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THE FIXED POINT PROBLEM FOR
GENERALISED NONEXPANSIVE MAPS

MICHAEL A. SMYTH

This paper is concerned with extending the theory of the existence of fixed points
for generalised nonexpansive maps as far as possible. This can be seen as a con-
tinuation of the work of Maurey on the extension of the fixed point theory for
nonexpansive maps beyond the requirement of normal structure type conditions.

1. INTRODUCTION

A (real) Banach space X is said to have the weak fixed point property (w-fpp)
if, when C is a nonempty weak compact convex subset of X that is self mapped by a
nonexpansive map T, then T has a fixed point. If X is a dual space we can define the
weak star fixed point property (w*-fpp) by requiring the set C of the above definition
to be weak star compact. In [1] Alspach showed that not every Banach space enjoys
the w-fpp and it is well known that failure of the w*-fpp occurs. In [11] the notion
of a generalised nonexpansive mapping was introduced. We study fixed point problems
for this class of maps, and introduce the w-fpp (w*-fpp) for generalised nonexpansive
maps which is defined in the obvious way. For basic material on nonexpansive mappings
we refer the reader to [10].

Section 2 is concerned with some metric properties of generalised nonexpansive
maps, further refining the class meriting investigation.

In Section 3 we extend some of the basic techniques from the nonexpansive to
the generalised nonexpansive case. Included are results on approximate fixed point
sequences that will be needed in the sequel.

In Section 4 we give fixed point theorems for generalised nonexpansive mappings.
These results go beyond the requirement of normal structure criteria and generalise
results from the nonexpansive case.
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46 M.A. Smyth [2]

2. METRIC PROPERTIES OF GENERALISED NONEXPANSIVE MAPPINGS

Suppose that C is a nonempty metric space with metric d. Then a self map T of

C is said to be generalised nonexpansive if there exist nonnegative Oj, i — 1,2,... ,5,

so that 53 ai ^ 1 and, for, x,y 6 C,

d(Tx,Ty) < aid(x,y) + a2d(x,Tx) + a3d{y,Ty) + a^d(x,Ty) + asd(y,Tx).

Since the distance function is symmetric we can replace 02,03 with (02 +O3)/2 and
04,05 with (04 + 05)72. Thus the above definition is equivalent to the existence of
nonnegative o, 6, c satisfying a + 26 + 2c ^ 1 with

d(Tx,Ty) ^ ad{x,y) + b(d{x,Tx) + d{y,Ty)) + c(d(x,Ty) + d(y,Tx))

for x,y 6 C. If6 = c = 0 then T is of course nonexpansive.

We now give inequalities that will be useful. Recall that an approximate fixed
point sequence (afps) for a mapping T is a sequence (xn) satisfying d(Txn,xn) —» 0.

P R O P O S I T I O N 2 . 1 .

(1) If (xn) is an afps for T and (yn) is a sequence in C then (assuming that

the limit supremums exist),

limsupd(T?/n,a:n) ^ limsupd(yn,xn).
1 — 0 — c

(2) It a + 2c < 1 and x,y G C then

d(x,y) ̂  l±^±±[d[Tx,x) + d(Ty,y)).

PROOF:

(1)

Urn sup d(Tyn, xn) - lim sup d(Tyn, Txn)

^ lim sup (o d(yn, xn) + b d(Tyn,yn))

+ c(d(Tyn,xn) + d(Txn,yn))

< (o + b + c)liir supd(xn,yn) + (b + c)limsupd(Tyn,xn).

Thus

Um.sup d(Tyn,xn) ^ Umsup<f(yn,zn)
1 — b — c
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[3] Generalised nonexpansive maps 47

as required.

(2) d(x,y)^d(x,Tx)+d(Tx,Ty) + d(Ty,y)

<: ad{x,y) + (1 + b){d(Tx,x) + d{Ty,y)) + c{d(Tx,y) + d{Ty,x))

^ ad(x,y) + (1 + b)(d(Tx,x) + d(Ty,y))

+ c(d(Tx, x) + 2d(x,y) + d(Ty,y)).

