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Abstract

Let E be a Hausdorff topological vector space, let K be a nonempty compact convex subset of E and
let f, g: K — 2% be upper semicontinuous such that for each x € K, f(x) and g(x) are nonempty
compact convex. Let £ € 2F be convex and contain all sets of the form x — f(x), y — x + g(x) —
f(x), for x, y € K. Suppose p: K X @ - R satisfies: (i) for each (x, 4) € K X @ and for & > 0, there
exist a neighborhood U of x in K and an open subset set G in E with 4 C G such that for all
(y,BYe KX Q with y € U and B C G, |p(y, B) — p(x, A)| < ¢, and (ii) for each fixed x € K,
p(x, ) is a convex function on &. If p(x,x — f(x)) < p(x, g(x) — f(x)) for all x € K, and if, for
each x € K with f(x)Ng(x)= @, there exists y € K with p(x,y — x + g(x) — f(x)) <
p(x,x — f(x)), then there exists an x5 € K such that f(xy) N g(x¢) # ©. Another coincidence
theorem on a nonempty compact convex subset of a Hausdorff locally convex topological vector space
is also given.
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1. Introduction and preliminaries

The classical Schauder fixed point theorem asserts that every continuous self-map
of a nonempty compact convex subset of a Banach space has a fixed point.
Obviously the Schauder fixed point theorem cannot be extended to non-self-maps
without additional conditions. Many generalizations for single- or multi-valued
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maps have been obtained, for example see [2], [3], [5], [7] and [8]. Recently, F. E.
Browder [4] gave a rather sharp improvement of these results for single-valued
maps. Generalizations of those results in [4] to set-valued maps are obtained by S.
Reich [12,13], J. H. Jiang [9, 10] and others. In this paper, we shall extend some of
Browder’s results in {4] to set-valued maps in different directions, one of which
extends a result of S. Reich in [12].

We shall denote by R the real line and, for any nonempty set X, by 2X the
collection of all nonempty subsets of X. Now let X and Y be topological spaces.
Then a map f: X — 27 is said to be (i) lower semicontinuous (respectively, upper
semicontinuous) [1] at x, € X if for each open set G in Y with G N f(x,) # @
(respectively, with f(xy) C G), there is a neighborhood U of x, in X such that
G N f(x) # D (respectively, f(x) C G) for all x € U; (ii) lower semicontinuous
(respectively, upper semicontinuous) on X if f is lower semicontinuous (respec-
tively, upper semicontinuous) at each point of X; (iii) continuous on X if f is both
lower semicontinuous on X and upper semicontinuous on X. Also if £ c 27,
then a map p: X X @ — R is said to be (iv) ultimately continuous at (x, A) if for
each & > 0, there exist a neighborhood U of x in X and an open set G in Y with
A € G such that |p(y, B) —p(x,A4)|<e¢ for all (y,B)e XX Q with ye U
and B C G; (v) ultimately continuous on X X € if p is ultimately continuous at
each point of X X §. We note that in the case & = {{y}: y € Y}, if we write
p(x,y)=p(x,{y}), then the notions of ultimate continuity and continuity
coincide. If 4 C X, cl(A) denotes the closure of 4 in X. Next let E be a vector
space, let K be a nonempty subset of E and let x € K; then the inward set and
outward set [8] of K at x, denoted by I (x) and O, (x), respectively, are defined
by

In(x)={y€ E:thereexist u € K and r > Osuch that y = x + r(u — x)}
and
Ox(x) = {y € E: thereexist u € K and r > Osuch that y = x — r(u — x)}.

Also, a subset Q of 2% is convex if for each 4, B € € and for each ¢ € [0,1],
tA + (1 — 1)B € Q. Moreover, if E is a topological vector space, we shall denote
by X'(E) the collection of all compact convex sets in 2% and by #(E) the
collection of all closed convex sets in 2£. Finally we shall need the following fixed
point theorem of K. Fan [6]:

THEOREM (K. Fan [6]). Let K be a nonempty compact convex subset of a
Hausdorff topological vector space E and let S: K — 2X. Suppose, for each x € K,
that S(x) is convex, while for each u € K, the set S~ (u) = {y € K: u € S(y)} is
open in K. Then there exists x, € K such that x, € S(x,).
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2. Main results

The following two propositions are easy consequences of the definitions.

