = 1.
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§6. Decidability of non-normal modal logics by means of truth-tables. Despite being
defined over finite (four-valued) Nmatrices, the RNmatrices for S4 and S5 introduced
by Kearns in [20] do not give origin to a decision procedure for these logics by means
of truth-tables. The reason is that, in order to check the validity of a formula A,
the semantical information provided by A and all of its subfomulas in its truth-table
generated by the corresponding Nmatrix is not enough to obtain a full criterion to
delete the rows which do not correspond to level valuations. That is, there is no
mechanical procedure to determine what rows should be deleted. A solution to this
problem, for modal logics KT and S4, was obtained by L. Grätz in [17], where a
mechanical procedure was found to delete the unsound rows from the three-valued
non-deterministic truth-tables generated by each formula being tested. Using a related
by somewhat different approach, O. Lahav and Y. Zohar proposed in [22] decision
procedures for K and KT based on finite-valued RNmatrices.

It is well-known that not every modal system with global inference rules is decidable.
However, even for decidable systems, it is not immediate how to obtain a decision
procedure (by means of truth-tables) from the characteristic RNmatrix obtained within
our framework. That is, decidability techniques by truth-tables for such logics require
a case-by-case analysis, by generalizing the techniques introduced in [17] and [22].

It seems clear that the lack of a decision procedure for a modal logic by means
of truth-tables, obtained from its characteristic RNmatrix, is due to the existence of
global inference rules, which forces defining level valuations. This infinitary procedure
can make it difficult to extract an algorithm from it. This would suggest that any finite
axiomatic extension L of M, without global rules, is decidable by means of truth-tables.
That is, the characteristic RNmatrix of L would allow to define an algorithm to delete
unsound rows from the truth-table of any formula being tested.

In this section, it will be shown how to obtain a truth-table decision procedure,
obtained from its RNmatrix, for some of the (non-normal) systems analyzed here,
both monomodal and bimodal. The extension of the techniques to be introduced
below to the other systems without global rules appears to be immediate.

However, as it will be shown in Example 29, there is a purely axiomatic extension
of M (called ME) that is not decidable by the truth-table procedure obtained from the
corresponding RNmatrix. This problem will be overcome by means of a detailed
analysis of the conditions for the permitted valuations for ME , which allows to
obtain an improved set of conditions to delete unsound rows in the truth-tables (see
Theorem 14). This example shows that, even for modal systems without global rules,
the definition of a decision procedure by truth-tables must be analyzed case-by-case.

Let us start our analysis. LetA(p1, ... , pn) be a formula depending on propositional
variables p1, ... , pn. From the examples considered in the previous sections, it is
immediate to see that in order to check the validity of A in a non-normal system
L (Lb) characterized by an RNmatrix RM = 〈M,F ′〉 (in the monomodal case) or
RMb = 〈Mb,F ′

b〉 (in the bimodal case),13 a finite row-branching truth table needs to
be constructed. This truth-table is obtained by considering the multioperators of the
Nmatrix M (or Mb), starting from the atomic formulas p1, ... , pn.

To be more specific, define the complexity l(B) of a formula B ∈ For(Σ) as follows:
l(B) = 0 if B is a variable; l(#B) = l(B) + 1 if # ∈ {¬,�}; and l(B → C ) = l(B) +

13 Since each logic satisfies the deduction metatheorem, it is enough to check tautologicity.
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20 MARCELO E. CONIGLIO, PAWEL PAWLOWSKI AND DANIEL SKURT

l(C ) + 1. InFor(Σb), the complexity is defined analogously, but now l(#B) = l(B) + 1
if # ∈ {¬,�,⊗}.

Then, consider the sequence A1 ... Ak = A formed by all the subformulas of A,
linearly ordered by complexity (formulas with the same complexity are ordered
arbitrarily, with the only restriction of putting p1, ... , pn in the first n places). From
this, l(Ai) ≤ l(Ai+1) for 1 ≤ i ≤ k. The table starts by considering all the possible
combination of truth-values for the first n-columns p1, ... , pn (that is, 4n rows are
generated in the monomodal case, and 8n in the bimodal case). Then, the possible
values for the formula An+1(p1, ... , pn) are computed in each row, according to the
semantics given inM (or inMb) to the (unique) conective occurring inAn+1. Consider
the four-valued case. By definition of the multioperators of M, each row splits into two
ones (since both setsD4 and ND4 have elements). In the bimodal case, each row splits
into four ones. The procedure continues, by considering the possible values for An+2

on the 2 · 4n (or 4 · 8n) rows generated in the previous step, and so on. This procedure
will eventually terminate by computing all the possible values for A in all the rows,
generating in this way a finite truth-table.

