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On the Stieltjes Integral.

By J. M. WHITTAKEE.

(Received 21th January 1929. Read 1st February 1929.)

1. Introduction.

The conception of the integral of one function with respect to
another was introduced by Stieltjes in his classical memoir on
continued fractions.1 He denned the integral as

•b n
T ( 1* \ ftft | 'V* 1 —— I i TY1 / , tip" \ iff ("Y 1 —— ft ("Y X̂

\->0 r=l

and gave the formula for integration by parts.

\bf(x)dg(x)=f(b)g(b)-f(a)g(a)-[bg(x)df(x).
a a

The Stieltjes integral is evidently an extension of the Riemann
integral and it might be expected that the scope of the Lebesgue
integral could be enlarged without difficulty in the same way. The
problem is however by no means easy and has been discussed by
many writers.2 Their conclusions may be indicated roughly by
saying that the definition and all the properties of the Lebesgue
integral can be extended to the Lebesgue-Stieltjes integral

\bf(x)dg(x)
a

•provided that g (x) is a function of bounded variation.3 Viewed as a

1 Ann. de la Fac. des Sc de Toulouse, 8 (1894). A full account of the Riemann-
Stieltjes integral has been given by Pollard, Quarterly Journal, 49 (1923), 73. In the
definition (x0 s u i ^ s a ; ! * . . 5j«sa:«=i>) is any subdivision of (a, b) and X is the
length of the longest interval (sv-i, xr).

2 See especially the account given by Lebesgue, Lemons sur VIntegration (2nd Ed.),
Chapter 11 (1928). Also papers by Hildebrandt, Bull. Amer. Math. Soc. (2), 24 (1918),
177 ; and Francis, Proc. Camb. Phil. Soc, 22 (1925), 935.

3 Another method of defining the integral has been developed by P. J. Daniell,
Annals of Math., 19 (1918), 279 ; 21 (1920), 219; 23 (1923), 169, which can be
employed in certain cases when g (x) is not of bounded variation. Starting with g (x), a
class of functions f(x) is found for which the integral can be defined.
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development of the Stieltjes integral the new definition is less
successful. The Stieltjes integral can exist in cases when (owing to
the restriction on g (x)) the Lebesgue-Stieltjes integral does not; and
as regards integration by parts the former has a distinct advantage.
For with the L$-integral formula (1) is only significant when both
f (x) and g (x) are of bounded variation.

Another method of defining integration with respect to a function
is developed in § 4 of the present memoir. The resulting integral
generalises both the Lebesgue integral and the Stieltjep integral.
For whenever either of these exists, the " mean-Stieltjes " integral
exists and has the same value. Moreover the new definition
preserves the most important property of the original Stieltjes
integral, that on integration by parts. The definition is suggested
by a mode of integration discussed by Denjoy,1 leading to an integral
which he denotes by

(B)
f*
J f{x)dx.

It is shown in § 4 that Denjoy's condition for the existence of the
^-integral can be interpreted as a statement that

n
lim 2 f(€r) {%r— aV-i)> A = max. (xr— xr-^)

exists on the average,. Convergence on the average of general limit
operations of this type is defined, and the notion is employed to
define the integral of / (x) with respect to g (x) as

lim

whenever the limit exists on the average. It is shown that the
integral defined in this way has nearly all the characteristic proper-
ties of the Stieltjes integral, including the theorem on change of
integrating function.

\"f (x) # (x) = [f (x) g (x) d<f> (x), where $ (x) = [% (t) d<f> (t)

This theorem was given for the ordinary Stieltjes integral by
Hyslop.2 An analysis of his proof suggests a general theorem on
functions of sets, of which use is made later on.

1 Comptes Rendus, 169 (1919), 219.
2Proc. Edin. Math. Soc, 44 (1926), 79.
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The Stieltjes integral is an example of an incompletely additive
function of intervals. It is therefore not possible to give a satis-
factory definition of the integral over an arbitrary set of points, as
can be done with the Lebesgue-Stieltjes integral owing to the
restriction that the function g (x) is of bounded variation. We can
however define the integral over some particular sets of points, in
particular closed sets. In the special case f(x) = 1

f dg (x)

so defined can be regarded as the variation of g (x) over the closed
set Q. It appears from Theorem 3 that this variation is the same as
what Denjoy1 has called " la variation autour de 1'ensemble." The
Stieltjes integral over a closed set is discussed in § 3. The most
interesting result is the generalised mean value theorem.

/ ' (L) mQ < sQ < / ' (£,) mQ, &, £2 in Q

provided that / ' (x) exists at each point of Q and that sQ (the
variation oif(x) over Q) exists.

