
No mental state examination would be complete without a

statement relating to abnormalities of perception.

According to Fish, perceptual abnormalities may be

classified as either sensory distortions (e.g. hyperacusis

and dysmegalopsia) or sensory deceptions (e.g. illusions and

hallucinations), with both categories deviating from

veridical perception.1 The clean simplicity of this definition

underlies part of its clinical utility, but also gives the

impression that the characteristics of ‘normal’ veridical

perception are well understood. The nature of perception,

however, has troubled philosophers for centuries,2,3 and has

been the focus of intense investigation by neuroscientists

and psychologists in recent decades.4-7 Just how does the

brain transform the light hitting the retina into the

infinitely complex three-dimensional world that we see

when we open our eyes? How much of what we perceive is

really present in the sensory data hitting our eyes, and to

what extent do our prior expectations shape our

perception? Do we perceive the world as it really is, and if

not, does that mean that our normal perceptions are

distorted or deceptive? If so, in what way does normal

perception differ from abnormal perception? These

questions may seem to be only of philosophical relevance,

but researchers working in the fields of perceptual

neuroscience and computer vision are regularly confronted

by them.
In this article we outline some exciting insights into

how the brain may construct reality. Intriguingly, these

findings have come from the field of machine learning, a

branch of computer science and robotics.

The problem of perception

How does your visual system construct a representation of

the world? Perhaps most readers would reply that the brain

extracts the information about the physical world that is

contained within incoming sensory signals. Much of the

neuroscience of the past half-century has investigated

perceptual processing starting from this assumption.4,8

The account of perceptual processing found in most

undergraduate textbooks states that the sensory processing

pathway (including the sensory epithelia, subcortical nuclei,

thalamus, sensory cortices and heteromodal association

cortices) extracts information from incoming sensory data

in a stepwise manner. If all goes smoothly we perceive the

world ‘as it really is’.
There are several problems, however, with the view that

perception proceeds by extracting information from the

incoming signals alone. Perhaps the most damning

consideration was recognised by George Berkeley in the

18th century as the ‘inverse optics’ problem,2,4 which states

that information collected by the sensory epithelia is

insufficient to allow an unambiguous mapping back on to

real-world sources. The light hitting the retina, for example,

forms a two-dimensional image, which has an infinite

number of possible three-dimensional ‘real-world’ sources.

The image conflates information about object illumination,

reflectance and transmittance.4 Computer vision faces

similar problems. A car, for example, looks different from

different viewing angles and distances, and in different

lighting conditions. The problem of inferring the state of

the world from sensory data alone is (mathematically)
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Summary The nature of perception has fascinated philosophers for centuries, and
has more recently been the focus of research in psychology and neuroscience. Many
psychiatric disorders are characterised by perceptual abnormalities, ranging from
sensory distortions to illusions and hallucinations. The distinction between normal and
abnormal perception is, however, hard to articulate. In this article we argue that the
distinction between normal perception and abnormal perception is best seen as a
quantitative one, resting on the degree to which the observer’s prior expectations
influence perceptual inference. We illustrate this point with an example taken from
researchers at Google working on computer vision.
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ill-posed.9 One powerful illustration of this principle is
demonstrated by the famous Necker cube illusion,5

where the sensory information alone is insufficient to
resolve the question of the orientation of the wire cube
and there is no simple mapping between sensory data
and perception (Fig. 1).

Expectation is necessary for perception

If sensory data alone cannot support perception, how does
the brain create accurate perceptual representations of
the world? It is now appreciated that ill-posed problems
such as vision can be made tractable by using contextual
information to impose constraints on the interpretation of
ambiguous data. In the case of vision, for example, past
experiences of seeing similar visual scenes sets up
expectations about the likely current state of the world,
and any new sensory data are interpreted in light of these
expectations. Consistent with this hypothesis, the sensory
processing pathways in the brain do not just support one-way
‘bottom-up’ information flow (from low-level data in the
primary sensory cortex to more complex representations in
heteromodal association cortices), but also support ‘top-
down’ information flow, whereby information about the
current expected state of the world cascades down from
high cortical areas to influence information processing in
low sensory areas.9,10 Some have argued that the ‘heavy
lifting’ of perceptual processing is performed by these
top-down pathways, which make predictions about the state
of the world that are tested against sensory data.10