Thus

d(x,y) < ±t±±^

as required. D

If X is a Banach space d(x, y) = \\x — y\\. In [2] it is noted that if 6 > 0 then the w-
fpp for the associated generalised nonexpansive maps has been completely determined.
Indeed, if 0 < 6 < 1/2 then fixed points exist and if b — 1/2 then the w-fpp for such
maps is equivalent to close—to-weak normal structure (see [23] for definition). Thus we
shall be concerned with mappings for which 6 = 0. These mappings are of two types:
the nonexpansive maps, and those for which 6 = 0, c > 0 (which we call mappings of
type (c)).

It is well known that if C is a nonempty bounded convex subset of a Banach space
X that is selfmapped by a nonexpansive T then T has an afps. Bae [2] established that
if C is a bounded metric space, T a generalised nonexpansive self map of C with 6 = 0,
c > 0, then T is asymptotically regular. That is, for any i £ C, d(Tn+1x,Tnx) -* 0,
that is, any orbit is an afp.

We note that in [2] it was also shown that if T satisfies the generalised nonexpansive
condition with c = 1/2 then, for all x G C,

d(Tn+1x, Tnx) ^ - - - - ^—1 d i a m C.

Thus T is uniformly asymptotically regular (the sequence of terms from the left hand
side of the above inequality converges to 0 uniformly on C). If T denotes the collection
of all self mappings of C satisfying the generalised nonexpansive inequality with c — 1/2

then, since the right hand side of the above inequality does not depend on T, the
uniformity is over T and C. In fact, a similar result is true for any fixed c 6 (0,1/2].
One uses the nonuniform result and a technique used on page 100 of [10].

3. FURTHER PROPERTIES

Suppose that C is a nonempty weak (weak star) compact convex subset of a (dual)
Banach space X that is self mapped by T. A subset K of C is said to be a minimal
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invariant if it is minimal with respect to set inclusion in the class of nonempty weak
(weak star) compact convex T invariant subsets of C. Such minimal sets exist courtesy
of Zorn's Lemma and the compactness condition. In the sequel we use the terms w-
minimal invariant or w*-minimal invariant when any ambiguity could arise and may
further specify the type of mapping under consideration.

It is obvious that X (X*) has the w-fpp (w*-fpp) for generalised nonexpansive
maps if and only if every (generalised nonexpansive) minimal invariant is a singleton.
Thus, if X fails the w-fpp (w*-fpp) for generalised nonexpansive maps we can assume
that it contains a minimal invariant K (associated with a generalised nonexpansive
mapping) of positive diameter. By translation and dilation we can also assume for any
particular x eX that x £ K and diamiiC = 1. Also K = coT(K) {K = co™*T{K)).

The following proposition has been useful in the nonexpansive theory. Recall that a
real valued map / from a topological space is lower semicontinuous if f~1(r, oo) is
open for any r £ l . It is called weak (weak star) lower semicontinuous if the space is a
Banach space with the weak (weak star) topology. We shall find the proposition useful
for generalised nonexpansive mappings.

PROPOSITION 3 . 1 . Suppose that K is a minimal invariant and f : K —> E is

weak (weak star) lower semicontinuous and convex with f(Tx) ^ f(x) for any x £ K.

Then f is constant on K.

PROOF: Let a := min{/(:c) : x £ K}. a exists because of the weak (weak
star) compactness of K and the weak (weak star) lower semicontinuity of / . Let
M = {x £ K : f(x) = a}. M is then weak (weak star) compact and also convex due to
the convexity of / . Since f(Tx) ^ f(x) for any x £ K, M is also T invariant. Thus
M = K by minimality of K, giving / constant. U

The following proposition is due to Bogin [4]. Our proof is an adaptation of one
for the analogous nonexpansive result and uses a similar proof technique to that used
in Proposition 3.1. We recall that if D is a nonempty closed bounded convex subset of
a Banach space X then D is said to be diametral if r adD = diam£>. That is, for all
x S D, sup{||a; - y|| : y E D} = d iamD.

PROPOSITION 3 . 2 . Suppose K is a w-minimal invariant associated with a

generalised nonexpansive mapping T satisfying 6 = 0. Then K is diametral.