After this, some rows in the obtained finite truth-table need to be be removed, in
case they violate the conditions stated by F ′ (i.e., they correspond to valuations which
do not belong to F ′). For instance, if axiom (K) is valid in a monomodal L, then
any row assigning values x+, y– and z+ to formulas A, B and A→ B , respectively
(for some x, y, z ∈ {t, f}), must be removed: indeed in this case v̄2(A→ B) = 1 �≤ 0 =
1 ⇒ 0 = v̄2(A) ⇒ v̄2(B), where v̄ is the mapping representing the values assigned to the
formulas labeling the columns of the given truth-table. That is, v̄ does not correspond
to a valuation in F ′, given that it does not satisfy axiom (K), hence it must be removed
from the table. It is worth noting that the process of eliminating rows can be done “on
the fly”, that is, when the table is being constructed. In this way, the first time that a
situation is found allowing to delete a row, the row is deleted precisely at that point.
This allows to produce smaller truth-tables, turning the process easier to be realized
(see, for instance, the case of the bimodal logic characterized by the RNmatrix RMbC

to be analyzed below).
Let T ′ be the obtained (reduced) truth table. If A gets a designated value in every row

of T ′ then A is declared to be valid; otherwise, it is declared non-valid. By observing
the examples of non-normal systems considered in the previous sections, it seems clear
that this process can be done algorithmically.

In order to prove that this methodology is sound and complete (that is, in order to
verify that this procedure indeed represents the RNmatrix semantics given by RM′)
the proof proposed in [14, sec. 4.3] for the RNmatrices for the logicsCn will be adapted.
Hence, two steps are required:

(i) to prove that any row of T ′ represents a valuation in F ′;
(ii) to prove that any valuation in F ′, restricted to the formulas occurring in the

columns of T ′, is a row of T ′.

From now on, the set of subformulas of a formula A (in For(Σ) or For(Σb)) will
be denoted by SF (A). A set of formulas Γ is said to be closed under subformulas if it
satisfies the following: if A ∈ Γ and B ∈ SF (A) then B ∈ Γ.

Let us start with axiom (GL) in the monomodal scenario.

Proposition 3. Let Γ be a finite set of formulas in For(Σ) closed under subformulas.
Let v̄ : Γ → V4 be a function satisfying the following: (1) v̄(#A) ∈ #̃ v̄(A) for
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# ∈ {¬,�}; (2) v̄(A→ B) ∈ v̄(A) →̃ v̄(B); and (3) v̄2(�A→ A) ≤ v̄2(A) (where v̄(A)
is written as (v̄1(A), v̄2(A)) for every A). Then, there exists a valuation v ∈ FGL such
that v(A) = v̄(A) for every A ∈ Γ.

Proof. Let Fn = {A ∈ For(Σ) : l(A) ≤ n}, for every n ≥ 0. Clearly For(Σ) =⋃
n≥0 Fn and Fn ⊆ Fn+1 for every n ≥ 0. The function v will be defined inductively over
Fn, for n ≥ 0, satisfying items (1)–(3) above, such that v(A) = v̄(A) if A ∈ Γ ∩ Fn.
Observe that, if A /∈ Γ then �A /∈ Γ; analogously, if either �A /∈ Γ or A /∈ Γ then
�A→ A /∈ Γ. This will allows us to define the values of v(�A) and v(�A→ A) with
some degree of freedom in such situations, respectively.

Base n = 0. If A ∈ V define v(A) = v̄(A) if A ∈ Γ, and v(A) arbitrary otherwise.
Observe that items (1)–(3) above are vacuously true for v over F0, and v(A) = v̄(A) if
A ∈ Γ ∩ F0.

Inductive step. Suppose that v was defined over Fn satisfying items (1)–(3) above,
such that v(A) = v̄(A) if A ∈ Γ ∩ Fn. Let us define v over Fn+1. So, let A ∈ Fn+1.
If A ∈ Γ define v(A) = v̄(A). Otherwise, if A = #B define v(A) ∈ #̃ v(B) arbitrarily,
for # ∈ {¬,�}. IfA = B → C �= �C → C then define v(A) ∈ v(B) →̃ v(C ) arbitrar-
ily. Finally, if A = �C → C define v(A) ∈ v(�C ) →̃ v(C ) (i.e., v1(A) = v1(�C ) ⇒
v1(C )) such that v2(A) ≤ v2(C ). This concludes the definition of v(A) over Fn+1. It is
immediate to see that v satisfies items (1)–(3) above, and v(A) = v̄(A) ifA ∈ Γ ∩ Fn+1.
Hence, this procedure produces a function v ∈ FGL such that v(A) = v̄(A) for every
A ∈ Γ.

