
A CLASS OF ABELIAN GROUPS 
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1. Introduction. If M is any finite set we define a chain on M as a 
mapping/ of M into the set of ordinary integers. If a £ M then /(a) is the 
coefficient of a in the chain / . The set of all a £ M such that /(a) ^ 0 is the 
domain \f\ of/. If |/| is null, that is if /(a) = 0 for all a, t hen / is the zero chain 
on M. If .M is null it is convenient to say that there is just one chain, a zero 
chain, on M. 

The sum f + g of two chains / and g on I f is a chain on iUf defined by the 
following rule: 
(1.1) if + g)(a) = /(a) + g(à), a G M. 

If M is null we take this to mean that the sum of the zero chain on M with 
itself is again the zero chain on M. 

With this definition of addition the chains on M are the elements of an 
additive Abelian group A (if). The zero element of A (M) is the zero chain on 
M and the negative in A (M) of a chain/on M is obtained from / by multiplying 
each coefficient/(a) by — 1. We define a chain-group on M as any subgroup of 
A(M). 

Let N be any chain-group on M. A chain / of N is an elementary chain of N 
(written/ elc N) if it is non-zero and there is no non-zero g Ç N such that |g| 
is a proper subset of |/|. If in addition the coefficients of / are restricted to the 
values 0, 1 and — 1 we say that / is a primitive chain of N. We note that the 
negative of a primitive chain of N is another primitive chain of N. 

We call N regular if for each elementary chain/ of N there exists a primitive 
chain g of N such that |g| = |/(. 

In this paper we study the properties of regular chain-groups. We find in 
particular that any finite graph has two associated regular chain-groups, and 
we relate the structure of these chain-groups to that of the graph. In discussing 
graphs we use the definitions and notation laid down in the introduction to 
(4). 

2. Cycles and coboundaries on a graph. Let G be any finite graph. 
If 5 Ç E(G) we denote by G . S that subgraph of G whose edges are the 

members of S and whose vertices are the ends in G of the members of 5. We 
denote by G : S that subgraph of G whose edges are the members of 6* and whose 
vertices are all the vertices of G. Clearly G . 5 may be derived from G : S by 
suppressing its isolated vertices, that is the vertices not ends of edges of G : S. 

We denote by G ctr S the graph whose vertices are the components of G: 
(E(G) — S) and whose edges are the members of S, the ends in G ctr S of an 
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edge A being those components of G : (E(G) — S) which contain as vertices 
the ends of A in G. We may regard G ctr 5 as obtained from G by contracting 
each component of G : (E(G) — S) to a single point. We denote by G X S the 
graph obtained from G ctr S by suppressing its isolated vertices. These vertices 
are clearly those components of G whose edges all belong to E(G) — S. 

If 5 is the set of edges of a circular path P in G we denote the graph G . S by 
G (P) and call it a circuit of G. 

We call a graph a bond if it has just two vertices, no loops, and at least one 
link. Each link of course has the two vertices as its ends. A bond of G is a graph 
of the form G X 5 which is a bond. 

Now let an orientation of G be given and let it be described by a function 
rj(A, a) as in (4). We refer to chains on V(G) and E(G) as 0-chains and l-chains 
on G respectively. We define their boundaries and coboundaries in the usual 
way. Thus the boundary d/of a 1-chain/is given by 

(2.1) (df)(a)= £ v(A,a)f(A), 
AeE(G) 

and the coboundary 8g of a 0-chain g by 

(2.2) (8g)(A) = T, V(A, a) g(a). 
atV(G) 

If E(G) is null we take (2.1) to mean that df is the zero chain on V(G). Simi­
larly if V(G) is null èg is the zero chain on E{G). A cycle on G is a 1-chain whose 
boundary is the zero chain on V(G). 

The set of all cycles on the oriented graph G is clearly a chain-group T(G) 
on E(G). Another chain-group on E(G) is the set A(G) of the coboundaries 
of the 0-chains on G. We proceed to show that T(G) and A(G) are regular. 

(2.3) Let G . S be any circuit of G. Then there is a primitive chain g of T(G) 
such that \g\ = 5. 

Proof. There is a circular path P = (a0, Ai, . . . , Ar, a0) in G such that 
G(P) = G . 5. Let g be a 1-chain of G defined as follows: 

(i) UA ( S then g(A) = 0, 

(ii) g(^4z) = 1 or —1 according as a*_i is or is not the positive end of 
Ai(0 < i < r). 

Applying (2.1) we find that dg is a zero chain. Hence g G r (G). 
If g is not an elementary chain of T(G) there exists k G T(G) such that 

\k\ is a non-null proper subset of S. Then S has at least two elements. Hence by 
the definition of a circuit the elements of \k\ are links of G and some vertex of 
G . \k\ is an end of only one of them. This vertex must have a non-zero coeffi­
cient in dk, which is impossible. Accordingly g is elementary, and therefore 
primitive since its coefficients are restricted to the values 0, 1, and — 1. 