PROOF: Consider the function / : K —> R, f(x) — sup{||a; - y\\ : y £ K}. f is
weak lower semicontinuous. Put a := min{/(s) : x £ K} and M := {x £ K : f(x) =
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[5] Generalised nonexpansive maps 49

a}. Then M is T invariant. Indeed, if x £ M then

f(Tx) = sup \\Tx - y\\
y€K

= sup \\Tx - Ty\\ ( since K = coT{K))

^ sup {a ||as -y\\+c \\x - Ty\\ + c\\y - Tx\\}

y&K

$J act + cot + c sup ||y — Tx\\
3/6K"

= a{a + c) + cf(Tx).

Thus f{Tx) ^ a(a + c)/(l - c) ^ a since a + 2c ^ 1. Thus by the minimality of K
we get that K is diametral. D

The above proposition has a w* version. Indeed, in this case the analogous / is the
supremum of w* lower semicontinuous functions and is thus also w* lower semicontinu-
ous. Also, sup{||Ta; - y|| : y £ K} = sup{||Tx - Ty\\ : y € K} since if (3 is the second
quantity then K C Bp(Tx) by the fact that the last set contains T(K), is convex and
w* closed.

A nonempty bounded subset of X is said to have normal structure if its only
diametral subsets are singletons. X is said to have normal structure (weak normal
structure) if any nonempty (weak compact) bounded subset of X has normal structure.
Weak star normal structure is defined in a similar way for dual spaces. Together with
the stated results in Section 2, Proposition 3.2 (and the remark after it) gives that
(dual) Banach spaces with weak (weak star) normal structure have the weak (weak
star) fixed point property for generalised nonexpansive maps.

The following is a variation of the Lemma of Karlovitz [9, 14].

LEMMA 3 . 3 . Suppose that K is a w-minimal invariant for a generaJised non-
expansive map T with 6 = 0. Then if (xn) is an alps, \\xn — x\\ —> diamif for any
x £ K. That is, (xn) is a diameterising sequence for K.

PROOF: Define f(x) := limsup||s: — xn\\ for x € K. Since / is continuous and
convex it is weak lower semicontinuous. Also, if x € K then, by Proposition 2.1,

f(Tx) = limsup \\Tx — xn\\ ^ limsup ||x — an||

= /(*)•

Thus by Proposition 3.1 / is constant on K, with value k say. Let (zn,) be a subse-

quence of (xn) with ini-^-»xo for some XQ £ K. Then for any x £ K

k ^ limsup |jas — xn{ || JS liminf ||s — zni | | ^ H1 ~ zo||
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by weak lower semicontinuity of the norm. Thus

k ^ rad(xo)-^) = diamif

by Proposition 3.2, giving k = diamif. Since any subsequence of (zn) is also an afps
we can repeat the above argument if necessary to deduce the required result. D

The following proposition is a variation of a result of Maurey [17]. The proof we
use is an adaptation of the proof used in [5] for the nonexpansive case.

PROPOSITION 3 . 4 . Suppose that C is a closed bounded convex subset of a
Banach space X. Then, if T : C —> C is a generalised nonexpansive mapping, (xn)
and (yn) two afps's for T and A £ [0,1], there exists an afps (zn) so that

limsup||zn - xn\\ = (1 - A)limsup||zn - yn\\

and
limsup||zn — 2fn.ll = Alimsup||a;n - yn\\ •

Also, if lim ||scn — yn\\ exists then we can rewrite the above using lim instead of limsup.

PROOF: Write / = limsup||zn — yn||. If b > 0 then, by the second inequality
of Proposition 2.1, 1 = 0 and the first inequality implies that zn := Aa;n + (1 — X)yn

suffices. Otherwise put
C := {(*„) G ^oo(X) : zn 6 C}.

Define f : C -» C by
f(zn) = (Tzn)

for (zn) € C. Since T was generalised nonexpansive with c > 0, T has the same

properties. Now define D by

D := {(xn) G C : limsupHzn - xn|| < (1 - A)i, l imsup| |zn - yn\\ ^ A/}.