Theorem 11. The process for constructing, for any formula A, a row-branching truth
table based on RMGL produces a decision procedure for MGL. That is, a formula A is
valid in MGL iff the truth-table for A constructed by means of the algorithm above assigns
to A a designated value in any row.

Proof. Given a formula A ∈ For(Σ), construct the row-branching truth table for it,
deleting all the invalid rows, as indicated above, obtaining a reduced table T ′. It is
worth noting that it is always possible to do this, and the procedure finishes after a
finite number of steps. Let Γ = SF (A) be the set of subformulas of A. Then, A ∈ Γ,
and Γ is obviously closed under subformulas. Observe that Γ is the set of formulas
labeling the columns of T ′. Then, each row of T ′ corresponds to a function v̄ : Γ → V4

which clearly satisfies the hypothesis of Proposition 3. Hence, there exists v ∈ FGL such
that v(B) = v̄(B) for every B ∈ Γ, by Proposition 3. Conversely, if v is a valuation in
FGL then its restriction v̄ to the domain Γ coincides, necessarily, with some row of T ′.
This is a consequence of the form in which T ′ was constructed. Hence, v is one of the
possible extensions of a row in T ′. From this, it follows that A is valid according to
T ′ (that is, A takes only designated values in the rows of T ′) if and only if v(A) is
designated for any v ∈ FGL (that is, iff �RMGL

A).

Consider now axiom (K). A similar algorithm can be given for constructing a
(reduced) truth-table for any formula A obeying the restrictions imposed by FK,
namely: v̄2(A→ B) ≤ v̄2(A) ⇒ v̄2(B), where v̄ represents the values assigned, in an
specific row, to the formulas in the columns of the table being constructed, and v̄(A) is
written as (v̄1(A), v̄2(A)) for every A. Hence, the following can be proven

Proposition 4. Let Γ be a finite set of formulas in For(Σ) closed under subformulas.
Let v̄ : Γ → V4 be a function satisfying the following: (1) v̄(#A) ∈ #̃ v̄(A) for
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# ∈ {¬,�}; (2) v̄(A→ B) ∈ v̄(A) →̃ v̄(B); and (3) v̄2(A→ B) ≤ v̄2(A) ⇒ v̄2(B).
Then, there exists a valuation v ∈ FK such that v(A) = v̄(A) for every A ∈ Γ.

Theorem 12. The process for constructing, for any formula A, a row-branching truth
table based on RMK produces a decision procedure for MK.

Let GL– be the logic obtained by adding the set of axiomsGLK = {(GL), (K)} toM.
Then, GL– is axiomatized by HGLK and semantically characterized by the RNmatrix
RMGLK = 〈M,FGLK 〉 such that

FGLK = {v ∈ F : v2(A→ B) ≤ v2(A) ⇒ v2(B) and

v2(�A→ A) ≤ v2(A) for every A,B}.

In [16, theorem 18] it was shown that axiom (4):�A→ ��A is derivable in GL, Gödel–
Löb logic of provability, which can be obtained from GL– by adding the necessitation
rule (the �-rule in the signature Σ of GL–). By using our framework, we can prove that
necessitation rule is essentially required to obtain (4) from GL.

Proposition 5. Axiom (4) is not derivable in HGLK . Hence, the necessitation rule is
required to prove (4) in GL.

Proof. Take a propositional variable p and a valuation v ∈ FGLK such that v(p) = t+

and v(�p) = t–. Hence, v(��p) is not designated, while v(�p) is designated. From
this, v(�p → ��p) is not designated. That is, �RMGLK

�p → ��p. By soundness,
�HGLK �p → ��p.

Consider now an example of bimodal logic: the logic MbC obtained from Mb by
requiring the validity of axiom (C): ⊗�A→ �⊗A, which is is axiomatized by HbC and
semantically characterized by the RNmatrix RMbC = 〈Mb,FbC〉 such that

FbC = {v ∈ Fb : v3(�A) ≤ v2(⊗A) for every A}.