(2.4) Suppose S C E(G). Then S is the domain of an elementary chain of 
r (G) if and only ifG . Sis a circuit of G. 
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Proof. Suppose g elc r(G). We show that there is a circuit G . S oî G such 
that 5 Ç |g|. If G . \g\ has a loop this result is trivial. If not, each vertex of 
G . \g\ is an end of at least two links of G . |g|, by (2.1). Hence, starting at an 
arbitrary vertex a0 of G . |g|, we can construct a path 

P = (a0, i4i, au A2, a2, . . .) 

of arbitrary length in G . |g| such that A t and A i+1 are distinct for each i such 
that both exist as terms of P. We continue the path until some vertex b is 
repeated. Then the part of P extending from the first to the second occurrence 
of b is a circular path in G . \g\ defining a circuit G . 5 such that S Cl \g\. 

By (2.3) there exists k G T(G) such that \k\ = S Ç |g|. Since g elc r(G) it 
follows that |g| = S. Thus G . |g| is a circuit of G. 

Since the converse result is contained in (2.3) the Theorem follows. 

(2.5) T (G) is a regular chain-group. 

Proof. Suppose/ elc T(G). By (2.4) there is a circuit G . S of G such that 
l/l = S. Hence by (2.3) there is a primitive chain g of T(G) such that |g| = 5 = |/|. 

(2.6) Let G X S be any bond of G. Then there is a primitive chain g of A(G) such 
that \g\ — S. 

Proof. There are two distinct components X and Y of G : (E(G) — S) 
such that in G each edge of S has one end in X and one in Y. Let / be the 
0-chain on G such tha t / (a ) = 1 if a is a vertex of X and/ (a) = 0 otherwise. 
Write g = ôf. Then |g| = S by (2.2). Further the coefficients of G are restricted 
to the values 0 ,1 , and — 1. 

If g is not an elementary chain of A(G) there exists k G A (G) such that \k\ 
is a non-null proper subset of S. Then X and Y are subgraphs of the same 
component, Z say, of G : (E(G) — \k\). There is a 0-chain f on G such that 
k = of. Since each edge of |fe| has both its ends in Z there are two vertices of Z 
having different coefficients in / . Since Z is connected it must have a link B 
whose ends have different coefficients in/. But then 

k(B) = (Ôf) (B) ^ 0 

by (2.2), which is impossible. Accordingly g is elementary, and therefore 
primitive since its coefficients are restricted to the values 0, 1, and — 1. 

(2.7) Suppose S C E(G). Then S is the domain of an elementary chain of A(G) 
if and only if G X S is a bond of G. 

Proof. Suppose g elc A(G). There is a 0-chain / on G such that g = ôf. 
Since g is non-zero there is, by (2.2), a link A of G with ends a and b such that 
/ (a) 9*f(b). Write /(a) = x. Let W be the set of all c G V(G) such that 
f(c) — x. Let G[£/] be that component of G [FT] which has a as a vertex. (Here 
we use the notation of (4)). Let 5 be the set of all links of G having just one 
end in G[[/]. Then 4 G S. Moreover 5 C |^|, by (2.2). 
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Now G[U] is one component of G : (E(G) — S). Let Z be the component of 
G : (E(G) — S) which has b as a vertex and let T be the set of all links of G 
having just one end in Z. Then A £ T C 5. L e t / be that 0-chain on G in 
which the vertices of Z have coefficient 1 and all other vertices of G have 
coefficient 0. Then 

A G |ôfl = r ç 5 ç | g | , 

by (2.2). Hence |ô/'| = |g|, since g elc A(G), and therefore T = 5 = |g|. 
We now see that each edge of 5 has one end in G[U] and one in Z. Hence 

G X S, that is G X |g|, is a bond of G. 
Since the converse result is contained in (2.6) the theorem follows. 

(2.8) A(G) is a regular chain-group. 

Proof. Suppose/ elc A(G). By (2.7) there is a bond G X S of G such that 
l/l = S. Hence by (2.6) there is a primitive chain g of A(G) such that |g| = 5 = 

i/i-

3. Some operations on chain-groups. Let N be any chain-group on a 
set M. Let a subset 5 of M be chosen and let the coefficient of each member of 
5 in each chain of N be multiplied by — 1 . The resulting chains are clearly 
the elements of a chain-group N' on M. We say that Nf is obtained from TV by 
reorienting the members of S. 

Suppose M is the set of edges of an oriented graph G. By reorienting the 
members of 5 in G we mean interchanging positive and negative ends for each 
edge of G in S. By (2.1) and (2.2) the effect of this operation on the chain-
groups T(G) and A(G) is to reorient the members of 5 in each of them. 

Properties of chain-groups which are invariant under reorientation are of 
special interest. Clearly one such property is that of regularity. We note also 
that the class of domains of elementary chain-groups is invariant under 
reorientation. In the case of T(G) and A(G) the invariant properties correspond 
to properties of the underlying unoriented graph. 

If/ £ N we define the restriction f . S of / to 5 as that chain on .S in which 
each a Ç S has the same coefficient as in/. 

The restrictions to S of the chains of N are clearly the elements of a chain-
group on S. We denote this chain-group by N. S. Another chain-group on 5 
is the set of restrictions to 5 of those chains / of N for which |/| Ç 5. We 
denote this by N X 5. If T C S C M the following identities hold : 

(3.1) (N . S) . T = N . T, 

(3.2) (N X S) X T = N X T, 

(3.3) (N . S) X T = (N X (M - (S - T))) . T, 

(3.4) (N XS) . T = (N . (M - (S - T))) X T. 