Then D is nonempty, closed, convex and bounded. Since (xn) and (yn) are afps's D

is also T invariant by Propoisition 2.1. Thus D contains an afps by Section 2. That

is, for all p 6 N there exists («S)nt=i G D s o t h a t SUP H^S ~ ZV\\ < I / ? for all n.
Choose en > 0 so that en —* 0. Then for any p there exists np 6 N so that for

and ||TzP - zB
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We can also assume that (np)°Lj is a strictly increasing sequence. Now define (zn) £ C

as follows.

For n < ni put zn = z\. If n £ [np,np+1), put zn = z£.

Then it is clear that (zn) € D and is an afps.
To obtain the main statement of the proposition we note that, for (zn) £ D, the

inequalities used in the definition of D are actually equalities.
Now suppose that lim ||a;n — yn\\ exists. Then we can rewrite D by replacing

limsup by lim. Indeed, suppose that (zn) £ D and that liminf ||zn — zn|| < (1 — A)/.
Then

liminf ||a;n - yn\\ ^ liminf ||a;n - zn\\ + limsup ||i/n - zn\\

<(1-A)Z + AZ

= /,

a contradiction, giving that lim||zn — zn|| exists. Likewise it can also be shown that
lim ||zn — t/n|| exists. u

The above proposition can be generalised to the following proposition, similar to a
result from [7].

PROPOSITION 3 . 5 . Suppose that C and T are as in the above proposition.
With m > 1 suppose also that we are given m afps's, written (xj,) for i = 1,2,..., m.
Tien there exists an afps (zn) of T so that for every i,

limsup ||zn — xx
n\\ ^ ((m — l)/m)diamC.

PROOF: If 6 > 0 then zn := ( l / " ! ) ^ ) 1 ^ suffices. Otherwise we again consider C
i

and T. This time put

D = {(zn) £ C : limsup \\zn - x\\\ < ((m - l)/m)diamC for all i}.

Note that ((l/m)(x^ + x\ H Vx™)) £ D ^ 0. As above, D contains an afps. Thus
for any p £ N there exists (y£)™=1 £ D so that sup \\Tyl - y£|| ^ 1/p. Choose en > 0

n

so that en —* 0. Then for any p there exists np £ N so that for n ^ np

\\Vn ~ *» || < (C"1 - !) /"») diam C + ep for all i.

We can also assume that (np) is a strictly increasing sequence. We now define (zn) £ C

as follows.

For ra < ni put zn= y\. If n £ [np,np+i) put z n = y^. It is then readily seen

that (zn) £ D and that (zn) is an afps, giving the proposition. D
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4. FIXED POINT RESULTS

In this section we give fixed point results that don't require normal structure type
criteria for generalised nonexpansive mappings of type (c). We consider the (defined
in the obvious way) w-fpp (w*-fpp) for mappings of type (c). In the sequel we only
consider the w case. It should perhaps be noted that so far no space has been shown
to fail the w-fpp (or even the w*-fpp) for mappings of type (c).

Suppose that K is a nontrivial (c) minimal invariant. By Section 2 it has an afps
(xn) (any orbit sufficing). Since K is weakly compact we can assume that (xn) is
weakly convergent. By translation and dilation we can assume that the weak limit
is 0 and that diamif = 1. Of course Lemma 3.3 implies that lim ||a; — xn | | = 1 for
all x G K and in particular | |xn| | —> 1. We shall assume this state of affairs for the
remainder of this section.

In [17] Maurey proved that reflexive subspaces of i i [0 , l ] have the w-fpp. The
proof essentially starts from where we just left off and uses the nonexpansive versions
of Lemma 3.3 and Proposition 3.4 to obtain a contradiction; that no further properties
of the mapping are required can be seen by following the proof given in Part III of [7],
a proof which also does not require the use of an ultrapower. Thus these spaces have
the w-fpp for type (c) mappings. Maurey's original proof could also have been adapted
to work in this case as well. We also have the following versions of results in [7]: The
Tsirelson spaces T, and T* have the w-fpp for mappings of type (c), as do B-convex
subspaces of uniformly monotone Banach lattices.

Maurey also showed that CQ has the w-fpp. Recently (in [12] and [13]) a property

was defined sufficient for the w-fpp and which is possessed by Co . We recall its definition.

Firstly if X is a Banach space, x,y 6 X and A is positive put

Mx(x,y) :={zeX: max{\\z - x | | , \\z - y \ \ } ^ ( 1 / 2 ) ( 1 + A) | |x - y \ \ } .