As doing before, an algorithm can be defined for constructing a (reduced) truth-table
for any formula A by using the restrictions of FbC. Observe that it is required to check,
for each row, the values assigned to pairs of formulas of the form (�A,⊗A) in order to
get rows which are compatible with the definition of FbC. In order to do this, it may be
convenient to exclude the rows that violate the conditions while the truth table is being
built, starting from the first pair of the form (�A,⊗A) found between the columns of
the table generated in each step of the process. That is, rows are excluded “on the fly”.

Proposition 6. Let Γ be a finite set of formulas in For(Σb) closed under subformulas.
Let v̄ : Γ → V8 be a function satisfying the following: (1) v̄(#A) ∈ #̃ v̄(A) for
# ∈ {¬,�,⊗}; (2) v̄(A→ B) ∈ v̄(A) →̃ v̄(B); and (3) v̄3(�A) ≤ v̄2(⊗A). Then, there
exists a valuation v ∈ FbC such that v(A) = v̄(A) for every A ∈ Γ.

Proof. The proof will be obtained by adapting the one given for Proposition 3. Thus,
let Gn = {A ∈ For(Σb) : l(A) ≤ n}, for every n ≥ 0. Then For(Σb) =

⋃
n≥0Gn and

Gn ⊆ Gn+1 for everyn ≥ 0. The function v will be defined inductively overGn, forn ≥ 0,
satisfying items (1)–(3) above, in such a manner that v(A) = v̄(A) if A ∈ Γ ∩Gn.

Base n = 0. If A ∈ V define v(A) = v̄(A) if A ∈ Γ, and v(A) arbitrary otherwise.
Hence, items (1)–(3) above are vacuously true for v over G0, and v(A) = v̄(A) if
A ∈ Γ ∩G0.
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Inductive step. Suppose that v was defined over Gn satisfying items (1)–(3) above,
such that v(A) = v̄(A) ifA ∈ Γ ∩Gn. Let us now define v overGn+1. So, letA ∈ Gn+1.
If A ∈ Γ define v(A) = v̄(A). Otherwise, if A = ¬B define v(A) ∈ ¬̃ v(B) arbitrarily.
If A = B → C define v(A) ∈ v(B) →̃ v(C ) arbitrarily. Now, the cases A = �B and
A = ⊗B will be analyzed simultaneously. That is, the values of �B and ⊗B will
be defined simultaneously, for every B ∈ Gn. If both �B and ⊗B belong to Γ
then v(#B) = v̄(#B) for # ∈ {�,⊗}. Otherwise, if �B /∈ Γ but ⊗B ∈ Γ, define first
v(⊗B) = v̄(⊗B) and then define v(�B) ∈ �̃ v(B) such that v3(�B) ≤ v2(⊗B). Now,
if �B ∈ Γ but ⊗B /∈ Γ, define first v(�B) = v̄(�B) and then define v(⊗B) ∈ ⊗̃ v(B)
such that v3(�B) ≤ v2(⊗B). Finally, if �B /∈ Γ and ⊗B /∈ Γ, define first v(�B) ∈
�̃ v(B) arbitrarily and then define v(⊗B) ∈ ⊗̃ v(B) such that v3(�B) ≤ v2(⊗B). This
concludes the definition of v(A) over Gn+1. It is immediate to see that v satisfies items
(1)–(3) above, and v(A) = v̄(A) if A ∈ Γ ∩Gn+1. Clearly, this procedure produces a
function v ∈ FbC, satisfying that v(A) = v̄(A) for every A ∈ Γ.

Theorem 13. The process for constructing, for any formula A, a row-branching truth
table based on RMbC produces a decision procedure for MbC.

Remark 28. It is worth noting that the truth-table method can be extended to inferences
from premises. Indeed, by definition of M and of semantic consequence w.r.t. an Nmatrix,
in order to check whether A is a consequence of {A1, ... , An} a (reduced ) table T ′

for {A1, ... , An, A} must be constructed by following this procedure. In this case, it is
necessary to consider Γ =

⋃n
i=1 SF (Ai) ∪ SF (A). Finally, it is necessary to check that,

in any row of T ′, A gets a designated value whenever all the premises A1,..., An get
designated values simultaneously. If this is the case, then it is declared that A follows from
{A1, ... , An}; otherwise, A does not follow from {A1, ... , An}, and all the counterexamples
(restricted to Γ) are obtained from T ′. Same observation holds for the bimodal case.