2. A theorem on functions of sets.

The principle underlying the theorem is well illustrated in a
simple proposition on the Riemann Integral.2

If f (x) is Riemann-integrable in (a, b) and if

\f(t)at = O, ( « < * < & )
a

then

r i = o .
J a

In other words, if for each x in (a, b)

1 Ann. de VEcole Normale, 33 (1916), 157. Denjoy does not discuss the con-
ception in detail, another function, " la variation simple," being more convenient in his
work. E. C. Francis, Proc. Camb. Phil. Soc, 22 (1925), 924, has given an extension of
the mean value theorem in which " l a variation simple " is employed, but the theorem
given below seems a more direct generalisation.

2 Cf. Hobson, Functions of a Seal Variable (1921), 1 451.
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when the points of subdivision divide (a, x) into intervals of greatest
length A, then

b

X\f(£r)\(xr-xr-,)->0, asA-»0.
a

This can be generalised as follows.

Let the function u (E, x) be denned for the class K of sets E, and
the points x of E. Let E be one of these sets and Elt E2,. . . En

mutually exclusive sets, all members of K, which together make up
E, and let A be the greatest of m* E,, . . m* En . It is assumed that
each E of K contains subsets Er of arbitrarily small outer measure.
Then we are concerned with limit operations of the type

(1) 2 u(Er> $r)->l, as A->0
r = l

familiar in the theory of integration. (1) means that given any

positive number e it is possible to find a number TJ, independent of

£i, . . in, such that

(2) | I « (Er> ir) — l\ < e, provided that A < 77

ii* 2̂i • • in being any points of Ex, E2, . . En respectively.

The theorem in question is then as follows:—

THEOREM 1. If for each E in K

S = 2 u (Er, ir ) ~> 0. asX-^0
r=\

then for each E in K

Q= 2 \u (Er, ir ) I "> 0, as A -» 0.
r=l

Suppose that this is false. Then there is a set E in K and a
positive number, 6e say, and corresponding to each 17 there is a sum
Q* of the form Q such that

(3) Q* > 6e but A < -q

Choose 77 so that (2) is satisfied. Then if P is the sum of those
terms of Q* for which u (Er> ir) ^> 0 and N is the sum of the
remaining terms,

P + N > 6e
so that

P > 3e or N > 3e.
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Take the first alternative so that

(4) P = 2(D U (Eri &• ) > 3<=
T

2(!), 2<2) denoting summations over values of r corresponding to
r r

terms in P, N respectively. Now for each Er we can form a sum
Sr like S such that

] Sr | < - 1 ,
s

where s is the number of terms in 2'1). Thus

and by (4)
2<D u (Er, ir ) - Ld) Sr > 2e.

Then by (2)
+ 2(2) u (Ert $r)\ = \ 2(D u (Er> gr ) - 2(1) S r - S

r r r

> I 2(1) u (Er< £r ) - 2d) Sr I - I S
r

> 2e - e = e.

This contradicts (2) since the expression on the left involves a
sum over sets of which each has outer measure < 77.

In the same way the hypothesis N > 3e leads to a contradiction,
and the proof of the theorem is complete.

As an example, assume that

g (t) d<f, (t)

exists according to the original definition of Stieltjes. Take K to be
the set of intervals / (x, y) in (a, 6) and define

u (I, g)=g ($) {<f> (y) - $ (*)} - } 9 («) d<t> (t), (x < f < y).

Then the theorem shows that

(5) 2 \ Q (£r) {$ {Xr ) — ̂  (•£»•-1)} — {*A (•*-»•) — */* (•Pr —i)} I ~^ 0, as A —̂  0

where (:c0 = a, x1; . . . » » = 6) is a subdiv is ion of {a, b) i n to in te rva l s of

grea tes t l eng th A a n d

>P(x)=\Xg(t)d<f>(t)t
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This result leads immediately to the proof of Hyslop's theorem.1

If
g{t)d(f> (t)

a

is well defined and f(x) is bounded in (a, b), then

whenever either integral exists.

3. The Stieltjes integral and the variation of a continuous function
over a closed set.

Let Q be a closed set contained in a finite interval (a, b). Let
each point £ of Q be interior to an interval 7j over which

f(x)dg{x)
h

exists according to the definition of Stieltjes. By the Heine-Borel
theorem,2 Q can be enclosed in a finite number of the intervals It.

