STRONG REGULARITY IN ARBITRARY RINGS

TETSUO KANDO

An element a of a ring R is called regular, if there exists an element x of
R such that axa =a, and a two-sided ideal a in R is said to be regular if each
of its elements is regular. B. Brown and N. H. McCoy [1] has recently proved
that every ring R has a unique maximal regular two-sided ideal M(R), and that
M(R) has the following radical-like property: (i) M(R/M(R))=0; (ii) if a is
a two-sided ideal of R, then M(a) = o\ M(R); (iii) M(R.) = (M(R))», where
R, denotes a full matrix ring of order # over R. Arens and Kaplansky [2] has
defined an element @ of R to be strongly regular when there exists an element
x of Rsuch that a’x = a. We shall prove in this note that replacing “regularity”
by “strong regularity,” we have also a unique maximal strongly regular ideal
N(R), and shall investigate some of its properties.

1. Existence and properties of N(R).
The existence proof of N(R) can be accomplished along the line of Brown
and McCoy [11.

Definition 1. An element'a of a ring R is called strongly regular, if and
only if there exists an element x of R such that ¢’x =a. A (two-sided) ideal
a in R is called a strongly regular ideal, if each of its element is strongly
regular. Finally, we call an element a& R properly strongly regular, if the
principal ideal (@) generated by a is strongly regular.

LemMa 1. If d®y — a is strongly regular, so is a too.

Proof. By virtue of strong regularity of &’y — a, there exists an element z
such that (a’y —a)2=d’y —a. Setting x =y — 2+ ayz+yaz—ya'yz, we have
readily &’x =a.

LemMA 2. The set N(R) of all properly strongly regular elements of R is a
strongly regular ideal.

Proof. That z€N(R) and tER implies (z2¢)CN(R) whence ztEN(R);
similarly, £z N(R). On the other hand, let z; and 2: be any elements of N(R)
and let ae (2 —2:). Then we have a@=wu; —u,, where #;€(z;). By strong
regularity of (z1), we have #ir = u; for some r&R. Then @’ —a= (w1 — w)’r
— (2ty — 42) = th2 + tsr — warsr — t2007 € (242) C (22), and a’7 — a is strongly regular.
Then, Lemma 1 implies that « is strongly regular, and the proof is complete.
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From Lemma 2, we have immediately
THEOREM 1. Every ring R has a unique maximal strongly regular ideal N(R).
THEOREM 2. For every ring R we have N(R/N(R)) =0.

Proof. Let us denote by @ the residue class mod N(R) containing a. Sup-
pose that & N(R/N(R)) and a is any element of (»). Then @ is as an element
of (&) strongly regular in the ring R/N(R): @’% =a, that is a’x —a& N(R), and
hence a’x —a is strongly regular. It follows therefore from Lemma 1 that a
is strongly regular. Since we have proved that every element of the ideal (&)
is strongly regular, we have b= N(R), i.e. 5=0.

LemMmA 3. Let a be a two-sided ideal of R. Then, an element a of a is
Droperly strongly regular in the ring a if and only if it is strongly regular in
the ring R.

Proof. Let a be properly strongly regular in a, and let b be any element
of the ideal (a) generated by ¢ in R. Then, we have b = na + ua + av + > u;avi,
where # is an integer and #’s and v’s are elements of R. Since @ is strongly
regular, there exists an element xEa such that a’x =a. Consequently, b = na
+ (ua)ax + alaxv) + 2 (wia)alxvi), ua, axv, wia, xvi€a. Hence we have b (a)’,
where (@)’ denotes an ideal generated by a in a. Therefore, b is strongly regular,
and the element ¢ is properly strongly regular in R, The converse part is clear.

From Lemma 3, we have immediately

THrEOREM 3. If a is a two-sided ideal in R, then N(a) =a N N(R).

2. Some relations between N(R) and M(R).
Let us consider some properties of elements in N(R).

LEMMA 4. N(R) has no non-zero nilpotent element.

Proof. Let aeN(R), and a"=0. Then a’x=a, and so a=ax= .
=a"%""' =0

LEMMA 5. Let a€ N(R) and x be an element in R such that a’x =a. Then,
(i) 6% =axa =xd" = a, and a is regular. (ii) ax =xa, and ax is an idempotent.
(iii) e = ax belongs to the center of R.

Proof. From a’x = a, we have easily (a —axa)*=0. Since a —axac N(R).
Lemma 4 implies @ = axa, and similarly axa = xa’, so we have (i). From ax
= (xa®)x = x(a’x) = xa we have (ii). As for (iii), let » be any element of R.

By analogous argument as (i), we have ue = eue, ue = eue, and therefore ue = eu.
The above lemma shows-that each element of N(R) is regular, so we have

THEOREM 4. N(R) C M(R).

https://doi.org/10.1017/50027763000022984 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000022984

STRONG REGULARITY IN ARBITRARY RINGS 53

While M(R) satisfies M(Ry) = (M(R))» (cf. [1]1), N(R) does not possess
this property, which is shown by the following theorem:

THEOREM 5. Let R, be the full matrix ving of order n>1 over R. Then,
N(R,) =0.

Proof. First, let us suppose that R has a unit element. Let A€ N(R»).
Then there exists a matrix X such that A’X = A, and AX belongs to the center
of R.. Hence, AX=aFE, where a is an element belonging to the center of R,
and E is the unit matrix of R,. So, we have A =aA, and

0a0...0 010...0
B=|000---01_,p000---0cumyca)CMRY.
000 0 000 0

Therefore B is strongly regular: B=B'Y. But since B*=0, we have B=0,
a=0,and A=0.

When R does not possess a unit element, we can obtain a ring R in the
usual way by adjoining a unit element to R. Then R, s an ideal of fi‘n, and
N(R) =Ry N\ N(Ry) =0.

The above theorem shows that there exists a ring R such that M(R) & N(R).
THEOREM 6. M(R) = N(R) if and only if M(R) has no non-zero nilpotent
element.

Proof. Suppose that M(R) has no non-zero nilpotent element. Then, since
for every @& M(R) there is an x such that @ = axa whence (a—a’x)’=0, we
have @ =d’x, a€N(R). This means M(R) = N(R). The converse follows from
Lemma 4.

CoroLLARY. If R is either commutative or has no non-zero nilpotent element,
then M(R) = N(R).
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