The ability of the brain to make sense of sensory
information has inspired computer scientists working on
computer vision and similar problems to take a similar
approach. Recently, researchers at Google created an
impressive visual recognition system using a processing
architecture inspired by the human brain, called an
‘artificial neural network’ (ANN).11 ANNs consist of artificial
‘neurons’ that are organised into layers, reminiscent of the
brain’s hierarchical organisation. These networks are
particularly good at detecting features and patterns in
new data, and using these features to perform classification
tasks. This is similar to what the brain does when engaged in
perceptual inference, which may be thought of as the
detection of objects and meaningful patterns in sensory
data. New data enter the ANN at the lowest ‘input’ layer
(analogous to light hitting light-sensitive neurons in the
retina) and is processed sequentially by progressively higher
layers of the network. At each layer the network attempts to
extract patterns and features from these data, with higher
layers of the network extracting increasingly more abstract
features. At the highest layer a ‘decision’ is made about what
the data represent.

Importantly, a new ANN must be adequately ‘trained’
before it can perform successful pattern detection and
classification tasks. During training the network is exposed to
many different data-sets (e.g. images) and attempts to classify
the data appropriately. The network is able to self-calibrate,
guided by its successes and errors, in a process analogous to
synaptic plasticity. After exposure to thousands of images of,
say, cats, the network learns to recognise cats in images to
which it has never before been exposed.

The well-trained ANN is primed to recognise salient
features and patterns in new data in much the same way
that the brain is primed to recognise the patterns in sensory
data that are most important for detecting behaviourally
relevant objects. Prior to training, the ANN is essentially

blind to meaningful patterns in new data. In both the
well-trained ANN and the mature human visual system
the final decision about what a new image represents is the
product of a delicate balance between the information
contained within the image itself and the readiness of the
network to detect certain features within new data.9,10

Tipping the balance

Perception is therefore the product of two sources of
information: the sensory data and prior expectations about
the sort of information that the sensory data contain. What
happens, however, when prior expectations are given too
much weight?

The Google researchers provide an intuitive example of
the problems that inappropriately strong prior expectations
can cause in their ANN.11 As mentioned previously, the
highest layers of the ANN contain latent representations of
objects that the network has been trained to see. The Google
researchers asked a network trained to see bananas to
detect and enhance ‘banana-like’ features in an image that
contained only meaningless noise. This manipulation
inappropriately weighted prior expectation relative to
sensory data. The result was that the network was able to
‘perceive’ objects where none existed in the image itself
(akin to a ‘guided hallucination’) (see the Google Research

Blog article for examples11). Although the mechanisms
employed by this simple network manipulation are not
intended to be biologically plausible, the simple experiment
demonstrates the power that inappropriately held prior
expectations might have on resulting perception.

To what extent can inappropriately held prior
expectations influence human perception? This question has
relevance to descriptive psychopathology and psychiatry.
Karl Jaspers, the father of descriptive psychopathology,
postulated that ‘illusions due to affect’ and ‘illusions due to
inattentiveness’ may arise when a person has a strong prior

expectation about the state of the world and is confronted
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Fig 1 The Necker Cube illusion is a bistable visual illusion. The same
sensory data are able to support two perceptual inferences (one
in which corner 1 is closest to the observer, the other in which
corner 2 is closest).
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with noisy and ambiguous sensory data.12 This exaggerated

prior expectation may be informed by the semantic context

of a situation (in what have come to be termed ‘completion

illusions’), the observer’s current emotional state13 (in

‘affect illusions’), or active imaginative processes acting

on inherently ambiguous sensory data (in ‘pareidolic

illusions’).1,12,14,15 It may be argued that in these situations

the observer comes to impose their prior expectations on

the ambiguous sensory data.