Inside this finite set of intervals 7̂  , take

T SI ' \ / ' \ ( ' W

a finite set of open intervals enclosing Q narrowly, i.e. such that
each interval of 7 contains a point of Q; and let

n CX'r

„ 1 J
f(x)dg(x)

Then we define

f(x) dg(x) = lim a I
Q

whenever the limit exists. A particular case is

} df(x)= Urn S {/(*'r)-/(av)}

±Proc. Edin. Math. Soc., 44 (1926), 79. For the case of 4>{x) = x see J. M.
Whittaker, Proc. Lond. Math. Soc, (2) 25 (1926), 213. H. J. Ettlinger, Journal Lond.
Math. Sec, 2 (1927), 245, and Miss R. C. Young, ibid., 3 (1928), 117. The latter
shows that the theorem is true in space of n dimensions.

2 Hobson, op. cit,, 102.
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and the integral on the left, which will be denoted by

*U,Q)
or sQ if there is no ambiguity, can be interpreted as the variation of
/ (x) over Q. It will appear later that it is the same as what Denjoy
has called "la variation autour de Q."

The integration by parts theorem takes the form

f f

J fdg = s(fg,Q)-j gdf

and other simple properties of the integral are

\ Jdg + \ fdg = \ fdg, && = <),

whenever either side exists; and

f fidg+\ f2dg=\ (A+f2)dg
Q Q Q

fdg! + fdg2 =
'Q JQ

whenever the integrals on the left exist.
The most interesting results relate to the case when the

integral is

«(/. Q) = \ dj(x)

and f (x) is continuous at the points of Q. The latter assumption
will be made in the theorems which follow.

THEOREM 2. Let (alt 6j), {a2, b2),... be the complementary intervals
of Q. Then the necessary and sufficient condition that sQ exists is that
there is an I-set Io for which

CO

n = l

converges, where
a>n = fluctuation off(x) in common part of (an> bn ), Io.

Moreover

*Q=f(b)-f(a)- Z {f(bn)-f(an)}.
71 = 1

THEOREM 3. Let sQ exist. Then if Q1 is any portion of Q, sQ1

exists uniformly with respect to Qx.
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A portion is the part of Q contained in a closed sub-interval of
(a, b). Theorem 3 means that there is a number sQt such that

alx — sQl j < e, when ?nl1 < mQx + £

where £ depends on e, but not on Qx. Ix is any /-set for Qlt i.e. any
finite set of open intervals enclosing Qt narrowly.

Theorem 2 is of the same type as E. H. Moore's necessary and
sufficient condition for the existence of the Harnack-Lebesgue
integral,1 and is proved in much the same way. The same argument
establishes theorem 3. The details of the proof may be omitted. It
should be added that the existence of sQ does not necessarily imply
that sQ1 exists for every closed subset Q1 of Q.

Thus, let Pn be a non-dense perfect set in ( , — | and let
\n + 1 n J

f(x) be continuous and constant in the complementary intervals of
the sets Pn ; and let f(x) increase steadily from the value 0 at

x = to the value — at x = § ( H ) and then decrease
n + 1 n ^n + 1 n'

steadily to 0 at x = — . Let

V — V o ~r £* r n i Vo — v") i> 2> •"•> • • ' ) •
n = l

Then f(x) is constant in the complementary intervals of Q so
that sQ = 0, but sQ0 does not exist.

THEOREM 4. Let Qy be the perfect component of Q (null if Q is
denumerable). Then, if sQ exists,

sQ = sQy

Find £ so that

(1) \al — sQ\<^e, mI<mQ + £

and let Ir be an /-set for Q', the derived set of Q. Then

(2) | alt - sQ ! < e, ml1 < mQ' + £ = mQ + £.

If not, there is a set It such that

al1 — sQ \> e, but m/j < mQ + £.

1 Hobson, op. cit., 621. Theorem 2 has been emended in accordance with a
suggestion of Dr Hyslop.
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At most a finite number of points of Q are outside 71# Since f(x) is
continuous at each of these points, they can be enclosed in a finite
set of intervals 72 such that

al21 < o7j — sQ | — e

and ml2 < mQ + £ — m/1

/ = 7j + 72 is an 7-set for Q and

CT7 — sQ | > | a7j — sQ | — j CT72 | > e

m7 = mlx +ml2 < mQ -f £.

These inequalities contradict (1) so that (2) must be true. By
induction, if Ip is an 7-set for Q(P)

(3) | alp - sQ | < e, TO.7^ <

i.e. sQ*/1) = sQ for all integers p.

Again, let 7W be an 7-set for Q("). Then

{QIP)-IU} p= 1 , 2 , 3 , . . . .

is a decreasing sequence of closed sets. If each of these sets contains
at least one point Cantor's theorem of deduction shows that there is
a point £ common to all the sets. £ must therefore be a member
of QW — 7W. This is false. Hence there must be an integer n
such that

<3<«> < 7 U .