PROPOSITION 2.1. Let E be a topological vector space, let K C E be nonempty,
let f, g: K — 2F be lower semicontinuous, let h: K — 2£ be upper semicontinuous
and let c € R. Then f+ g and cg are lower semicontinuous, and ch is upper
semicontinuous.

PROPOSITION 2.2. Let E be a topological vector space, let K C E be nonempty
and let f, g: K — 2E be upper semicontinuous such that for each x € K, f(x) and
g(x) are both compact. Then f + g is also upper semicontinuous.

We note that Proposition 2.2 is false if the condition “f, g: K — 2% be upper
semicontinuous such that for each x € K, f(x) and g(x) are both compact” is
replaced by the condition “f, g: K - ¥(E) be upper semicontinuous such that
for each x € K, at least one of f(x) and g(x) is compact.” This can be seen from
the following:

EXAMPLE 2.3. Let E=R? and let K= {(x,y)€ R% x?+ y2< 1 and x,
y > 0}. Define f: K — X (E) by

f(rcos8,rsin@) = {(zcosf,tsinf): r <t <2}
for each r € (0,1] and 8 € (0, 7/2). Define g: K — ¢(E) by

g(x, )= {(z,0): z> x}

for all (x, y) € K. It can be easily checked that f and g are both upper
semicontinuous (in fact, both continuous) but f + g is not upper semicontinuous.

The following result generalizes Proposition 2 in [4] and also Theorem 1 in [7}
to set-valued maps.

THEOREM 2.4. Let E be a Hausdorff topological vector space, let K C E be
nonempty compact convex and let f,g: K — X (E) be upper semicontinuous. Let
Q c 2£ be convex and contain all sets of the form x — f(x), y — x + g(x) — f(x),
for x, y € K. Suppose p: K X § = R is ultimately continuous such that for each
x €K, p(x', -) is a convex function on Q. Assume that

@ p(x, x = f(x)) < p(x, 8(x) = f(x)) for all x € K, and
(i) for each x € K with f(x) N\ g(x) = O, there exists y € K such that
p(x, y — x + g(x) — f(x)) < p(x, x = f(x)).
Then there exists an x, € K such that f(x4) N g(x,) # 2.
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PrROOF. Define h: K - X' (E) by h(x) = x + f(x) — g(x) for all x € K. Then
h is upper semicontinuous by Propositions 2.1 and 2.2. Assume that for each
x €K, f(x)Ng(x)= @, so that the set S(x)={y € K: p(x,y — h(x)) <
p(x,x — f(x))} is nonempty by hypothesis. Thus S: K — 2K Let x € X, y,,
y, € S(x) and ¢ €[0,1}; then p(x,y, — h(x)) <p(x,x — f(x)) for i=1,2.
Since #(y, — h(x)) + (1 — 1)y, — h(x)) = ty, + (1 — 1)y, — h(x), and since
p(x, -) is convex, we see that

p(x,y +(1 = 1)y, — h(x)) < p(x,x — f(x)),
so that ty, + (1 — 1)y, € S(x). Hence S(x) is convex for each x € K.