Formulae (3.1) and (3.2) follow at once from the definitions. To prove (3.3) 
we observe that each side is the set of restrictions to T of those chains/ of N 
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for which l/l H (5 - T) is null. We obtain (3.4) by writing M - (S - T) for 
5 in (3.3). 

(3.5) If N is regular then N . Sand N X S are regular. 

Proof. It is clear that the elementary and primitive chains oî N X S are 
the restrictions to S of those elementary and primitive chains respectively of 
N whose domains are subsets of S. Hence N X Sis regular. 

Now suppose/ elc (N . S). There exists g G N such t h a t / = g . S. Choose 
such a g so that \g\ has the least possible number of elements. Since N is 
regular it has a primitive chain h such that \h\ Q \g\. If \h\ does not meet S we 
can by adding h or — h to g a sufficient number of times obtain g' £ N such 
that gf . S = f and |g'| is a proper subset of |g|, contrary to the definition of g. 
We deduce that there is a non-zero chain k = h . S of N . 5 whose coefficients 
are restricted to the values 0, 1, and —1 and which satisfies |fe| C \h\. Since 
/ e l c (N . S) the chain k satisfies \k\ = |/| and is primitive. Thus N . 5 satisfies 
the definition of a regular chain-group. 

4. Dendroids and representative matrices. If / is a chain on a finite 
set M and n is an integer we denote by nf the chain obtained from/ by multiply­
ing each coefficient by n. It is clear that any chain-group containing / as an 
element contains also nf. 

Let N be any chain-group on a finite set M. 
We define a dendroid of N as a subset D oî M such that D, but no proper 

subset of Z}, meets the domain of every non-zero chain of N. If the only element 
of N is the zero chain then the null subset of M is the only dendroid of N. 
In every other case M meets the domain of every non-zero chain of N and 
therefore some subset of M is a dendroid of N. 

Suppose that D is a dendroid of N and that a Ç D. There exists/ Ç N such 
that J/1 is non-null and |/| C\ (D - {a}) is null. It follows that |/| Pi D = {a} 
and hence that f{a) y^- 0. We can clearly choose / so that /(a) is positive. We 
denote a choice of / for which f(a) has the least possible positive value by 
JD

a. There is only one such chain JD
a, for the difference of two distinct ones 

would be a non-zero chain of N with a domain not meeting D. 

(4.1) JD
a is an elementary chain of N. 

Proof. Suppose k is a non-zero chain of N such that \k\ is a proper subset 
of \JD

a\- Write JD (a) = m and k{a) — n. Since D C\\k\ is non-null we have 
n 7e 0. The chain nJD

a — mk of iV is zero since its domain does not meet D. 
Hence \k\ = \JD

a\y contrary to the definition of k. 

(4.2) If N is regular JD
a is primitive 

Proof. By (4.1) and the regularity of N there is a primitive chain g of N 
such that \g\ = \JD

a\- Replacing g by its negative if necessary we can arrange 
that g(a) = 1. Then by the definition and uniqueness of JD

a we have g — JD
a> 
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(4.3) Suppose N is regular and has a non-null dendroid D. Then for each chain J 
of N we have 

Proof. Write 

r = J - E J(a) jD
a. 

It is clear, by (4.2), that \J'\ does not meet D, Hence / ' is a zero chain. 

In the rest of this section we suppose that the set M is non-null. We enumer­
ate its elements as au . . . , an. If / is any chain on M we refer to the row-vector 
{/(ai), . . . ,f(an)\ as the representative vector of/ with respect to the chosen 
enumeration. Suppose R is a matrix of r rows and n columns whose elements 
are integers and whose rows are linearly independent. Then the set of chains 
on M whose representative vectors are the linear combinations of the rows of 
R with integral coefficients are the elements of a chain-group on M. If this 
chain-group is N we say that R is a representative matrix of N with respect to 
the chosen enumeration of the elements of M. 

By the general theory of Abelian groups every chain-group on M having at 
least one non-zero element has a representative matrix. If N is a regular chain-
group of this kind we may form a representative matrix R as follows. We select 
a dendroid D, necessarily non-null, and take as the rows of R the representative 
vectors of the corresponding chains JD

a. It is easily seen that these vectors are 
linearly independent. It then follows from (4.3) that R is a representative 
matrix of N. We say that the representative matrix R thus constructed is 
associated with the dendroid D. 

Suppose we have a representative matrix R of N, where TV is not necessarily 
regular. Then if S C M we denote by R(S) the submatrix of R constituted 
by those columns of R which correspond to members of S. If R(S) is square 
we denote its determinant by det R(S). 

(4.4) Let R be an r-rowed representative matrix of N. Then a subset S of M is a 
dendroid of N if and only if it has just r elements and is such that det R(S) 9^ 0. 

Proof. If the rank of R(S) is less than r some linear combination of the rows 
of R with integral coefficients not all zero has only zeros in the columns 
corresponding to members of 5. The corresponding chain of N is non-zero and 
has a domain not meeting S. Hence 5 is not a dendroid of N. In particular no 
dendroid of N has fewer than r elements. 