Thus 7U is an 7-set for QM and by (3)

<J7W — sQ) < e, mlu < mQM + £

i.e. 8Q<-*>) = sQ.

In this way the result stated is arrived at by transfinite
induction.

THEOREM 5. Let

(i) / ' (x) exist at every point of a closed set Q in {a, b).

(ii) sQ exist.

Then there are points £1; £2 of Q such that

LEMMA, (i) implies that, given e, it is possible to divide (a, b) into
a finite number of sub-intervals such that each sub-interval Ir (supposed
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closed at both ends) containing a point of Q contains a point £r of Q
with the property

< e, x in Ir .

This is Goursat's lemma with the whole interval (a, b) replaced
by the closed set Q. The proof, by repeated bisection, need not be
set down in detail.

It will now be shown that (i), (ii) and

(iii) / ' (a;) > 0 in Q
imply

Let £ be assigned arbitrarily, and find /„, an /-set for Q, such that

m/0 < mQ + £.

Divide each interval of /„ into sub-intervals with the property
of the lemma. Then if such a sub-interval is (xr, x'r) and the
characteristic point is £r>

> — €(&.— Xr).

Similarly

so that
f(x'r) —f(xr) > — e(x'r—Xr)

S {f(x'r)-f(Xr)}> — e S (x'r-Zr)>-e(b-a)
r=l r=\

(xlt x\), . . . . (xn, x'n) being in order all the sub-intervals, formed by
dividing intervals of Io, which contain points of Q.

On amalgamating any of these which abut we obtain an /-set for
Q, contained in Io and so such that

ml < mQ -f- £

and it has been shown that for this /-set

ol > - e (b - a).
Since £ is arbitrary

sQ > - e (b - a)

and since this is true for every positive e,
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The general case (in which (iii) is not assumed) can be reduced
to this by considering the function

g{x)=f(x)-hx

where h is the lower bound1 of/' (x). The conclusion is

(1) sQ^h.mQ.

Similarly if H is the upper bound of / ' (x) in Q

sQ<H. mQ.

To complete the proof it is necessary to shew that if

sQ = h . mQ, mQ > 0

then there is a point | x such that

/'(&) = a.
There is no loss of generality in taking h = 0. Thus, given

/ ' (x) > 0 in Q, sQ = 0, mQ > 0

we have to show that there is a point £x of Q such that

/ ' (&) = o.
If not, let En be the subset of Q for which

Then En->Q, and . \ mEll-
J>mQ>0, and mEn>0 for some n.

This set En must contain a closed subset Q1 of positive measure.
Thus

/ ' ( * ) > — inQlt mQ1>0.
n

As before, enclose Q in 70 and divide each interval of Io into
further sub-intervals with the Goursat property for e, Qv This gives
an /-set for Qv Subtract this set (regarded as an open set) from /„
and divide up the intervals of the finite set which remains into
further sub-intervals with the Goursat property for e, Q. Reject
all sub-intervals containing no points of Q and amalgamate any
abutting sub-intervals which remain. This gives an /-set for Q and

<jl = ZW{f(x'r) —f(xr)} + 2<2>{/(*'r) -f(xr)}

where Ŝ 1) is taken over the sub-intervals containing points of Qt and
2(2) over the remaining sub-intervals.

1 If f'(x) is not bounded below, (1) is certainly true if mQ>0. If mQ = 0 and
sQ> 0 ( <0) it can be inferred that/'(V) is not bounded above (below).
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For

/(£»•) —f

so that

f (x'r) —

an

'(x

fix

interval

)>/'(!

I

n

of

.) (,

the

— x,

first

x )

0 _

class

6 (x'r --Xr)

. 1

while for an interval of the second class

so that al > — S(D (»'r - a>) - e S (*'r - xr)

> — mQx — e (6 — a)
n

> — . mQ, , by choice of e.
2n

It follows that

The contradiction implies that / ' (x) = 0 almost everywhere in Q.
This completes the proof of Theorem 5. It is easy to see that the
conclusion cannot be replaced by

For example, let / (x) = x2 and let Q consist of the intervals
( - 1 . - J ) and (|, 1).

It is easy to see that if / (x) is continuous at the points of Q the
definition of sQ is equivalent to the following.

THEOREM 6. Let A (x0 — «j x1} .. xn — b) be a subdivision of
(a, b) into intervals of greatest length A and let

f)
Q

the summation being over those intervals which contain points of Q.
Then

sQ = lim SA.