Now let u € K. We shall show that S~(u) is open in K. Indeed, if x € S~1(u),
then u € S(x), so that p(x,u — h(x)) < p(x,x — f(x)). Let ¢ =[p(x,x —
f(x)) — p(x,u — h(x))]/2. Since p is ultimately continuous at (x,x — f(x)),
there exist an open neighborhood U, of x in K and an open set G in E with
x — f(x) € G such that |p(y, A) — p(x,x — f(x))] < ¢ for all (y,A) € K X Q
with y € U, and 4 c G. For each a € x ~ f(x), let N, be an open neighbor-
hood of 0 in E such that a + N, + N, C G. Since x — f(x) is compact, there
exist a;,...,a, € x — f(x) such that x — f(x) cUj_,(a; + N, ). Since f is
upper semicontinuous at x, and since f(x)C x — U’ ,(a; + N ), Which is
open, there exists an open neighborhood U, of x in K such that f(y)c x —

Uli(a;+ N,) for all ye U,. Let ¥, =U N U,N(x+NN,). Then ¥
is an open nelghborhood of xin K.Let y € V}; as y € U,, we have f(y) C x —

Ul_i(a; + N, ), so that

(%) x=f(y)c U(a,+N,);
i=1
asyex+N'_,N,,wehavey —x € N_;N,,sothat y — f(y)=y —x + x —

() SNi_N, + U,_l(a, + N, ) by (). It follows that

n

(**) y-—f(y)C y(ai+Nai+Nai)CG;

as y € U, by (»*), we have
(t) lp(y,y = f(»)) —p(x,x = f(x))| <

Next, since p is also ultimately continuous at (x, u — h(x)), there exist an open
neighborhood U of x in K and an open set G’ in E with u — h(x) C G’ such
that |p(y, A) — p(x,u — h(x))| <€ for all (y,4)€e KX Q with y € U, and
A C G'. Since h(x) C u — G’, which is open, and since % is upper semicontinu-
ous at x, there exists an open neighborhood U, of x in K such that A(y) C u — G’
for all y € U,. Let V, = U, N U,. Then V, is an open neighborhood of x in K.
Let y € V,; as y € U,, we have h(y) C u — G, so that

(xx) u-h(y)c G,

https://doi.org/10.1017/51446788700028664 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700028664

394 Kok-Keong Tan {5}

as y € U,, by (#+x), we have

(1) |p(y,u—h(y)) —p(x,u—h(x))|<e
Let ¥V =V, N V,. Then V is an open neighborhood of x in X such that for each
y € V, (1) and (}1) hold; it follows that

p(y,u—h(p)) <p(x,u—h(x))+e (by(i1)
=p(x,x —f(x)) —¢

<p(y,y=f(») (by(})

so that u € S(») and hence y € S~Y(u) for all y € V. Therefore S~'(u) is open
for each u € K.

By K. Fan’s Theorem, there exists an x, € K such that x, € S(x,)); thus we
have

P(xo, 8(x0) = f(x0)) = P(x0, X0 = h(x,)) < p(x0, X0 — f(%0)),

which contradicts (i). This shows that there must exist an x, € K such that
f(xg) N g(x,) # 2. This completes the proof.

By applying Theorem 2.4 and an argument similar to that used in proving
Theorem 1 in [4], we obtain the following generalization of Theorem 1 in {4].

COROLLARY 2.5. Let E be a Hausdorff topological vector space, let K C E be
nonempty compact convex and let f, g: K = X' (E) be upper semicontinuous. Let
Q c 2F be convex and contain all sets of the form x — f(x), y — x + g(x) — f(x),
for x, y € K. Suppose p: K X @ — R is ultimately continuous on K X Q. Assume
that

@ p(x, x ~ f(x)) = p(x, g(x) = f(x)) for all x € K, and
(ii) for each x € K with f(x) N g(x) = @, there exists y € I, (x) such that
P(x,y — x + g(x) — f(x)) < p(x, x — f(x)).
Then there exists an x, € K such that f(x) N g(xy) # B.

By applying Corollary 2.5 and an argument similar to that used in proving
Theorem 2 in {4], we obtain the following generalization of Theorem 2 in [4].

COROLLARY 2.6. Let E be a Hausdorff topological vector space, let K C E be
nonempty comapct convex and let f, g: K — X (E) be upper semi-continuous. Let
Q2 c 2E be convex and contain all sets of the form x — f(x), y — x + g(x) — f(x),
for x, y € K. Suppose p: K X & — R is ultimately continuous on K X Q. Assume
that .