It seems clear that the decidability method described above can be extended to
the other systems considered here. However, it can be seen that the set of conditions
for valuations obtained from any set of modal axioms does not necessarily produce
a decision procedure as it stands. The reason is that certain additional conditions,
obtained from the original ones, can be required. Hence, some valid formula can
contain in its truth-table some rows which were not deleted by using exclusively the
original conditions, and in which the formula gets a non-designated value. Specifically,
consider the following example:14

Example 29. Consider the following axioms:

(Ax1) �(A→ A)
(Ax2) �(A→ B) → �(�A→ B).

Let Ax = {(Ax1), (Ax2)}, and let ME be the axiomatic extension of M by adding Ax.
Clearly, Ax imposes the following restrictions on the valuations: (1) v1(�(A→ A)) = 1;
(2) v1(�(A→ B)) ≤ v1(�(�A→ B)). By Remark 2, this is equivalent to the following
conditions: (3) v2(A→ A) = 1; (4) v2(A→ B) ≤ v2(�A→ B). However, although this
set of conditions is enough for defining an RNmatrix such that ME is sound and complete
w.r.t. this RNmatrix, it is not enough for defining sound truth-tables for ME . Indeed,

14 We would like to thank one of the anonymous referees for pointing out this issue to us and
by providing us with Example 29.
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it is immediate to see (taking A = B = p) that �(�p → p) is derivable in ME , hence
it is valid w.r.t. the obtained RNmatrix. However, conditions (1)-(2) (or, equivalently,
(3)-(4)) are not enough to eliminate in the truth-table all the rows which do not satisfy
these conditions: indeed, half of the rows of the truth-table for �(�p → p) (the ones
producing non-designated values) should be deleted.

p �p �p → p �(�p → p)

t+ t+ t+ D4
t– ND4

t– t+ D4
t– ND4

t– f+ t+ D4
t– ND4

f– t+ D4
t– ND4

f+ t+ f+ D4
f– ND4

t– f+ D4
f– ND4

f– f+ t+ D4
t– ND4

f– t+ D4
t– ND4

The unsound rows in the truth-table of Example 29 were not deleted since none of
the formulas involved in conditions (1)-(2) and (3)-(4) can be instantiated with the
subformulas of �(�p → p) in order to apply such conditions.

Another example of a tautology of ME which is not recognized by the induced
truth-tables method is A := �(p → q) → �(��p → q) for p, q ∈ V , p �= q. Indeed,
no row can be deleted from its truth-table by means of conditions (3)-(4). Because of
this, its truth table contains rows in which A gets a non-designated value. For example,
consider a row in which p, q, p → q,�p,��p and �(p → q) get the value t+, but
��p → q receives the value t–. Then, �(��p → q) gets a non-designated value, just
like A.

However, from the basic conditions (3)-(4), it is possible to infer additional ones,
that expand the possibility of deleting rows, guaranteeing soundness of ME w.r.t. its
truth-tables. Indeed, by takingA = B in (4), and taking into account (3), it follows that
v2(�A→ A) = 1, for every A. Combining this with (4) once again (by instantiating
A with �A and B with A) it follows that v2(��A→ A) = 1 and, by the same
reasoning, that v2(���A→ A) = 1, and so on, for every A. Let + := {t+, f+}. By
defining �0A := A and �n+1A := ��nA, the original conditions can be expanded to
the following ones:

(C1) v(A→ A) = t+;
(C2) v(�kA→ A) ∈ +, for k ≥ 1;
(C3) if v(�kA→ B) ∈ + for some 0 ≤ k < n and A �= B then v(�nA→ B) ∈ +.
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Let FME be the set of valuations over the Nmatrix M satisfying conditions
(C1)–(C3). It is clear that a valuation v over the Nmatrix M satisfies conditions (3)-(4)
iff it satisfies conditions (C1)–(C3). Thus, the set FME is the set of valuations over the
Nmatrix M which characterizes the logic ME . In Proposition 7, it will be shown that
any partial valuation defined over a finite set closed under subformulas which satisfies
these conditions can be extended to a valuation for ME (i.e., in FME ). Observe that
half of the rows of the truth-table in Example 29, seen as partial valuations, do not
satisfy property (C2), hence, they do not correspond to valuations for ME .

