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A FUNDAMENTAL SOLUTION FOR A NONELLIPTIC 
PARTIAL DIFFERENTIAL OPERATOR 

PETER C. GREINER 

Let 

(!) Z - £ + » r f | 
and set 

(2) i ? - * , , - -HZZ + ZZ) - - £_ + 2, |2f- | ( Z | - « A ) 

Here z = x + iy, à/àz = ^(à/àx — i à/ày). Z is the "unique" (modulo 
multiplication by nonzero functions) holomorphic vector-field which is tangent 
to the boundary of the "degenerate generalized upper half-plane" 

(3) D = {(zuz) eC2;p= lmz1 - \z\" > 0). 

In our terminology t = Re z\. We note that ^£ is nowhere elliptic. To put it 
into context, J?f is of the type 0 6 , i.e. operators like J?f occur in the study of the 
boundary Cauchy-Riemann complex. For more information concerning this 
connection the reader should consult [1] and [2]. 

In this paper we give a fundamental solution, F(z, t; w, s) = F{w<s)(z, t) 
for i f , i.e. 

(4) (F(u,sh& (</>)) = 4>(w, s), 4> e Co°°(R3). 

Here z = x + iy, w = u + iv and with a mild abuse of notation (z, t) and 
(w, s) stand for (x, y, t) £ R3 and (u, v, s) G R3, respectively. (,) denotes the 
action of distributions, as linear functionals, on C0°°(R3). We set 

(5) A = |(|z|4 + H 4 + i(t - s)), 

and 

izw/A1/2 i f ^ ^ O 
( 6 ) ^ = 1 0 iîw = 0. 
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1108 PETER C. GREINER 

A112 denotes the principal value of the square root, i.e. A112 > 0 if A > 0. 
We note that p is a C°°-function of (z, t) whenever (w, s) is fixed. 

(7) THEOREM. If (z, t) ^ (w, s) set 

An p = —i— \l+P\+i\l-p\ 
[) ^2\A\' \+\p\2 

Then T is a fundamental solution of ^£. 

Remark. In particular 

(9) F ( M ) ( M ) = 4TT-1(|*|8 + ( / - s)2)~1/2. 

The proof of Theorem 7 will be given in a series of steps. We note that 

(10) \p\ = \zw/All2\ g 1, 

and 

V ; U = ±1«=> (^,0 = (±w,s). 
An easy calculation yields 

1 _ \1+P\2 + J\l-P2\ 
l+\P\2 (12) 

Therefore, if 0 g £ g 1, 

= 1. 

ii p 9* l & (z, t) ?* (w, s). 

This justifies formula (8) if (z, t) ^ (w, 5). Next we derive two different 
representations for F. Set 

(13) a2 = \z2 - w2\" + (/ + 2 Im z2w2)2, 

and 

(15) PROPOSITION. Assume (z, t) ^ (±w, .s")- T/iew 

(16) F{w,s)(z,t) = - i - + - V l 0 g A . 
47TCT Z7T 0" 

Proof. First we note that the right hand side of (16) is well defined as long 
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A FUNDAMENTAL SOLUTION 1109 

as (2, t) ^ (±w, s). Next 

P + P = \l±Pt _ ! 
1 + l/f 1 + lPl2 

Hence 

/I^N ! . ^ 1 / l 1 - P2\ ~ HP + P) 
(17) -r~ + T^\og J TTûf 

\TT(T ZT a \ 1 + \p\ 

2k if + *log V 1 
1 + bi2 

log denotes its principal value, i.e., log z > 0 if z > 1. Since (0, t) 7^ (w, s) 

. ( \l + pf + i\l - p'l) 

M1 r+w—/ 
is well defined. Fur thermore 

(18) a = 2\A\ \1 - p\ \l + p\. 

Now 
(17)=^V-^^M|---^X 

1 + \P\2 Jo II 
dl 

+ j>r + *ii 
1 + iPi2 ç - 1 

and simplifying the right hand side by 11 + p\, see (18), we obtain F{WtS)(z, t). 
This proves Proposition (15). 

(19) LEMMA. Assume w 9^ 0. Then p is near ±1 if and only if (z, t) is near 
(±w, s), respectively. 

Proof. Since \p\ ^ 1, 

\i-P\^m-p2\^ i d -\P\2) 
_ 1 / 2\z\2\wf 1 \ 

2\ |s|4+ Iwf'WT+y) ' 
where 

7 
/ - 5 

\z\4 + \w\4' 

We note t ha t 

2|*|2M* 
4 ^ 1 and 

1 
• î l l . 

|JS|* + |w|* * \ / l + 7" 

I t is easy to see tha t the first inequality in this proof implies 

2(N/kl)2 < 2|1 ,. 
1 - 1 + (kl/NI)4 ^2I1 - p l ' 
1 - (1 + 7 2 ) - l / 2 ^ 2|1 - /)|. 

https://doi.org/10.4153/CJM-1979-101-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-101-3


1110 PETER C. GREINER 

If 2|1 - p\ < ô < 1, then 

\\z\2 - \w\2\ < 3 |w | 2 - \ /ô( l - 5)-1 

\t - s\ < 35\w\2-y/ô(l - ô)-2 

i.e., (\z\, /) must be arbitrarily near (\w\, s) by choosing \p\ sufficiently near 1. 
The converse is clear, i.e., (\z\, t) is near (\w\, s) => \p\ is near 1. 