If the rank R(S) is r there is a subset T of 5 of just r elements such that 
det R(T) 7e 0. Then the rows of R(T) are linearly independent. Consequently 
T meets the domain of each non-zero chain of N and so some subset of T is a 
dendroid of N. This subset must be T itself since a dendroid of N has at least 
r elements. We conclude that S is a dendroid of N if it has r elements but not 
if it has more than r. 
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It follows from (4.4) that all the dendroids of N have the same number r of 
elements, and that each representative matrix of N has r rows. We call r the 
rank of N and denote it also by r(N). The Theorem does not of course apply 
to the case in which N consists solely of the zero chain. In that case we write 
r (N) = 0. Then the only dendroid of N has r (N) elements. 

(4.5) Let R be a matrix of r rows and n columns whose elements are integers and 
whose rows are linearly independent. Let M be a finite set of n elements. Then R 
is a representative matrix of a regular chain-group on M if and only if the deter-
minants of its square submatrices of order r are restricted to the values 0 , 1 , and 
- 1 . 

Proof. Suppose first that R is a representative matrix of a regular chain-
group N on M. Let R (S) be any square submatrix of R of order r. 

If S is not a dendroid of N then det R(S) = 0, by (4.4). If S is a dendroid of 
N let R' be a representative matrix of N associated with S, and corresponding 
to the same enumeration of M as R. The rows of R' must be linear combina­
tions of the rows of R with integral coefficients. Hence there is a square matrix 
P of order r whose elements are integers and which satisfies R' — PR. This 
implies R'(S) = P X R(S) and hence 

det R'(S) = det P . det R (S). 

Now det R'(S) = ± 1, by the definition of R'. Since P and R(S) are matrices 
of integers it follows that det R(S) = d= 1. 

Conversely, suppose that the square submatrices of R of order r have 
determinants restricted to the values 0, 1, and — 1. We fix an enumeration of 
the elements of M. There is a chain-group N on M whose representative 
matrix with respect to this enumeration is R. 

Let / be any elementary chain of N. Let a be any member of |/ | and E any 
dendroid of N. (M — \f\). Then if a chain h of N has a domain not meeting 
E U {a} its domain must be a subset of |/| — {a}. Since/ is elementary this is 
possible only if h is zero. We conclude that some subset D of E U {a} is a 
dendroid of N. SinceD must meet |/| we have D O |/| = {a}. 

By (4.4) and the restriction imposed on R we have det R(D) = db 1. 
Hence the reciprocal oiR(D) is a matrix of integers. We write Rf = (R(D))~1R. 
The rows of R' are linear combinations, with integral coefficients, of the rows 
of R and are therefore representative vectors of chains of N. But R'(D) is a 
unit matrix. Hence there is a chain got N such that g(a) = 1 and |g| C\D={a). 
T h e n / — f(a)g is a zero chain since its domain does not meet D. Accordingly 

/ = /(«)«• 
Keeping |/| fixed we may select / so that the highest common factor of its 

non-zero coefficients is as small as possible. With this choice of / the result just 
obtained requires/(a) = dz 1. Since this is true for each a G |/| the cha in / i s 
then primitive. Thus N satisfies the definition of a regular chain-group. 
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(4.6) Let R be a matrix of r rows and n > r columns, whose elements are integers 
and in which the square submatrix A constituted by some r columns is unit 
matrix. Let the submatrix of R constituted by the remaining n — r columns be B. 
Let M be any set of n elements. Then R is a representative matrix of a regular 
chain-group on M if and only if the determinants of the square submatrices of B 
are restricted to the values 0 ,1 , and — 1. 

Proof. There is a 1-1 correspondence, q say, between the square submatrices 
of B and those square submatrices other than A of R which are of order r. 
If C is a square submatrix of B the corresponding submatrix qC of R is made up 
of those columns of B which contain elements of C and those columns of A 
which have only zeros in the rows of R meeting C. It is clear from this definition 
that det qC — ± det C. Since the rows of A, and therefore the rows of R, 
are linearly independent the Theorem now follows from (4.5). 

If JR is a representative matrix of a regular chain-group N and R' is the 
transpose of R then the number C(N) of dendroids of N is given by the 
formula 

(4.7) C(N) = det {RR'). 

This follows from (4.4) and (4.5), with the help of the well-known formula 
for the determinant of the product of two matrices of types (r, n) and (n, r). 

5. Dual regular chain-groups. Two chains / and g on a finite set M 

are orthogonal if 

Hf{a)g{a) = 0 . 

If M is null we take this to mean that the zero chain on M is self-orthogonal. 
If N is a chain-group on M then these chains on M which are orthogonal to 

all the chains of N evidently constitute a chain-group on TV. We denote this 
chain-group by iV* and call it the dual of N. 

The zero chain-group on M includes only the zero chain. The complete 
chain-group on M includes all the chains on M. I t is clear that these chain-
groups are regular and that each is the dual of the other. 