Again let Qr be the portion of Q in (av-n xr). Then the total variation
of / (x) over a closed set Q for which sQ exists can be defined to be
the upper bound, for all subdivisions A, of

S \sQr\.
l
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It follows from Theorem 1 that the total variation is the same as

Urn S |/(Sr)-/(Sr-,)|.
X-»0 Q

In this case the sets E are the sub-intervals / (x, y) of {a, b) and
the simple form of Theorem 1 quoted in § 1 is adequate. Define

ul =f(y) — f(x) — sQj, if (x, y) contains a point of Q.\
= 0 , otherwise. '

Qj being the portion of Q in (x, y). If (£„ = a, &, • • & = «/) is a sub-
division of (z, y) and / s = (gs-i, is)

-> 0, as max. (£, — ^g_x) -» 0
by what has just been said. Thus by Theorem 1

S | / ( a v ) - / ( ! t r - i ) - « Q r | - » 0 , as A-» 0

whence

lim S|/(a;r)-/(a;P_1)|= lim S
0 Q X - * U r =

n

= upper bound of S | sQr I

4. Convergence on the average and the Stieltjes integral.
The limit operations which have occurred in the preceding work

have been of the type
n

S u(Er, £r)->l, asA->0, \ = max. [m*Er].
r-l

The present chapter deals with the existence of these limits on
the average. The functions u (Er,£r,t) now involve an additional
variable t, being defined for a measurable set T of t, and con-
vergence on the average is defined as follows.

Let k be any positive number and let Rk be the set of values of t,
for which

| S U (Er, £r,t)-l\>k

for a fixed subdivision (Er, £r); then if for each k

m*Rk -> 0, as \->Q
we say that

n
S (t) = S u (Er< £r< t)->l on the average, as A -> 0.

l
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THEOREM 7. / /
n
2 u (Er> £r, t) -> I on the average, as A -> 0

r=l

tten graven S, a set To and a sequence {An} of subdivisions (Er> £r) can
be found such that

Sn (t)->l, as n-> <x> , t in T — To

and
m*T0<8

Sn (t) being the S (t) corresponding to An.

If k is any positive number, a subdivision A1 can be found so
that for this A1

m*RL< |S.

For example, A± may be found by bisecting (a, b) repeatedly,
always taking the point £ to be the mid point of the corresponding
sub-interval. Again, a subdivision A2 can be found so that for it

m* R±<i 8
4

and so on. Let

Then
ra* To < m* i?^ + m* -Kji +

2 4

< | 8 + J3 + .. =8.
Also if t is a point of T — To

Sn (t) ->l, as n —> oo .

k
For, given e, p can be found so that — < e and

\Sn(t)-l\<~<e, (

This theorem shows that the (Sm)-integral, denned below, can be
represented approximately as a Stieltjes sum; in particular that
the Lebesgue integral can be represented approximately as a
Riemann sum.1

Theorem 1 remains true when the limits are taken on the
average. Thus

1 Cf. Hobson, op. cit., 585.
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THEOREM 8. If for each E in K
n
2 u (Er< £Ti t) —> 0 on the average as A -> 0

r = l

then for each E in K
n
2 | u (Er> gr> t) | -> 0 ore <Ae average, as A -> 0.

r = l
In other words, let i?i be the set of £ for which

| S (t) | = | S M ( ^ fr> 0 | > * > 0
r = l

and for each E in K and for each positive k, let

TO* i 4 -> 0 as A -> 0.

Let Ti be the set of t for which

Then the theorem asserts that for each E, k

in* Tk -> 0 as A -» 0.
If the assertion is false there is a set E and positive numbers

k, § such that given any positive number rj there is a dissection of E
for which

(4) m* Tk = m* [Q > A] > S but A < ij.

Let 77 be such that

(o) m*it_i_= m* | o | ^ > — "̂  "5"» A<Ti

and let Q* be a Q for which (5) is true with this rj. Let Q* have
terms. For each Er find Sr like £ so that

< — except in Rr< m* Rr < — .
OS oS

Then

(6) 2 I Sr I < — except in B = 2 ^ r , m* R < —.
r = \ 6 3

Suppose now that t is a point of Tk* — R — Rk
6

(Tk* is the TA. associated with Q*). Then

0* (*)>*•
Either the sum P of the terms in Q* for which u {ET: £ri <) is

positive, or else the sum N of the terms in Q* for which u (Er> £r> <)
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is negative must be >̂ f &. Take the first alternative; then

{EJt)>

.: Sd)« (2?r, £, 0 - 2(D Sr > A - ^ = 4-, by (6)
^ u o

rS (n S r + 2(2)« (^r, £.*) | = j 5 (*) - {S(D u (tfr, &., 0 - 2(DS
> | 2(D u (Er, $rt t) - 2(D Sr\-\S{t)
»» fC K/ iC