@) p(x, x ~ f(x)) = p(x, g(x) — (x)) for all x € K, and
(ii) for each x € K with f(x) N g(x) = B, there exist y € Ox(x) such that
P(x,y — x + g(x) — f(x)) < p(x, x — f(x)).
Then there exists an x, € K such that f(x,) N g(xy) #+ 9.
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Let E be a locally convex topological vector space and let p be any continuous
seminorm on E. If A, BC E are nonempty, let d,(A4, B) = inf{ p(a — b):
a € A and b € B}; if A = {a}, we shall write d,(a, B) instead of d,({a}, B).
The following result is motivated by the proof of Theorem 3.1 in [11].

LemMa 2.7. Let E be a Hausdorff locally convex topological vector space, let
K c E be nonempty comapct convex and let f, g: K — €(E) be upper semicontinu-
ous such that for each x € K, either f(x) or g(x) is compact. Assume that for each
continuous seminorm p on E, there exists an x € K such that d,(f(x), g(x)) = 0.
Then there exists an x, € K such that f(xg) N g(x,) # 9.

PROOF. Let 2 be the set of all continuous seminorms on E. For each p € £,
let K, = {x € K: d,(f(x), g(x)) = 0}. If p € P is arbitrarily fixed, then K, is
nonempty by hypothesis; we shall show that K, is also closed in K. Indeed, let
(x4)qer be a net in K, such that x, > x for some x € K. Suppose r =
d,(f(x),8(x))>0. Let V,={z€ E: d,(z,f(x))<r/3} and V,={z € E:
d,(z,8(x)) <r/3}. ThenV; and V, are openin E, and f(x) C V; and g(x) C V,.
Since f and g are upper semicontinuous at x, there exists a neighborhood U of x
in K such that for all y € U, f(y)C V; and g(y) C ¥,. Since x, = x, there
exists a, € I' such that x, € U for all a > a; it follows that, in particular,
f(x,,)C ¥V, and g(x,)C V¥, so that d,(f(x,), 8(x,,)) > r/3, which con-
tradicts our assumption that d,(f(x,,), 8(x,,)) = 0. Thus d,(f(x), g(x)) = 0,
whence x € K,. Therefore K, is closed in K for each p € #. Now let
{P1,..., p,} be any finite subset of #. Let p=2%7_;p. Then p € £, and

7-1K, D K, # @, Thus the family {K,:p € #} has the finite intersection
property, whence, by compactness of K, N, K, # @. It follows that there
exists an x, € K such that d,(f(x,), 8(x,)) = 0 for all p € #. By the Hahn-
Banach separation theorem, f(x,) N g(x,) # &. This completes the proof.

The following result generalizes part of Theorem 3 in {12]. We shall present a
different proof than the one used in [12].

THEOREM 2.8. Let E be a Hausdorff locally convex topological vector space, let
K c E be nonempty compact convex and let f, g: K — €(E) be continuous such
that for each x € K, either f(x) or g(x) is compact. Suppose for each x € K
and for each continuous seminorm p on E with d,(f(x),g(x))> 0, we have
d,(K,x + f(x) — g(x)) < d,(f(x), g(x)). Then there exists an x, € K such that