If N is a regular chain-group on M which is neither zero nor complete we 
may construct N* as follows. We choose arbitrarily a dendroid D of N and 
denote by R a representative matrix of N associated with D. If r(N) = r 
we may adjust the notation so that R(D) is a unit matrix occupying the first r 
columns of R. We denote by B the matrix constituted by the remaining 
columns of R, which we suppose 5 in number. Now let T be the matrix of s 
rows and r + s columns such that the submatrix formed by the first r columns 
is the negative of the transpose of B and the remaining s columns constitute a 
unit matrix. Let Ni be the chain-group on M which has T as a representative 
matrix with respect to the chosen enumeration of M. By (4.6) N\ is regular. 
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lib £ M — D we denote by 2C& that chain of TVi which has a row of T as a 
representative vector and which satisfies Kh(b) — 1. It is clear that Kh is 
orthogonal to JD

a for each a £ D and each & £ M — D. Hence by (4.3) the 
chains Kb are orthogonal to all the chains of TV and therefore belong to TV*. 
It follows that Ni C TV*. Now suppose TV* has a chain / not belonging to TVX. 
Write 

r = / - E /(*) #>• 
&€(Af—Z» 

The chain / ' of TV is orthogonal to each of the chains JD
a and its domain is a 

subset of D. It is therefore a zero chain. It follows that J belongs to TVi, con­
trary to supposition. We have thus proved that TVi = TV*. 

A similar argument in which the roles of the JD
a and the Kb are interchanged 

shows that R is a representative matrix of (N*)* and hence that (TV*)* = TV. 
We now have 

(5.1) If TV is a regular chain-group then TV* is regular and (TV*)* = N. 

(5.2) If N is a regular chain-group on a set M then the dendroids of N* are the 
complements in M of the dendroids of N. 

Proof. Let D be any dendroid of TV. If TV is zero or complete it is clear that 
M — D is a dendroid of TV*. Otherwise we form the matrix T as in the above 
construction. Since T is a representative matrix of TV* and det T(M — D) = 1 
it follows from (4.4) that M — D is a dendroid of TV*. Replacing N by TV* 
in this result, and using (5.1), we find also that if M — D is a dendroid of TV* 
then D is a dendroid of TV. 

Suppose TV is a regular chain-group on a set M and that S is a subset of M. 
Then a chain g on S is orthogonal to every chain of TV. S if and only if it is of 
the form/ . 5, where/ G TV* and |/ | C S. We thus have 

(5.3) (TV . 5)* = TV* X S. 

By writing TV* for TV in (5.3) and using (5.1) we obtain also 

(5.4) (TV X 5)* = TV* . 5. 

(5.5) Let G be a finite graph and let T(G) and A(G) be defined in terms of the same 
orientation of G. Then (A(G))* = T(G). 

Proof. If G has no edge the result is trivial. In the remaining case a 1-chain 
g on G is orthogonal to all the chains of A (G) if and only if 

E \i(A) Z v(A,a)f(a)\ =0 
AeE(G) \ aeV(G) ? 

for arbitrary integers/(a). This is so if and only if 

£ r,{A,a)g(A) = 0 
AeE(G) 

for each a Ç F(G), that is, if and only if g G F (G). 
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The dendroids of a chain-group depend only on the domains of the chains 
of the group and are therefore invariant under reorientation. Hence if G is a 
finite graph and A(G) is its group of coboundaries with respect to some fixed 
orientation we may expect the dendroids of A(G) to be interprétable in terms 
of the structure of G only. 

If H and K are two subgraphs of G we define their intersection H C\ K as that 
subgraph of G whose edges and vertices are the common edges and vertices 
respectively of H and K. A forest is a graph which has no circuit. A tree is a 
connected forest. A spanning forest of G is a subgraph of G of the form G : S 
whose intersection with each component of G is a tree. 

(5.6) Let G be a finite graph with a given orientation and let S be a subset of E(G). 
Then S is a dendroid of A(G) if and only if G : S is a spanning forest of G. 

Proof. Suppose G : S is not a spanning forest of G. If G : S has a circuit then 
E(G) — S is not a dendroid of r(G), by (2.4), and therefore S is not a dendroid 
of A(G), by (5.2) and (5.5). If G : S has no circuit its intersection with each 
component of G is a forest. Hence there must be a component H of G such that 
H r\ (G : S) is not connected. Let K be any component of H C\ (G :S). 
Let / be the 0-chain on G such tha t / (a ) = 1 if a is a vertex of K and f(a) = 0 
otherwise. Then the chain of is non-zero and its domain does not meet S. 
Again we find that S is not a dendroid of A (G). 

Conversely suppose S is not a dendroid of A(G). Assume that G : 5 is a 
spanning forest of G. Let / be any 0-chain on G such that ôf is non-zero. Then 
some component H of G has two vertices a and b such tha t / ( a ) ^ f(b). Since 
H r\ (G : S) is a tree there are two vertices c and d of H P\ (G : 5), joined by 
an edge of 5, such that / (c) ^ f(d). Hence 5 meets |ô/|. We deduce that some 
proper subset T of 5 is a dendroid of A(G). Choose e Ç S — T and write 
Q — E(G) — T. Now Q is a dendroid of T(G), by (5.2). The non-zero element 
JQ

e of T(G) satisfies \JQ
e\ Q S. Hence, by (2.4), G : S has a circuit, contrary 

to our assumption. We deduce that in fact G : S is not a spanning forest of G. 
The Theorem follows. 

6. Conformity. Let / and g be chains on a finite set M. We say that / 
conforms to g if the following condition is satisfied: if f(a) ^ 0 then g (a) is 
non-zero and has the same sign as f(a). Conformity is clearly a transitive 
relation. 

(6.1) If N is a regular chain-group and f is a non-zero chain of N then there 
exists a primitive chain of N conforming to f. 

