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An element a of a ring R is called regular, if there exists an element x of
R such that axa = a, and a two-sided ideal α in R is said to be regular if each
of its elements is regular B. Brown and N. H. McCoy [1] has recently proved
that every ring R has a unique maximal regular two-sided ideal M(R), and that
M(R) has the following radical-like property: (i) M(R/M{R)) = 0; (ii) if α is
a two-sided ideal of R, then Mia) = aΠM(R); (iii) M(Rn) = (M(R))n, where
/?« denotes a full matrix ring of order n over i?. Arens and Kaplansky [2] has
defined an element a of R to be strongly regular when there exists an element
x of R such that a2x = a. We shall prove in this note that replacing "regularity"
by "strong regularity/' we have also a unique maximal strongly regular ideal
N{R), and shall investigate some of its properties.

1. Existence and properties of N(R).

The existence proof of N(R) can be accomplished along the line of Brown

and McCoy [ l l

Definition 1. An element Ό of a ring R is called strongly regular, if and
only if there exists an element x of R such that a2x = #. A (two-sided) ideal
α in R is called a strongly regular ideal, if each of its element is strongly
regular. Finally, we call an element a&R properly strongly regular, if the
principal ideal {a) generated by a is strongly regular.

LEMMA 1. If a2y — a is strongly regular, so is a too.

Proof. By virtue of strong regularity of a2y - a, there exists an element z
such that (a2y-a)2z-a2y— a. Setting x = y-z + ayz + yaz — ya2yz, we have
readily a2x = a.

LEMMA 2. The set N{R) of all properly strongly regular elements of R is a
strongly regular ideal.

Proof That z^N(R) and t&R implies (zt)CN(R) whence zt&N(R);

similarly, tz&NiR). On the other hand, let zt and z2 be any elements of N(R)

and let # e (zi — z2). Then we have a = Ui — U2, where «, e(2, ). By strong

regularity of (zι), we have u\r—u\ for some rξΞR* Then a2r —a—iui — uzfr

-~ (U1 — U2) = u2-}- uίr - Uιu2r - u2uιr&: (u2) C {z2)9 and a2r — a is strongly regular.

Then, Lemma 1 implies that a is strongly re'gular, and the proof is complete.
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From Lemma 2, we have immediately

THEOREM 1. Every ring R has a unique maximal strongly regular ideal N{R).

THEOREM 2. For every ring R we have N{R/N(R)) = 0.

Proof. Let us denote by a the residue class mod N(R) containing a. Sup-
pose that b&N(R/N(R)) and a is any element of (b). Then a is as an element
of (b) strongly regular in the ring R/N(R): ά2x-ά~, that is a2x~a&N(R), and
hence a2x - a is strongly regular. It follows therefore from Lemma 1 that a
is strongly regular. Since we have proved that every element of the ideal (b)
is strongly regular, we have b£ΞN(R), i.e. £ = 0.

LEMMA 3. Let a be a two-sided ideal of R. Then, an element a of a is
properly strongly regular in the ring a if and only if it is strongly regular in
the ring R.

Proof Let a be properly strongly regular in α, and let b be any element
of the ideal (a) generated by a in R. Then, we have b = na + ua -f av -h Σuiavi,
where n is an integer and u's and υ's are elements of R. Since a is strongly
regular, there exists an element Λ:GO such that a2x = a. Consequently, b = na
-f (ua)ax + a(axv) -f *Σ(uia)a(xvi), ua, axv, ma, w/Go. Hence we have b&(a)f,
where (a)' denotes an ideal generated by a in α. Therefore, b is strongly regular,
and the element a is properly strongly regular in R. The converse part is clear.

From Lemma 3, we have immediately

T H E O R E M 3 . If a is a two-sided ideal in R, then N(a) =aΠ N ( R ) .

2. Some relations between N(R) and M(R).

Let us consider some properties of elements in N(R).

LEMMA 4. N(R) has no non-zero nilpotent element.

Proof L e t a ^ N ( R ) , a n d an = 0. T h e n a2x = a, a n d s o α = « 2 Λ Γ = . . .

LEMMA 5. Let a^N(R) and x be an element in R such that a2x = a. Then,
(i) a2x = axa = xa2 = a, and a is regular, (ii) ax = xa, and ax is an idempotent.
(iii) e = ax belongs to the center of R.

Proof. From a2x = a, we have easily ( α - axa)2 = 0. Since a- axa&N(R).
Lemma 4 implies a = axa, and similarly axa-xa\ so we have (i). From ax
= (xa2)x = x(a2x) = xa we have (ii). As for (iii), let u be any element of R.
By analogous argument as (i), we have ue = eue, ue = e«£, and therefore «£ = eu.

The above lemma shows-that each element of N(R) is regular, so we have

THEOREMS N(R)CM(R).
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While M{R) satisfies M(Rn) = (M{R))n (cf. [1]), M i ) does not possess

this property, which is shown by the following theorem:

THEOREM 5. Let Rn be the full matrix ring of order n>\ over R. Then,

N(Rn) = 0.

Proof. First, let us suppose that R has a unit element. Let A&N(Rn).

Then there exists a matrix X such that A2X = A, and AX belongs to the center

of Rn* Hence, AX - aE, where a is an element belonging to the center of R,

and E is the unit matrix of Rn. So, we have A = a A, and

( O β O . . . 0 \ /0 1 0. . .0

p
0 0 0 . . . 0 / \0 0 0. . .0

Therefore B is strongly regular: B-B2Y. But since I?~0, we have B = 0,
a = 0, and A = 0.

When /? does not possess a unit element, we can obtain a ring R in the

usual way by adjoining a unit element to R. Then Rn is an ideal of Rn, and

N(Rn)--=RnΠN(Rn)=0.
The above theorem shows that there exists a ring R such that M(i) ξ N(R).
THEOREM β. M(R) = M/?) i/* «wί/ ί?̂ /v if M(R) has no non-zero nilpotent

element,

Proof. Suppose that M{R) has no non-zero nilpotent element. Then, since

for every a&M(R) there is an x such that a~axa whence (a — a"xf = 0, we

have a~a2x, a&:N(R). This means M(R) = N(R). The converse follows from

Lemma 4.

COROLLARY. 7/ R is either commutative or has no non-zero nilpotent element,

then M(R)=N(R).
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