This holds for all « in y* - i? — E± and

- i 2 - Rk )^>m*T*- m*B - m*R±
6 6

Thus

m*

which contradicts (5), since the " A " of the sum on the left is less
than 7],

We now define the mean Stieltjes integral as the limit on the
average, as A -*• 0, of

The precise definition is as follows. Let

2a - b = y0 < Vl < ^ < i?2 < . <«/„ = &

be a net Aj filling (2a — b, b). Displace At through a distance t to
the right so that it consists of the points

Vo + l < Vi + t < KVn + t.
Let £j be the first -q which now lies to the right of a and let

Cm be the last y which lies to the left of 6, and let

£ l < Z l < £ 2 < - - <Zm-l<£m
be the intervening part of the net.

A (t) = (a = z0 < Ci < z1 < . . . . < Cm < 2m = b), (0 < < < 6 — a)
is then a net filling (a, 6). Form the sum

r-l
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Then

(S)m\f(x)dg(x)
Ja

will be said to exist and to have the value I if

m* Bk ->0, as A -> 0

for each positive number k; R^ being the set of t for which

and A (independent of k) the length of the longest interval (a;r_i, a;,.)
of A.

In case g (x) = x the sum S&(t) differs from the sum

considered by Denjoy only in the terms corresponding to intervals
adjacent to a, b and the definitions are substantially equivalent.

It is evident that the (#m)-integral exists and has the same value
as the integral defined by Stieltjes, whenever the latter exists. The
(Sm)-integral has moreover nearly all the properties of the original
Stieltjes integral.1 The more simple of these are

(I) rb

K ' l.dg(x)=g(b)~g{a)
Ja

(II) If a < c < b and either f(x) or g (x) is continuous at c,

(fdg= \°fdg+\bfdg
J a J a J c

whenever the integrals on the right exist.

(III) If I fdg exists, so does cfdg where c is a constant and
J a Ja

f cfdg = e\ fdg.
Ja Jet

(IV) If fidg, f2dg exist, so does
J a J a

(fi+ft)dg
Ja

and it is equal to the sum of the given integrals.

1 Of. Pollard, loc. cit.
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n j-6
(V) If I fdgx, fdg2 exist, so does

and it is equal to the sum of the given integrals.

(VI) \"g (x) df (x) = g (b)f(b) - g (a)f (a) - [ f (x) dg (x)
J a J a

provided that the integral on the right exists and that either / (x) or
g (x) is continuous at a, b.
(VII) If \f(x) ! <̂  K, g (x) is of bounded variation, and the (Sm)-
integral exists, then

\hf(x)dg(x)\<iKVb
ag.

'a

The proofs of these propositions need not detain us, as they
present no points of particular interest or difficulty. The analogue
of Hyslop's theorem is also true.

THEOREM 9. / /

is well defined in {a, b) and f (x) is bounded, then

(Sm) f / (a;) 64 (x) = (Sm) f / (x) g (x) d<j> (x)
Ja J a

whenever either integral exists.
This is deduced from Theorem 8 in the same way that Hyslop's
theorem was deduced from Theorem 1.

THEOREM 10.

whenever the integral on the right exists.
This is practically equivalent to the theorem, stated without

proof by Denjoy, that integration in accordance with his definition
(B) includes Lebesgue integration.

LEMMA. Let (j> (x, h) be measurable in E for each h and let
4>{x, h)->f(x), as h-> + 0, p.p. in E. Then, given -q, there is a
subset H of E such that

mH < y]
and

<j> (x, h) ->f(x), as h -*• + 0, uniformly in E — H.
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This is a slight extension of Egoroff's theorem1 and is proved in
the same way. "P-P-" (presque partout) means "almost every-
where " i.e. except in a set of measure zero.

To prove Theorem 10, take first the case

Let
F{x) = (L) \Xf{t)dt

F(x + h)-F(x)
<p (x, h) = ^ .

Then2

</> (x, h) ->/(«), as h -=> + 0, p. p. in (a, b).

Thus, by the lemma, A.j can be found so that

\<f>(x, h) -f{x) | <7], (0 < A<A1), xinE - H.
Again

\<f>(x,h)-f(x)\^2K, all*, A.