Proposition 7. Let Γ be a finite set of formulas in For(Σ) closed under subformulas.
Let v̄ : Γ → V4 be a function satisfying the following: (V1) v̄(#A) ∈ #̃ v̄(A) for
# ∈ {¬,�}; (V2) v̄(A→ B) ∈ v̄(A) →̃ v̄(B); (V3) v̄(A→ A) = t+; (V4) v̄(�kA→
A) ∈ +, for A and k ≥ 1 such that v̄(�kA→ A) is defined; and (V5) if v̄(�kA→ B) ∈
+ for some 0 ≤ k < n then v̄(�nA→ B) ∈ +.

Then, there exists a valuation v ∈ FME such that v(A) = v̄(A) for every A ∈ Γ.

Proof. Let Fn = {A ∈ For(Σ) : l(A) ≤ n}, for every n ≥ 0. Then, For(Σ) =⋃
n≥0 Fn and Fn ⊆ Fn+1 for every n ≥ 0. The function v will be defined inductively

over Fn, for n ≥ 0, satisfying items (V1)–(V5), such that v(A) = v̄(A) if A ∈ Γ ∩ Fn.
Base n = 0. If A ∈ V define v(A) = v̄(A) if A ∈ Γ, and v(A) arbitrary otherwise.

Clearly conditions (V1)–(V5) are vacuously true for v over F0, and v(A) = v̄(A) if
A ∈ Γ ∩ F0.

Inductive step. Suppose that v was defined over Fn satisfying conditions (V1)–(V5),
such that v(A) = v̄(A) if A ∈ Γ ∩ Fn (IH). Let us define v over Fn+1. So, let A ∈ Fn+1.
If A ∈ Γ define v(A) = v̄(A). Otherwise, if A = #B define v(A) ∈ #̃ v(B) arbitrarily,
for # ∈ {¬,�}. Finally, if A = B → C , consider the following subcases: (i) B = C ,
then define v(A) = t+ (note that v(A) ∈ v(B) →̃ v(C )); (ii) B = �kC for k ≥ 1, then
define v(A) ∈ (v(B) →̃ v(C )) ∩ + (observe that this set is always nonempty); (iii)
B = �nD for D �= C such that v(�kD → C ) ∈ + for some 0 ≤ k < n, then define
v(A) ∈ (v(B) →̃ v(C )) ∩ + (observe that this set is always nonempty); (iv) none of
the situations (i)–(iii) hold, then define v(A) ∈ v(B) →̃ v(C ) arbitrarily. This concludes
the definition of v(A) over Fn+1. It is immediate to see that v satisfies (C1)–(C3), and
v(A) = v̄(A) if A ∈ Γ. That is, this procedure produces a function v ∈ FME such that
v(A) = v̄(A) for every A ∈ Γ.

It is immediate to see that, given a formula A, the construction of a truth-table for
A in ME can be done in a finite number of steps by means of a mechanical procedure,
such that each row is a function from the set Γ of subformulas of A to V4 satisfying
conditions (V1)–(V5) of Proposition 7. Indeed, when constructing a truth-table for A
in M, if a column corresponds to a formula B → B then every row must assign to
it the value t+. In turn, if the column corresponds to a formula �kB → B for some
k ≥ 1 then every row must assign to it a value in (a →̃ b) ∩ + (a nonempty set), where
a and b are the values already assigned to �kB and B in that row. Finally, if the column
corresponds to a formula �nB → C for some n ≥ 1 and B �= C such that there is a
previous column corresponding to �kB → C for some 0 ≤ k < n then every row must
assign to �nB → C a value in (a →̃ b) ∩ + (a nonempty set), where a and b are the
values already assigned to �nB and C in that row, whenever �kB → C received a
value in + in that row. From this, we arrive to the following result.
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Theorem 14. The process for constructing, for any formula A, a row-branching truth
table based on RMME produces a decision procedure for ME . That is, a formula A is
valid in ME iff the truth-table for A constructed by means of the algorithm above assigns
to A a designated value in any row.

Proof. Analogous to the proof of Theorem 11.

The examples discussed in this section show that, given an arbitrary (purely)
axiomatic extension of M, the definition of a sound and complete decision procedure
by truth-tables obtained from the generated RNmatrix is not always guaranteed. As
in the case of global rules and level valuations, the decidability must be analyzed
case-by-case. It requires a detailed analysis of the set of conditions on the valuations,
trying to obtain an equivalent (but improved) set of conditions which guarantees that
any partial valuation satisfying the enlarged set of conditions can be extended to a
full valuation over the RNmatrix. Finally, it is worth noting that there are in fact
undecidable propositional modal logics, cf. [8].15

§7. Future work and discussion of the results. In this article, we presented a general
semantical framework for modal logics that does not rely on the notion of possible
worlds. In particular, we have shown that RNmatrices defined from swap structures
in combination with a generalized level-valuations technique, originally developed by
Kearns, and presented here for the first time for other modal rules than the rule of
necessitation, is expressive enough to incorporate various modal logics, normal or
non-normal.