Contemporary accounts of hallucinations

We have argued that perceptual inference always relies

on both incoming sensory data and a prior expectation

about what these data are likely to represent. Additionally,

we have outlined the hypothesis that illusions and

hallucinations may be the result of an imbalance between

these two sources of information. This simple account is

consistent with contemporary theories of illusions and

hallucinations, which also implicate a miscalibration

between these two sources of evidence.
One of the most influential contemporary accounts of

perceptual inference is that of hierarchical predictive

coding.9,16,17 At the heart of the predictive coding

account is the notion that the brain maintains a dynamic

representation of the world, which is the brain’s best

prediction about the state that the world is likely to be

in. Incoming sensory data are compared against this

representation. If there is a good match between the prior

prediction and the sensory data the current representation

of the state of the world is reinforced. If there is a mismatch,

a ‘prediction error’ signal drives an updating of the brain’s

current representation of the world, which is subsequently

re-tested against the real-world data. The iterative process

of matching the brain’s predictions to sensory signals

underlies perceptual inference.10,16,17 This process can

become disrupted when the balance between prior

predictions and incoming sensory data is changed. The

brain’s internal representation of the world will be resistant

to change, and thus dominate perceptual inference, if the

prior prediction is given a greater weight than the incoming

sensory data, as may happen when the incoming sensory

data are noisy.9,16,17 It has been proposed that in some

pathological states the brain may mistake its own prior

predictions for new incoming sensory data, resulting in

perceptual and cognitive abnormalities that share some

similarity to acute psychosis.18

Another influential account of complex visual

hallucinations is the perception and attention deficit (PAD)

model, which was developed after studying clinical

populations who experience recurrent complex visual

hallucinations.19 It was found that people in these

populations had combined deficits in low-level sensory

processing and attention. The PAD model proposes that in

order to perceive an object, the perceptual object must first

be selected from a pool of candidate ‘proto-objects’, in a

process guided by sensory data, prior expectations and

attentional processes. In people who have a combined

deficit in sensory processing and attention it is conceivable

that proto-objects from a misrepresentative pool become

inappropriately bound to the visual scene, resulting in a

hallucination.19

Both the predictive coding and PAD accounts of

illusions and hallucinations propose that an overweighting

of prior expectation relative to sensory data may underlie

certain perceptual abnormalities. This overweighting may

be a direct result of inappropriately held prior expectations

(as can occur in states of high emotional arousal), or may be

secondary to a decrease in the quality (or precision) of

incoming sensory data (as may occur in states of low

attention, fatigue or sensory impairment).19,20

Limitations

There are several limitations and unanswered questions

in this ‘expectation-based’ model of hallucinations and

illusions. First, although Google’s ANN provides a nice

visual example of the power of overweighted prior

expectation, it has key structural and functional differences

when compared with the human visual system. Among these

are the fact that Google’s network hierarchy has many more

layers than our current best estimates in the primate

brain.11,21 Moreover, Google’s network was trained to ‘see’

objects in a ‘supervised’ way, whereby it was told what the

images actually represented during training. This bears little

resemblance to the ‘unsupervised’ learning that occurs in

the brain.
Perhaps more importantly, expectation-based accounts

of illusions and hallucinations fall short of explaining

some of the most frequently encountered perceptual

abnormalities in clinical practice. The hallucinations

recounted by patients with psychosis or organic disorders

are often bizarre, and seem entirely unexpected given the

environmental context.19 Furthermore, although the

account of hallucinations given above applies to all sensory

modalities, it is unclear why perceptual abnormalities

often occur preferentially in one sensory modality in

clinical populations (e.g. auditory verbal hallucinations in

schizophrenia).15 These questions remain unanswered, and

pose an ongoing challenge for computational accounts of

perceptual abnormalities in psychiatry.

Conclusions

Although psychiatrists ask patients about perceptual

abnormalities on a daily basis, it is not often that we stop

to ponder what actually distinguishes normal perceptions

from perceptual distortions and deceptions. Current work

in psychology, neuroscience and computer science paints a

picture of normal perception as being inextricably linked to

prior expectations about the state of the world. Perception

depends on a delicate balance between the sensory

information that we are confronted with, and the prior

expectations we have about the world. If the balance is

disturbed then perceptual inference becomes disrupted.

Without prior expectations, perception is a mathematically

ill-posed problem4,9 (as illustrated by Fig. 1), yet when prior

expectation dominates the perceptual process, humans (and

ANNs) can come to perceive objects which do not exist in

the sensory data. As a result, the division between veridical
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perception and perceptual distortions or deceptions is more
subtle than one of clear qualitative difference.
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