Thus, if / (x) is defined in the range 6 < x < 26 — a by

f(z)=f{x-{b-a)}

then if x is any point of (a, b)

f \<f>(x + t , h ) - f { x + t ) \ d t = \ \<f>{t,h)~f(t)\dt
Ja J a

= \\<f>(t,h)~f(t)\dt+\ \<f>(t,h)-f(t)\dl

< r] (b - a) + 2KV = 8, (say)
f6hence | F (x +h + t) — F (x + t) - hf (x + t) \ dt < 8h, (0 < h < Aj)
^a

Similarly

f | F (x + t) - F {x - h' + t) - h'f (x + t) | dt < 8h', (0 < h' < A,)
Ja

for some A2. Thus if Ao is the smaller of Ax, A2,
J | F {Xr +t) - F (Xr-1 + t) -f(ir + t) (Xr -Xr-1)\dt<S{xr- X^y),

Aa Xr — xr-1<A0

where we have written xr< xr_1; gr in place of x + h, x — h', x.

1 Hobson, op. cit., 2, 144.
2 Hobson, op. cit., 541.

https://doi.org/10.1017/S0013091500013614 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500013614


228

Thus if a <I fx <^ xx <^. <^£n <^ b is any subdivision of (a, b), the longest
interval (xr_1) a;r) being of length A

S J | ^(a:r + 0 -F(xr-1 + 0 - / (£• + t) (xr - rr-i)\dt
r=1 a <8(b-a), (X<X0)

hence j | 2 {F (xr
a r=1

or

+ «) - F {xr-^ + *) -

- S /(£P + i) (*r - a;r -1)

^ - ^ - i ) } I dt
< 8 ( & - o ) , (A<A0)

< § (6 - a), (A < Ao).

Thus if R k is the set of £ for which

r = l
then

§ (6 - a)

and since S is arbitrary, for fixed k > 0

0, as A-> 0.

(A<A0

It follows that f(x) is integrable in accordance with Denjoy's
definition (B).

Suppose now that / (x) is any function which is integrable (L)
i.e. not necessarily bounded.
Given e,k,f(x) can be expressed as the sum of a bounded function
/ r (a;) and a function/2 (x) such that

(1) (L)\h\f2(x)\dx< g {b
€k_ a).

Now if h (x) is any positive integrable-Z function

m [h (x) > k] < | (L) J ' h (x) dx.

Thus, by (1)

m\\i U {IT ) (Zr ~Zr- 1) - \"f2 (X) dx ^
L | r = l Ja

!i (tr ) (Zr - Zr- i) ~ J A («) dx
2 f6

2 n Cb 2
< T 2 (Xr-Xr-J \f2(t)\dt+ X

til „, 1 *• „ -a)
dt
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Thus by (2), (3)
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Again, since 2 A (£r ) (zr — zr_j) difEers from
2 A (£,. + t) (xr — a>-i) only in a finite number of terms,

in m

| 2 A (£r ) (zr - 2 , - i ) - S A (£. + 0 (av - a:,.!) i

= sum of a finite number of terms of the form f (a) (xr — xr-1)
= 0(\)
and by what has been proved above

m [ ifAir + t) {xr - zr.-,) - \ U (*) dx | > p ] -> 0, as A-> 0.

Thus there exists a positive number 17 such that

| e , (A < TJ).

: e, (A < 77)

and this is the result stated.

THEOREM 11. / / f(x), of period 2 77, is integrable (L) and

is the function conjugate to f(x), then g (x) is integrable (Sm) with
respect to x.

The corresponding theorem for the .8-integral has been given by
Kolmogoroff,1 and his proof holds, with slight modifications, in the
present case. The next theorem deals with the integration of
sequences.2

THEOREM 12. If

(i) Vat>fn (x) < K, alln

(ii) VaO{fm (x) -fn (a;)} + !/,„ (6) - / „ (6) | -> 0, as m, n -> 00

then there is a function f (x) of bounded variation such that

and
VJ {fn {x)—f(x)}->0, as n-> 00 .

1 Fundamenta Math., 11 (1928), 27.

- Theorems of the same type involving the Stieltjes integral projier have been
given by Hahn, Monatshefte fur Math. u. Physih, 32 (1922), 84.
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Moreover (i), (ii) follow from these conclusions and

Cb Cb

fn(x)dg(x)->\ f(x)dg(x),n()g() f ( ) g ( ) , as n

provided that fn (x) is continuous at a, b, that g (x) is bounded in
(a, b) and that the integral on the left exists (8m) for each n.

Since

\fm(b) —fn(b) | -*0, asTO,»-»oo

fn (b) -*• a limit, / (b) (say), as n -> oo .

Also if x is any point of (a, b).

I / „ (*) - / „ (x) j < | / „ (x) -fm (b) - / „ (*) + /„ (6) I + I fm (6) - / „ (6) |

< Va»{fm (x) - / „ (*)} + | / „ (6) - / „ (6) |

-> 0 as m, n -* oo .