Proof. If possible choose / so that the Theorem fails and |/| has the least 
number of elements consistent with this condition. Since N is regular it has a 
primitive chain h such that \h\ C |/|. Choose a G \h\ so tha t / (a ) has the least 
possible absolute value. Replacing h by its negative if necessary, we arrange 
that h{a) = 1. Write k = f — f{a)h. Clearly k conforms to / . If k is a zero 

https://doi.org/10.4153/CJM-1956-004-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1956-004-9


A CLASS OF ABELIAN GROUPS 23 

chain then either h or — h conforms t o / . If k is non-zero there is a primitive 
chain g of N conforming to ky and therefore t o / , since \k\ is a proper subset of 
|/|. In each case the définition of/is contradicted. 

(6.2) If N is a regular chain-group then each non-zero chain of N can be represen­
ted as a sum of primitive chains of N each conforming to it. 

Proof. If/ G N let Z(f) be the sum of the absolute values of the coefficients 
of/. If possible choose a non-zero/ G N for which the Theorem fails and Z(f) 
has the least value consistent with this condition. By (6.1) there is a primitive 
chain g of TV conforming to / . Clearly/ — g conforms t o / a n d Z(f — g) < Z(f). 
By the latter result/ — g is either a zero chain or a sum of primitive chains of N 
conforming to it. But chains conforming t o / — g conform also t o / . Hence the 
Theorem is true for/and we have a contradiction. 

L e t / and g be chains on a finite set M and let q be an integer > 1. We say 
that g is a q-representative of/ if the following conditions are satisfied : 

(i) g(a) = /(#) (mod q) for each a G M, 
(n) \g(a)\ < $ for each a G M. 

(6.3) If N is a regular chain-group on a set M and f G N then for each integer 
q > 1 some q-representative off is a chain of N. 

Proof. L e t / be any chain of N and q any integer > 1. There is at least one 
g G N satisfying (i). For any such g we denote by Y(g) the number of elements 
a of M for which \g(a)\ > q. We choose a particular g satisfying (i) so that 
Y(g) has the least possible value. 

If Y(g) > 0 choose b G M such that \g(b)\ > q. By (6.2) there is a primitive 
chain h oî N conforming to g and such that h{b) = ± 1 . Write gf = g — qh. 
Clearly gf satisfies (i). Moreover we have 

(1) \g'ib)\ < \g(b)\, 
(2) if \g{a)\ < q then \g'(a)\ < q. 

If Ig'WI > Q w e repeat the process with gf replacing g and with the same 
choice of b. Proceeding in this way we eventually obtain a chain gi of N which 
satisfies (i) and is such that Y(gi) < Y(g). This contradicts the definition of g. 
We conclude that Y(g) — 0, that is, g is a g-representative of/. 

This Theorem is proved for the cycle-group of an oriented graph in (3). 
For applications of it to the theory of graphs see (3) and (4, pp. 83-84). 

7. Homomorphisms. Let TV be a regular chain-group on a set M. A 
homomorphism of N (into I) is a mapping </> of N into the set I of integers such 
that 
(7.1) * ( /+*) =*(/) +«(g) 
for arbitrary chains / and g of N. This implies that <t>(f) = 0 if / is the zero 
chain. Hence «(—/) = —«(/) for each/ G TV. 
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For arbitrary chains/ and g on M we write 

(7-2) (f.g)= £ f(a)g(a). 
atM 

If ikf is null we take this to mean ( / . g) = 0. 
A solution of <̂  is a chain g on M such that ( / . g) = <j> (/) for each / Ç N. 

In this section we study the solutions of the homomorphisms of N. We need 
the following definitions. 

If / e N we define P(f) as the set of all a G M such tha t / (a ) > 0. We then 
write 

(7.3) Pif) = E f(a). 
aeP(f) 

UP(f) is null we take (3(f) to be 0. We cal l / a positive chain of N if P(f) = | / | . 

(7.4) Le/ 0 &e an^ homomorphism of N and a any element of M. Then either [a] 
is the domain of a chain of N or there is a homomorphism <t>a of N . (M — {a}) 
such that 

*«( / . (M- {a})) = 0 ( / ) 

for each f Ç N. 

Proof. Suppose {a} is not the domain of a chain of TV. Then no two distinct 
chains of N have the same restriction to M — {a}, for otherwise the domain 
of their difference would be {a}. Hence there is a unique mapping 4>a of 
N . (M - {a}) into / such that 

<t>a(f.{M- {a})) = * ( / ) 

for each/ Ç N. It is easily verified that </>a is a homomorphism. 

(7.5) 7/ 4> is any homomorphism of N and f is a chain of N such that <f>(f) > (3(f) 
then there is a primitive chain g of N conforming tof such that <j>(g) > /3 (g). 

Proof. The chain / is necessarily non-zero. Hence by (6.2) it is a sum 
/ i + fi + . . • + fs of primitive chains ft of N conforming t o / . If the Theorem 
is false, 4>(fi)Kfi(fi) for each of these. Then by addition we have # ( / X J 3 ( / ) , 

contrary to hypothesis. 

(7.6) If (/> is any homomorphism of N, a an element of M, andfa chain of N such 
that f (a) T± Oand 

*(/ ) - 0(/) + e/(a) > 0, 

where e is 1 or — 1, //^n £/z£re is a primitive chain g of N conforming to f such that 
either <j> (g) > /3(g) or g satisfies the equations 0(g) = (3(g) and g (a) = e. 