f(x¢) N g(xp) # B.
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PROOF. Define h: K = ¥(E) by h(x) = x + f(x) — g(x) for all x € K. Then
h is lower semicontinuous on K by Proposition 2.1. Let 2 be the set of all
continuous seminorms on E. By Lemma 2.7, it is sufficient to show that for each
P € 2, there exists an x € K such that d,(f(x), g(x)) = 0. If not, then there
exists a p € P such that d,(f(x),g(x))> 0 for all x € K, so that the set
S(x)={y € K: d,(y,h(x)) < d,(f(x),g(x))} is nonempty for all x € K, by
hypothesis. Thus §: K — 2K Let x € K. As h(x) is convex, d, (-, h(x)) is a
convex function on K, and hence S(x) is convex. Let u € K. We shall show that
S~1(u) is open in K. Indeed, if x € S~'(u), then u € S(x), so that d,(u, h(x))
< d,(f(x), g(x)). Let & = [4,(f(x), g(x)) — d,(u, h(x))]/4. Choose w, € h(x)
such that p(u — wy) < d,(u, h(x)) + e Let G = {z € K: p(z — w,) < ¢&}. Then
G is open in K, and G N h(x) # @. Since h is lowe semicontinuous at x, there
exists an open neighborhood V; of x in K such that h(y)N G # @ for all
ye V. Let V,=V,n{z€K: p(z - x)<e}. Then ¥, is an open neighbor-
hood of x in K. Let y € ¥V,. Then h(y) NG # @, and if we choose any
w € h(y) N G, we have

(%) d,(u,h(y)) < p(u—w)<p(u—w)+p(w,—w)
<d,(u,h(x)) +e+e=d,(u,h(x)) + 2.

Next, note that for V,={z€ K: d,(z,f(x))<e/2} and V, = {z €K;

d,(z,8(x)) < &/2}, V; and ¥V, are open in K, and they contain f(x) and g(x),

respectively. Since f and g are upper semicontinuous at x, there exists an open

neighborhood V; of x in K such that f(y)C V; and g(y)C V, forall y € V;.

Let y € V,, and then choose a € f(y) and b € g(y) such that p(a — b) <

d,(f(»), 8(y)) + ¢ Since a €f(y)c V;and b € g(y) C V,, thereare a; € f(x)
and b, € g(x) with p(a — a,) < e/2 and p(b — by) < £/2. It follows that

(++) d,(f(x),g(x)) <p(ag— by)
<p(ay—a)+p(a—b)+p(b- by)

€

<5+ d,(f(2),8(y) +e+ %

=d,(f(y),8(y)) + 2e.

If now V =V, N V,, then V is an open neighborhood of x in K, and for each
y € V, we have

dy(u, h(y)) < d,(u, h(x)) +2¢, by ()
= d,,(f(x), g(x)) —2¢
<dp(f(y)a g(y)), by (**)
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so that u € S(y), and hence y € S~(u) for all y € V. Therefore S !(u) is open
in K for each u € K. By K. Fan’s Theorem, there exists an x, € K such that
xg € S(xo), so that d,(xo, h(x,)) < d,(f(x,),8(x¢)), and this is impossible
because d,(xq, h(X,)) = d,(f(x,), 8(x,)). This completes the proof.

Analogous to Corollary 2.5 and Corollary 2.6, we have the following results,
which form generalizations of Corollary 1 (respectively, Corollary 1) in [4].

COROLLARY 2.9. Let E be a Hausdorff locally convex topological vector space, let
K C E be nonempty compact convex and let f, g: K — €(E) be continuous such
that for each x € K, either f(x) or g(x) is compact. Suppose for each x € K and
for each continuous seminorm p on E with d ,( f(x), g(x)) > 0, there existy € Ix(x)

(respectively, y € Og(x)) such that d,(y,x + f(x) — g(x)) < d,(f(x), g(x)).
Then there exists an x, € K such that f(xy) N g(xy) + 9.

The following is an immediate consequence of Corollary 2.9.

COROLLARY 2.10. Let E be a Hausdorff locally convex topoological vector space,
let K C E be nonempty compact convex and let f, g. K = €(E) be continuous such
that for each x € K, either f(x) or g(x) is compact. Suppose for each x € K and
for each continuous seminorm p on E with d,(f(x), g(x)) > O, there exists y €
cl(Ix(x)) (respectively, y € cl(Og(x)) such that d,(y,x + f(x)— g(x)) <
d,(f(x), 8(x)). Then there exist an x, € K such that f(xq) N g(x,) # 2.
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