• '• /»(«)-*• a limit, / (a;) (say) as n-> oo
and for any subdivision of (a, b)

= Hm I |/n (^ ) - / „ ( ^ . ^ |

< Km F^/;i(^)

so that
Va<>f(x)<^K.

Again, find N so that

VJ {f,n (x) -fn (*)} < e, (m, » > iV).

Then for any fixed subdivision of (a, b)

£ \fm(Xr)-fn(Xr)-fm(Xr-1)+f»(Xr-1)\<e, (m,
r = l

Keep n fixed and let m -^ •»

/

This is true for all subdivisions of (a, b).

Therefore Va
b{f(x) - / „ (*)} < e, (n > iV)

i.e. Fo» {/ (*) - /„ (x)} -+ 0, as n -> oo .

I t is easy to prove that, conversely, these conclusions imply (i), (ii).
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Now by the integration by parts property (VI)

P / » ( * ) dg (x) = [ / „ (x) g ( x ) ] - \ g (x) dfn (x)

and

T g (x) dfm (x) - \" g (x) dfn (x) = [ g (z) d {fm (x) - / „ (x)}

<KVab(fm-f»), by (VII)
-> 0, as m, n -> <x>

K being the upper bound of | g (x) | . Thus

Cb
g (x) dfn (x) -» a limit, I (say), as n -> oo .

a

Now, given k, N can be found so that

and

(1) \\hg(x)dfN(x)-l
3 '

Again, given e, ~q can be found so that

(2)

Now

(3)

{fN (zr) -fN (zr^)} - J% (x) dfN (x)

< e, (X < -q).

Thus by (1), (2), (3)

This proves that

fb

g (x) df(x) exists and = I.

https://doi.org/10.1017/S0013091500013614 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500013614


232

Hence finally

V» (x) dg (x) = \fn (a;) g (x)T - Pgr (x) dfH (x)

-> [ / (* ) gr (a) J - 1% (3) <*/(*)
a a

= \"f(x)dg(x).

5. Term by term integration of Fourier series.
Theorem 12 leads to a theorem of Parseval type.

THEOREM 13. / /

(i) f(x) has period 2n and is continuous and of bounded variation
in (— 77, IT).

(ii) g (x) is bounded1 in (— n, IT).

If l f
(iii) an = — I cos nxdg (x), bn = — sin nx dg (x), exist (Sm),

7T J _T TT J _w

then
1 (•"• =°

~ / i x ) d9 (x) = j « o « ' o + S (on«'„ + 6»6',̂ )
J - 7T ?l = l

/Ae series being summable (C, I)2, a',,, 6'n are <̂ e Fourier coefficients
off(x).

LEMMA 1. If f(x) is continuous and of bounded variation in (a, b).

Va'b'{f(x + y)-f(x)}->0, as y->0, (a<a'<b'<b)

f(x) can be expressed3 as the difference of two continuous increasing
functions P (x), N (x). If y is (say) positive and less than b — b',

f(x + y)-f(x)=P(x + y)-P (x) - {.V (x + y) - N (x)}
so that

Vaf
!{f{x + y) -f(x)} = P(b' + y)-P (&') + N (&' + y) - N (&')

- {P (a' + y)-P (a1) + N (a' + y) - N (a')}

-> 0, as y -> 0
since P (x), N (x) are continuous.

1 If <j(x) is assumed to be continuous the integrals exist as ordinary Stieltjes
integrals, and f(x) need not be continuous. Cf. J . M. "Whittaker, Proc. Edin. Math.
Soc. (2), 1 (1928), 169.

a Cf. Hobson, op. cit., 2, 579.
8 Hobson, op. cit., 1, 317.
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LEMMA 2. Let Fn(x) denote the nth partial Cesdro sum of the
Fourier series of a function f (x) satisfying conditions (i). Then

V_ x {Fn (x) - f (x)} -+0, as n -> cc .

For1

Thus for any subdivision of ( — IT, TT)

i | {Fn (x,.) -f(xr )} - {Fn (x^x) -
r = l

< ~ f S

where a < — n <^X-^TT <b.

This is true for any subdivision of (— n, TT). Thus

Now, by the preceding lemma, given e, S can be found such that

Thus

VZV — total variation of f(x) in {—TT, TT)

< 2e, (n > »„)

since

sin %ny\2 1 r/sinjTMA?
dv = l I 1 ) dy » 0, as V, -» 00 .T sin i / 5 | /

Theorem 13 now follows immediately from Theorem 12.

1 Hobson, op. cit, 2, 557.
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