If A is a bounded subset of X

\A\:=snV{\\z\\:zeA}.

If ( i n ) is a bounded sequence in X and A positive we also define

D[(xn)] := limsuplimsup ||xn - xm| |
n m

and ^ [ (x , , ) ] := limsuplimsup |MA(xn,xm) | .
n TO

Finally we say that X is Orthogonally Convex (OC) if for each sequence (xn) in X

that is weakly convergent to 0 and satisfies Z)[(xn)] > 0 there exists A > 0 such that

Ax[(xn)]<D[(xn)}.
It is shown in [12] that OC spaces have the w-fpp. This is easily extended. We

firstly give the following.
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[9] Generalised nonexpansive maps 53

PROPOSITION 4 . 1 . T i e Banach space property defined by only requiring that

liminf liminf |M.\(xn,xTO)| < D[(xn)\
n mn m

in the definition of OC is equivalent to the following:
Given a weak null sequence (xn) with D[(xn)} > 0 there exists a subsequence (yn)

of (xn) and A > 0 so that

sup \Mx(yn,ym)\ < D[(xn)}.

PROOF: Suppose that X satisfies the altered definition of OC, xn-^->0 and
D[(xn)] > 0. Obviously {xn) is an infinite sequence. We can assume that its terms are
distinct. Denoting by ~P2{A) the set of two element subsets of a set A, put

A1 := {{xn,xm} e V2({xn}~=1) : \M1/2(xn,xm)\ < D[(xn)} - 1/2}

B1 := {{xn,xm} e V2({xn}~=1) : \M1/2(xn,xm)\ > D[(xn)] - 1/2} .

Ramsey's Theorem now gives a subsequence (xj,) of (xn) so that either "P2{*n}n̂ =i ^
A1 or V2{x\}^=1 C B1. The first eventuality gives the required result. We shall thus
assume the second. Now put

A* := {{xi,xl
m} G V2{Wn}~=1) : \M1/3,(xn,xm)

B2 := M1/it(xn,xm)

< D[(xn)}-l/22}

Again'we shall assume the existence of a subsequence (x^) of (x^) satisfying 'P2{x2
x}^=l

C B2 . We can continue in this fashion. A Cantor diagonalisation will then produce a
subsequence (yn) of (xn) so that

liminf hminf \Mx(yn,ym)\ > D[(xn)] > D[{yn)\
n in

for any A > 0. Since this property of (yn) also implies that D[(yn)] > 0, we have a
contradiction. The converse is obvious. D

We now extend the result from [12].

PROPOSITION 4 . 2 . If X is OC then it has the w-fpp for mappings of type
(c).

PROOF: Back to our (c) minimal invariant K with its weak null afps (xn). Lemma
3.3 easily gives that £)[(xn)] = 1. Now let (yn) be a subsequence of it given by the above
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proposition, with associated A > 0. Put M = sup \M\[yn,ym)\ < 1. Choose

two subsequences of it, (zn) and (wn) say, with \\zn — wn\\ —> 1. (This is possible by
Lemma 3.3.) Proposition 3.4 now gives an afps (tn) in K with lim ||tn — zn\\ = 1/2
and lim 11in — wn\\ = 1/2. But then, for sufficiently large n, | | i n | | ^ M, contradicting
the fact (by Lemma 3.3) that ||tn|| -> 1. D

The next results are lattice theoretic. For background material we refer the reader
to [20]. We recall some definitions from [5]. A Banach lattice is said to be weakly
orthogonal if, given a weak null sequence {xn) in it,

(1) liminfliminf ||(as«| A |xm| | | = 0.
n m

This definition can be rewritten as follows.

PROPOSITION 4 . 3 . A Banach lattice X is weakly orthogonal if and only if

given a weaic null sequence (xn) in X and e > 0 there exist n,m 6 N so that

|| |*iiI A |xm | | | < £. It is also equivalent to the condition requiring that for every e > 0
there exists a subsequence (yn) of (xn) so that \\\yn\ A \ym\\\ < E if n ^ m.