We furthermore, when compared to previous approaches using Nmatrices, cf. [9, 25],
have shown that RNmatrices induced by swap structures allow for a more flexible
approach to semantics for many valued logics in general, and modal logics in particular,
by providing a simple reduction procedure of formulas to restrictions on the set of
valuation, that allowed for systems with for example the Löb axiom or the McKinsey
formula, as axioms.

More concretely, we showed that our semantical approach goes beyond Kripke
structures and non-deterministic semantics as considered in previous work in the
following ways:

1. We provided restricted non-deterministic semantics for non-Sahlquist formulas
as axioms, such as the Gödel–Löb axiom or the McKinsey formula, which do
not have a (first-order) Kripke semantics.

2. Simple extensions of M with axioms such as �(A→ A) do neither have a Kripke
semantics nor a corresponding Nmatrix, cf. [17]. We have shown that there is
RNmatrix semantics for such extensions.

3. We presented a decision procedure for selected modal systems and discussed
some restrictions to it.

4. By focusing on the weakest modal logic M and investigating its extensions,
we introduced a new hierarchy of (bi-, multi-) modal systems with or without
(non-standard, multiple) global rules.

7.1. Scope and limits of the method. We presented our method for constructing
semantics for modal logics as general as possible, with the hope, that the generality of

15 We thank one of the anonymous referees for pointing out this fact.
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the method is a convincing argument in favor of RNmatrices for modal logics, as an
alternative to Kripke semantics. However, we are aware of the fact that our approach is
not yet as flexible as Kripke semantics regarding some properties. For example, we have
not discussed axiom systems with an infinite number of axioms. While the construction
method of RNmatrices for extensions of M might give us some arguments that, at least,
recursively defined infinite sets of axioms might be expressed in terms of RNmatrices,
we might discuss infinite axiom systems, but leave this as a project for future work.

Another limitation of our approach at this moment is a property that is called
analyticity. In short, if analyticity holds any partial valuation which seems to refute
a given formula can be extended to a full valuation (which necessarily refutes that
formula too). For example, in [25] it was shown that modal logics defined in terms
of Nmatrices with global modal rules do not enjoy this property. It is obvious that
the failure of analyticity carries over to RNmatrices with global modal rules. Since
the failure of analyticity is related to decidability, it seems our presented semantics
for modal logics with global modal rules are not decidable. It should of course be
mentioned, that in the absence of such global modal rules it is possible to find decision
procedures, but the definition of such procedures has to be analyzed case by case,
cf. §6. Needless to say there is gleam of hope. In more recent publications, cf. [17] and
[22], it was shown that by a slight adjustment of the level-valuations technique it is
possible to regain decidability. The results were proven for the normal modal logics K
and KT expressed in terms of Nmatrices. It is therefore only a matter of time to prove
similar results for other modal logics with global modal rules (see, for instance, [23]).
However, as already mentioned above, not every modal system with global modal rules
is decidable.

7.2. Generalization of the method. There are two straightforward generalizations of
our approach to modality that we have not addressed so far. 1) Higher-order versions
of RNmatrices for modal logics and 2) n-ary modal operators as defined in [5].

As for 1), this seems to be nice technical exercise by taking inspiration from first-
order versions of FDE-based logics, cf. [33], where the main feature of the semantics is
dividing the extension of predicates into extension/antiextension pairs. Similary, this
can be done for first-order versions of extensions of M, for example, in the following
manner: an Interpretation I is a tuple 〈U, i1, i2〉, where U is a non-empty set and we
assign both the extension of i1(P) ⊆ Un and modal-extension i2(P) ⊆ Un to each n-ary
predicate symbol P. Given any interpretation 〈U, i1, i2〉 we then can define a valuation
v from all sentences into 22, where 2 = {0, 1}. Based on that we would be able to
inductively define the value of sentences, similarly to the truth-tables in §2. A first
attempt of presenting many-valued non-deterministic first-order semantics for modal
logics without global rules can be found in [11]. Of course, one needs to be careful,
when adding global rules to those first-order versions. But we leave this endeavor for
future research.