Proof. By (6.2) / is a sum / i + / 2 + . . . + / « of primitive chains /* of iV 
each conforming t o / . There must be just \f(a)\ of these such that \fi(a)\ = 1. 
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If one of the fi satisfies #(/*) > 0(fi) the Theorem is true. In the remaining case 
we have by addition 0 (/) - P(j) < 0. But 

*(f) -P(f) + «/(*) > 0-

One consequence of this is tha t / (a ) has the same sign as e, whence it follows 
that the | /(a) | chains ft satisfying |/*(a)| = 1 satisfy also ft (a) = e. Another 
consequence is that at most \f(a) | — 1 of the chains/* satisfy 

Hfù - P(ft) < o. 

Combining these results we see that one of the chains ft satisfies both <£(/<) = 
/3(ft)and/,(a) = e. 

(7.7) Let <t> be any homomorphism of N. Then in order that <t> shall have a solution 
whose coefficients are restricted to the values 0 and 1 it is necessary and sufficient 
that 4>(g) < /5 (g) for each primitive chain g of N. 

Proof. Let us call a solution of a homomorphism limited if its coefficients 
are restricted to 0 and 1. 

The theorem is trivially true if M is null. Assume as an inductive hypothesis 
that it is true whenever the number a(M) of elements of M is less than some 
positive integer q. Consider the case a(M) = q. 

Suppose there is a primitive chain g of N such that <j>(g) > 13(g). Then any 
chain h on M with coefficients restricted to the values 0 and 1 satisfies 

(g.A) <P(g) <</>(£)• 

Hence no limited solution of <j> exists. 
Conversely suppose <£ has no limited solution. Assume there is no primitive 

chain g of N such that <t>(g) > /3(g). It may happen that each a 6 M constitutes 
the domain of a chain of N. Then, since N is regular, there is for each a Ç M 
a chain fa of iVsuch that fa (a) = 1 and/a(&) = 0 if b ^ a. We define a chain h 
on My with coefficients restricted to the values 0 and 1, by writing h (a) = </>(fa) 
for each a G M. Then for each/ Ç N we have 

if.h) = ((E/(«)/.)•*) = £ / (« )&. A) 
aeM atM 

= £/(<*) *(fa) = *(/)• 
aeM 

Thus h is a limited solution of </>. But this is impossible. 
We deduce that there exists a Ç M such that {a} is not the domain of a 

chain of N. We define cj>a as in (7.4). There is no limited solution of <£a, for such 
a solution would be the restriction to M — {a} of a limited solution d of <f> 
satisfying d(a) = 0. Hence, by the inductive hypothesis and (3.5) there exists 
/ € N such that 

* f l ( / . ( M - {a})) - / 3 ( / . ( M - {a})) > 0. 
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I f / (a) < 0 it follows that <£(/) - 0(/) > 0. By (7.5) this is contrary to our 
assumptions. Hence/(a) > 0 and we have 

4>(f) - 0 ( / ) + / ( « ) > 0 . 

By (7.6) and our assumptions it follows that there is a chain j of N such 
that 

(i) </>(/) - PU) = 0 and j(a) = 1. 

Now let \f/ be the homomorphism of N defined by \f/(f) = <j>(f) — f(a) for 
each/ Ç N. The homomorphism \//a oî N . (M — {a}) has no limited solution, 
for such a solution would be a restriction to M — {a} of a limited solution d 
of </> such that d(a) = 1. Hence by the inductive hypothesis and (3.5) there 
exists/ G N such that 

</>(/) - / W - 0 ( / . ( M - {a})) > 0 . 

If/(a) > 0 this gives <£(/) — ft (J) > 0. By (7.5) this is contrary to our assump­
tions. Hence/(a) < 0 and 

*(/) -P(f) -fia) > 0 . 

By (7.6) and our assumptions it follows that there exists k Ç N such that 

(ii) 4>{k) - 0(fe) = 0 and k(a) = - 1 . 

It follows from (i) and (ii) that 0 ( j + fe) — /3(j + fe) > 0. This is contrary 
to our assumptions, by (7.5). This completes the proof for the case a(M) = q. 

The general theorem follows by induction. 

(7.8) Let <t> be any homomorphism of N. Then (j> has a solution whose coefficients 
are all non-negative if and only if <£(/) > 0 for each positive primitive chain 
/of TV. 

Proof. N has only a finite number of primitive chains. Hence we can find 
an integer q > 0 such that cj> (/) < q for each primitive chain/ of N. 

Choose a set U, the union of a(M) disjoint sets Ua, one for each a Ç M. 
Each Ua is to have just q elements. If k £ N we denote by k' the chain on U 
in which the coefficient of each element of Ua is k{a), for each a £ M. The 
chains &' constitute a chain-group TV' on £/. Elementary and primitive chains 
of N' correspond respectively to elementary and primitive chains of N. 
Hence N' is regular. There is a homomorphism <j>' of N' such that </>'(&') = (j>(k) 
for each & Ç N. 

Ii <t>(f) < 0 for some positive primitive chain/ of N it is clear that 0 has no 
solution whose coefficients are all non-negative. 