PROOF: Clearly weak orthogonality implies the first stated condition. Also, the
second condition easily implies weak orthogonality. Now suppose that X satisfies the
first condition and xn-^-*0. In establishing the second condition we can assume that
liminf ||a;n|| > 0. Thus liminf |||a;n| A |xn|| | > 0. But now an application of Ramsey's
Theorem easily gives the second condition. u

We define, after [5], the Riesz angle of a Banach lattice X to be

a(JT) :=8up{ | | |* |V |y | | | : ||*|| < 1 , | | » | | < 1 } .

It is noted in [5] that X is an abstract M space if and only if a(X) = 1. The following
Lemma is [5, Theorem 4.2].

LEMMA 4 . 4 . If x,y,z are in a Banach lattice X then

In [5] it is shown that if X is a weakly orthogonal Banach lattice with ot(X) < 2
then X has the w-fpp. Lemma 4.4 gives that for two points x, y and A > 0,

\Mx(x,y)\ < a (X)( l /2 ) ( l + A) \\x - y\\ + \\\x\ A | v | | | .

Of course if a (X) < 2 then A can be chosen so that /? := a (X) ( l /2 ) ( l + A) < 1. We
now see that if lim sup lim sup was used instead of liminfliminf in the definition of
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weak orthogonality then we would have arrived at orthogonal convexity. Irrespective,
we obtain the condition of Proposition 4.3. One can then use the method of proof of
Proposition 4.2 to establish the following proposition. [5] contains examples of spaces
satisfying the conditions given. The spaces CQ and c both satisfy the weak orthogonal
condition using the double limit supremum and are thus also OC.

PROPOSITION 4 . 5 . If X is a weakly orthogonal Banach lattice with a(X) < 2

then it has the w-fpp for mappings of type (c).

We now combine the approach of [5] with a technique from [7]. Firstly, suppose X

is a Banach lattice and p £ N, p > 1. Then X is called p weakly orthogonal if, given a
weak null sequence (xn) in X and e > 0, there exist p natural numbers n i , n 2 , . . . ,np

(not necessarily distinct) so that < e. Of course weak orthogonality is

the same as being 2 weakly orthogonal. The following is essentially established in [7,
Corollary 3].

EXAMPLE 4.6. Let w denote the first infinite ordinal. Given an ordinal a we denote by
C[a) the Banach space of continuous real valued functions on the compact Hausdorif
order interval [ l , a ] . This space has the usual supremum norm and pointwise order.
Then, for n £ N, a < wn, C(a) is n weakly orthogonal.

It follows directly from the definition of Riesz angle that if x and y are elements
of a Banach lattice X then

This now easily implies that if * i , *2> • • - j xp are p points in X (not necessarily distinct)

then

(2)
i = i

«<*r' V IM •
\i=l

Now suppose also that z £ X. Then for any i

M ^ \xi\ + \x

Thus for any j

M

Thus

p p

= \f\z-Xi\+ f\\Xi\
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This combined with (2) gives the following.

LEMMA 4 . 7 . Suppose that xi,x2,... ,xp (not necessarily distinct) are p (p ̂  2)

points in a Ba.na.ch lattice X and that z £ X. Then

\\z\\^a(X)p-1l\/\\z-xi\
\«=i

A \'i\

We are now ready for the main fixed point result.

THEOREM 4 . 8 . If X is a p weakly orthogonal Banach lattice satisfying

V * 1 < 1

then X has the w-fpp for both nonexpansive mappings and mappings of type (c).

PROOF: Suppose K is our usual minimal invariant satisfying diamif = 1 with a
weak null afps (xn). From the definition of p weakly orthogonal there exist p subse-
quences of (zn) , (zJJ, (xl), ..., (x^) say, so that

Now Proposition 3.5 gives an afps (zn) satisfying Km sup ||zn — xjj] ^ (p — l)/p for all
n

i. But

limsup ||zn|| lim sup I y
n Vi=i

limsup AK

\i=l

contradicting ||zn|| —* 1 (due to Lemma 3.3). u

Since the C(a) mentioned in Example 4.6 are M spaces, Example 4.6 and Theorem
4.8 give the following corollary which extends the result for nonexpansive mappings
given in [7].

COROLLARY 4 . 9 . If a < ww then C(a) has the w-fpp for mappings of type
(c).