As for 2), the situation is slightly more complicated, as for example well-known
binary modal operators, strict implication might not be representable just in terms
of RNmatrices. This is of course a conjecture and not a proven fact. But in case of
strict implication, it seems, the corresponding Kripke semantics implicitly uses a global
rule in the definition of the operators, which is something that cannot be expressed in
terms of RNmatrices/swap structures alone, at least not in a straightforward manner.
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We could think of defining strict implication � in terms of →, as follows: v(A � B) =
v(�(A→ B)) and depending on our semantics for �, we could define different notions
of strictness. However, without globally restricting the set of all valuations, none of
the sentences A � B would be a tautology. That is because no sentence A→ B would
be assigned the value t+ for all valuations. For the moment, we will leave the question
of how to define n-ary modal operators open.

7.3. Nmatrices vs. RNmatrices. In this paper, we presented a way to deal with
modal systems, with or without global rules, by means of RNmatrix semantics. But
the first semantical characterization of the normal modal systems T, S4 and S5, as
mentioned above, was introduced by J. Kearns by means of four-valued RNmatrices by
utilizing the so-called level-valuations technique. There is, however, another semantical
approach to non-normal modal logics, i.e., without global modal rules, based on
Nmatrices.

Starting in the 1970s, Yuri Ivlev introduced a series of non-normal modal systems
which are semantically characterized by (finite) Nmatrices, anticipating in decades the
use of Nmatrices for non-classical logics introduced in the 2000s by A. Avron and I. Lev
(see [2, 2]). Among other systems, Ivlev introduced a four-valued non-normal version
of the system KT calledSa+ (see, for instance, [19]). This system was afterward studied
and extended in [9] (as Tm) and [25] (as T–). It can be presented in the signature Σb ,
where �A represent �A and ⊗A can represent �A or, alternatively, the modality �¬A.
The latter was the option chosen in [13], thus defining a swap structure in which the
snapshots are triples z = (z1, z2, z3) such that the coordinate zi represents, respectively,
a 0/1 truth-value for the formulas A, �A and �¬A. However, instead of considering the
universe V8 of eight truth-values of the Nmatrix Mb and defining an RNmatrix based
on the axioms AxT of Sa+, the standard approach mentioned in the Introduction was
used in [13]. Thus, the axioms inAxT imposed restrictions on the universe of snapshots,
eliminating some of them, as well as on the multioperations, defining an Nmatrix rather
than an RNmatrix. Hence, axiom (T) imposes the restrictions z2 ≤ z1 and z3 ≤ ∼z1
(or, equivalently, z1 � z3 = 0), and so only four snapshots are allowed, which in turn
can be identified with the truth-values of Ivlev’s original Nmatrix. This example shows
that certain logics (modal, in this case) can be alternatively characterized by a finite-
valued Nmatrix or by a finite-valued RNmatrix.

The advantage of our present approach is that the same Nmatrix Mb can be used
for characterizing any bimodal logic defined as an axiomatic extension of the minimal
bimodal logic Mb. In the case of logics other than (non-normal) modal logics, the use
of RNmatrices instead of Nmatrices may be more of a necessity than an option.16

7.4. Philosophical remarks. Our approach leads to a semantics for which we
presented sound and complete axiom systems with global or local rules. In that sense,
at least with the addition of modal rules, we are justified to claim that we are actually
doing modal logics. However, in the absence of such global modal rules, cf. §2 and §3, it
seems, at the very least, questionable what the status of our operator�might be. Surely,
we can define, as we did in §3 and §5, restrictions on the set of valuations that validate
well-known modal formulas. But this is not yet an argument in favor of the modal

16 To give a concrete example, it is well-known that da Costa’s paraconsistent logic C1 cannot
be characterized a single finite Nmatrix. In turn, the logic C1 was characterized in [14] by a
three-valued decidable RNmatrix.
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nature of �. We could furthermore think of concrete well-studied modal systems, such
as systems of epistemic or deontic logic, where the rule of necessitation is the source
of some paradoxes and therefore not unrestrictedly valid. But even in such systems
other global modal rules are present, such as congruentiality. There are logics, called
hyperintensional logics, for which even congruentiality fails to hold, cf. [4], and our
approach is certainly able to capture such logics, as well, but we should be very clear,
that we are not discussing any particular modal operator. Instead, what can be said in
favor of our approach, we are able to capture a multitude of different modal concepts
under one and the same umbrella – RNmatrices induced by swap structures, with
or without global modal rules. Whether this will lead to a new understanding of the
concept of modality remains to be open, and needs to be part of a larger investigation
and discussion in the future.
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