In the remaining case we have </>'(#') < j3(g') f° r each primitive chain g' 
of N'. This follows from the definition of N' if /3(g') > 0. In the remaining case 
— gr corresponds to a positive chain —goiN, and so </>'(g') = — </>( — g) ^ 0 = 

https://doi.org/10.4153/CJM-1956-004-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1956-004-9


A CLASS OF ABELIAN GROUPS 27 

/3(g')- Hence by (7.7) <£' has a limited solution h'. There is a corresponding 
solution h of </> defined by 

h(a) = Z > ' ( c ) , a G M. 
ceZ7a 

The coefficients in h are all non-negative. 

(7.9) If a G Af tf^ew either N or N* has a positive primitive chain f such that 
a 6 I/I-

Proof. By (6.2) it is sufficient to show that either N or N* has a positive 
chain/ such that a G |/|. 

Let <t> be the homomorphism of TV such that <£(/) = —f(a) for e ach / G iV. 
If {a} is the domain of a chain of N the Theorem is clearly true. If not we 
define <j)a as in (7.4). Then, if <t>a has a solution h' with coefficients all non-
negative, let h be the chain on M such that h (a) = 1 and h . (M — {a}) = ft'. 
Then ( / . h) = 0 for each / G i\f and so A is a positive chain of N*. If no such 
solution h! exists, then by (7.8) there exists/ G iV such t h a t / . (M — {a}) is 
positive and —f(a) = $(a) < 0. Then / is a positive chain of N such that 
a G |/|. In either case the Theorem is true. 

8. Some applications to graph theory. Let G be a graph taken with a 
fixed orientation. 

A directed bond of G is a bond G X S of G such that the positive ends of the 
edges of S all belong to the same component of G : (E(G) — S). A directed 
circuit of G is a circuit G . S of G defined by a circular path in which each edge 
is immediately succeeded by its positive end. Using (2.4) and (2.7) we may 
verify that the subsets S of E(G) such that G X S is a directed bond or G . S 
a directed circuit of G, are the domains of the positive primitive chains of 
A(G) and T(G) respectively. If we apply this to (5.5) and (7.9) we obtain the 
following graph-theoretical result. 

(8.1) Any edge of G is an edge of some directed bond or of some directed circuit 
ofG. 

In conclusion we show how (7.8) may be applied to obtain a known theorem 
concerning the 1-factors of even graphs (1 ; 2). 

We suppose henceforth that G is even, that is, the set V{G) falls into two 
disjoint subsets Vi and F2 such that each edge of G has one end in Vi and the 
other in F2. We fix an orientation by taking the positive end of each edge in 
V2. If a G V(G) we write a(a) = 1 or — 1 according as a is in V2 or V\. We 
call G balanced if each component has the same number of vertices in V\ as 
in V2. The decomposition { Vu V2} of V(G) is unique within each component 
of G, apart from the order of Vi and V2. Hence if G is balanced for one such 
decomposition it is balanced for all of them. 

A 1-factor of G is a subgraph G : F of G such that each vertex of G is an end 
of just one edge of F. It is clear that a graph which is not balanced has no 
1-factor. For balanced graphs we prove the following theorem. 
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(8.2) Suppose G balanced. Then G has a I-factor if and only if there is no subset 
U of Vi such that the set of all vertices of V2 joined by edges of G to vertices of U 
has fewer members than U. 

Proof. If such a subset U of V\ exists it is clear that G has no 1-factor. 
Conversely suppose G has no 1-factor. Then for each g £ A (G) we write 

G) «(g) = £ *(«)/(«), 
aeV(G) 

where/ is any 0-chain on G such that ôf = g. I f / i and/2 are two such 0-chains 
and </>i(g) and faig) are the corresponding values of <t>(G) we have 

(ii) Mg) - Ug) = S *(«)(ft(«) -Ma)). 
aeV(G) 

Now 5(/i — ft) = 5(/i) — ô(/2), which is the zero 1-chain on G. Hence by (2.2) 
/1 (a) ~ fi (#) is the same for all vertices a of any one component of G. Since 
G is balanced it follows from (ii) that 4>\{g) = 4>2(g)- Hence </>(g) is uniquely 
defined for each g Ç A (G). It is now clear that 0 is a homomorphism of 
A(G). 

Suppose <j) has a solution h whose coefficients are all non-negative. By 
considering the coboundaries ô(/) such t h a t / has only one non-zero coefficient 
we find that 
(iii) S r}(A,a) h(A) = a (a) 

AeE(G) 

for each a G F(G). But 77(̂ 4, a) a (a) > 0 for each a} A. It follows that h (A) 
is 0 or 1 for each A and that the edges for which h (A) = 1 define a 1-factor 
of G. This contradicts our supposition. Hence by (7.8) there is a positive 
primitive chain k of A(G) such that <t>(k) < 0. 

Now G X \k\ is a directed bond of G. Let C be the component of G : (E(G) — 
|fe|) which includes the positive ends of the members of \k\. L e t / be the 0-chain 
on G such tha t / ( a ) = 1 or 0 according as a is or is not a vertex of C. By (i) 
we have 

Z '(a) < 0, 
where the summation is over the vertices of C. If U is the set of all vertices 
of C in Vi it follows that U is a subset of V\ of the kind specified in the 
enunciation. 
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