It is easily seen that the technique of the proof of Theorem 4.8 would work if X
was a Banach lattice satisfying the following: Given a weak null sequence (a;n) in X
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there exists p £ N (p > 1) so that ((p - l)/p)a(X)p~1 < 1 and that for any e > 0
there exist ni ,Ti2,... ,np £ N such that

v

The following gives an explicit pathological sequence that violates the above. The weak
null sequence used is of Schreier type and is connected with the failure of the weak
Banach Saks property (see below).

PROPOSITION 4 . 1 0 . C(ww) contains a weak null sequence of indicator func-
tions (xn) so that given any m natural numbers ni ,7i2, . . . ,nm with rii ^ m there
exists a £ [1,10*") so that

xni(a) = xn2(a) = • • • = Xnm(a) = 1 .

PROOF: We firstly define sequences {xn^)'^'_1 in C(wn) in the following recursive

manner:

For m = 1 put x^ = Xn • Now suppose that (xn
%)'^'=1 has been defined. We shall use

the fact that [1, wm] is order isomorphic to [wm.n + l,wm(n + 1)] for any m,n £ N, via

/™ say. Also, if x S C[l,wm] then f™{x) is the member of C[wm.n + l,wm(n + 1)]

defined by f™(x)(a) = x((f^)~1(a)) for a £ [wm.n + l,wm(n + 1)]. Now put

x™+1 = x™ + X[u>m+i,™m.2]

Xn =Xn-l+h (.Xn-1) H 1" /n-2 \Xn-l)

It can then be verified, again by recursion, that the (x™)^L2 have the following prop-
erties.

1. X™ G C(t«m) for n,m £ N.

2. z^-^-»n0 for all m.

3. s:™(a) £ {0,1} for n , m £ N and a £ [ l ,w m ] .
4. If n i , n 2 , . . . , n m £ N then there exists a £ [l,w;m) so that s^*(a) = 1

for any i.

We now define a sequence in Rl1'*" 1. We use the fact that [l ,ton + 1] is order isomorphic
to [wn + l,wn+1] for any n , via / " say. Now put

x\ — x\

x2=x\+?{x\)
x3=xl+f2(xl)+f3(xl) and
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Then clearly xn £ C(ww) for all n and 2, 3 and 4 give, respectively, 2 ' , 3 ' and 4 '
below.

2' . z n ^ 0 .
3 ' . xm(a) £ {0, 1} for n e N and a £ [1, ww].

4' . If ni, 7i2,..., nm £ N with rii ^ m then there exists a £ [1, to*") so that
zni(o) — 1 for any i.

But these are the required properties. D

The sequence of the proposition can be used to show that C(ww) fails the weak
Banach Saks property, first shown by Schreier [21]. Recall that X possesses the weak
Banach Saks property if, given a weak null sequence (a;n) in X, there exists a subse-
quence (t/n) of (xn) so that

Let fi denote a compact HausdorfF space and C(fi) the space of real valued continuous
functions on fi, given the usual supremum norm. Now suppose that C(fi) contains
a weak null sequence (xn) so that xn ^ 0 for all n and, if 711,712,... ,nm £ N with
n,- ^ m, there exists x £ fi such that xni(x) = 1 for all i. Obviously any subsequence
of (xn) also has these properties. Assume that we are given a subsequence and denote
it by (xn). Now for n £ N there exists x £ fi so that

1 n 1

T\Xi + X2 + • • • + Xn + • • • + X2n-l ) ( a
— " - " * - ' " 2 n - l 2'

contradicting the weak Banach Saks property.

We now recall some definitions. If X is a topological space then it is said to be
dispersed if it does not contain any nonempty perfect subsets. A perfect set is one with
no isolated points and it is easily seen that a space is dispersed exactly when every
nonempty subset of it contains an isolated point. We denote by X the set of limit
(nonisolated) points of a topological space X. This is also referred to as the derived set
of X. If a is an ordinal then the derivative of order a, denoted by X^, is defined by

transfinite recursion as follows. X™ =X, X(Q+1> = (X( a ) ) ' , and X^ = f| X{P) *

a is a limit ordinal.

If fi is a dispersed compact HausdorfF space there exists a smallest successor ordinal
a = (3 + 1 so that fi(a) = 0. The topological height oF fi, JI(fi), is then defined to
be p. It is well known that #([1,10°]) = a, and that if fi is a compact HausdorfF
space then C(fi) fails the weak Banach Saks property if and only if fi^"7) ̂  0. (See for
example [6, p.85].) We use similar techniques to obtain the following.
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THEOREM 4 . 1 1 . n ( w ) ^ 0 if and only if C(ft) contains a wealr null sequence

(xn) satisfying xn ^ 0 for all n and for which, given n i , n 2 , . . . , nm £ N with n,- ^ m,
there exists a: £ fi so tiat for any i, xni{x) = 1. n<™> - 0 if and oniy if C(fi) is p
weakly orthogonal for some p £ N. In fact, C(Q) is p weakly orthogonal if and only if
H(n)<P.

PROOF: Suppose that Q,^ = 0. Then obviously Cl is dispersed and H(Q) =n €
N. We show that C(£2) is n + 1 weakly orthogonal. Suppose that (xn) is a weak null
sequence in C(fi). As in [6] define an equivalence relation on fl by putting a; ~ y if
xn(x) = xn(y) for every n £ N. Now the quotient topology on the set £2 of equivalence
classes is compact Hausdorff and metrisable. The zn lift in a natural way to xn in
C(£2) . Since Cl is a continuous image of Q, H(fi) ^ H(Cl) by [19, Lemma 1], noting

that the subset notation of the lemma should be reversed. Thus H (fij ^ n. Since

Q is also a compact dispersed metric space it is then homeomorphic to [l,a] for an
a < wn+1 by a result of Mazurkiewicz and Sierpinski [18] (or [15, Section 5]). Example
4.6 now gives the result.

Now suppose that Q^ ^ 0. First assume that Q is not dispersed. Then by
[19], [0,1] is a continuous image of £2, via / say. Now [0,1] contains a copy M of
[1,11;™]. The complement of this copy is a countable union of disjoint open intervals.
Any h £ C(M) can be extended to a member of C[0,1] in the obvious way by making
it affine on each of the intervals. This gives a simultaneous extension operator from
C(ww) into C[0,l] which will preserve the germane properties of the sequence from
Proposition 4.10. Now we can apply the pullback j M j o / from C[0,l] into C(fi)
that also preserves the required properties of (xn) •

Now suppose that fi is dispersed. Then il is totally disconnected and, since it is
compact, Hausdorff, it is zero dimensional (see [8]). By [3, Theorem 1.1] there exists a
continuous map / from Q onto [1,«7™]. We can now apply the pullback directly, again
obtaining the pathological sequence.

Only the last sentence of the theorem needs to be verified. This can be done using
the same techniques. One needs to use the pathological sequences (zJJ1) of Proposition
4.10 and [3, Theorem 1.1], which implies that if X is a zero dimensional space, a is
countable and X^ ^ 0 then [I,ti7a] is a continuous image of X. D

Regarding the w-fpp for C(£2), if O is not dispersed then C(fi) contains an isomet-
ric copy of C[0,1] by [19], thus failing the w-fpp by isometric embedding of Alspach's
example. Now suppose that fi is dispersed. By [19] any separable subspace of C(Q) is
isometric to a subspace of C(ct) for some countable ordinal a. Thus, by the well known
fact that the w-fpp is separably determined (see for example the end of [10, Chapter
3], and use the fact that closed convex sets are weak closed), failure of the w-fpp for
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C(fi) (fi dispersed) would imply that C(a), for some countable ordinal a, fails the
w—fpp. The question of whether such spaces have the w-fpp was previously raised in
[7]-

We should finally mention a result from [22]. In it a more restrictive notion of
weak orthogonality was introduced. This required that, given a weak null sequence
(xn) in X and a; £ X, \\\xn\ A |x||| —* 0. It is shown that such a space has the w-fpp.
The method of proof is a Banach lattice extension of that used in [16] to show that a
space with a 1-unconditional basis has the w-fpp. None of these proofs however appear
adaptable so as to work for mappings of type (c), too much use being made of the
nonexpansive nature of the maps.
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