Finally set z = |z|e**, w = \w\eiu>. Then 

1 _ p _ 1 - —-p72 g 

Therefore p is near 1 if and only if \z\ \w\/\A\l/2 is near l and œ is near 0, 
i.e. >̂ is near 1 if and only if (z} i) is near (w} s). 

A similar argument shows that /> is near —1 if and only if (z, t) is near 

( — w% s). This proves Lemma 19. 

(20) LEMMA. Assume w ^ 0. Then when (z, t) is near ( — w, s) F can be written 

in the following form 

(2D F - T - i m t r ^ f * 
J o 

Proof. (17) yields 

z l—p — p + i\l — p 
F = 2^lo%\—rrp»— 

If £ is near — 1 this gives 

• ) • 

2 | 

F = ^ arctan iLzJQ = _V. ILz^J f1 S 
J o 2TTV £ + £ J , |1 - £ T 

"*" (p + />)2 

and now (18) implies (21). 

(22) THEOREM. F(W<S)(Z, t) is a Cœ function of (z, /) = (x, ;y, t) as long as 
(z, t) 7* (w, s). 

Proof. If w = 0 the result follows from (9). If w 7* 0, then A~U2
} Â~U2, p and 

p are C°° functions of (2, /). Thus, if w ^ 0 and (z, 0 ^ (d=w, s), then (16) is 
a C°° function of (2, /) and the result follows. Finally, if w 7e 0 and (z, t) is in a 
sufficiently small neighbourhood of ( — w, 5), then (21) is a C°° function of p 
and p, because |1 — p2\2 = (1 — p2)(l — p2) is a C°° function of p, p, hence 
the result follows in this case too. This proves Theorem 22. 

Let 

(23) dv(z, t) = dxdydt and dv(z) = dxdy 
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denote Lebesgue measure on R3 and R2, respectively. We introduce a "regular-

ization", Fe, of F as follows. We set 

(24) A< = MM4 + M4 + e4+ *(/-*)) , 

(25) pe = zw/A}'2. 

This yields 

(26) a2 = {\z2 - w2\2 + 64)2 + (t - s + 2 Im s2w2)2, 

and 

(27) F. = F(„.„„(S> t)=jL- + 4-f-- , 

where, again 

(28) he(p,p) = h(pe,pe)} 

and h is given by (14). Fe is C°° in all the variables if e > 0. 

(29) PROPOSITION. F(W>S) = lime^0 F(Wt!i)t€ as a distribution in R3 . 

Proof. Formulas (8) and (9) show tha t F(Wi.y)>c(z, /) —> F(w<s)(z, t), pointwise, 
as e —> 0, as long as (z, t) ^ (w, s). Since |/&c| = 1, 

(30) \Ft\ < C/a, 

with some C > 0, independent of e > 0. We shall show tha t I/o- is locally 
integrable. Then the Lebesgue dominated convergence theorem implies tha t 

F(w,s),e —> F(WtS) in £>'(R3), as e —> 0. 

The question of integrability occurs only a t (z, t) = (±w/, s). We may as 
well set s = 0. To include the two points in question, or, possibly, one point, 
if w = 0, we shall est imate the integral of a~l on the domain — 1 :§ / ^ 1, 
\z\ ^ R, where R = 1 + 2|w|. Then 

(31) J_x7 " J_1+2lm,.5. (N2 " WT + 52)172 < 2 Jo (N2 - ^2|4 + S T ' 

= 2 log ([(1 + 2R')2 + \z2 - w2\'Y12 + 1 + 2R*) 

— 4 log |z2 — w2\. 

The first log term is clearly integrable on every compact domain in the 
z-plane. As for the second term 

/
| log \z — w\ + log \z + w\\dv(z) ^ 2 | log | s | | ^ ( s ) < oo . 

,2|<« ^ \z\<2R 

This finishes the proof of Proposition 29. 
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Since the bounds in the proof of Proposition 29 can be chosen independently 
of (w, s) if (w, s) belongs to a compact set in R3, Fubini's Theorem implies 

(32) COROLLARY. F{WJS)(Z, t) is locally integrable in R3 X R3. 

A short heuristic explanation of the proof of Theorem 7 is in order. We shall 
show that^77

(W; i,)(^, /) = 0 if (z, t) ^ (w, s), i.e. 

supp i f (FiWtS)) C {(w, s)\. 

According to Proposition 29 

<^(F(w,s),e) -+££ (F(Wt.s)) 

in Z)'(R3). Next we show that 

i?F ( w ,A ) , e(M) 6 LUR3), 

and 

\\^(F{WiShe)\\LHm < M, 

M independent of e > 0. This yields 

<^(F(w,s)) — Hm€^o^ (F(WtS)ie) = c&(WtS), 

where 

c = lim^o JR3^
?F(WiS)t€(zJ t)dv(z, t) = 1, 

which proves Theorem 7. 

To carry out this procedure we need more precise information about 
i f /?(Bi,)i((z, t) = i f (F(tt,,,)i€). We set 

(33) ae = Xe
1/2Xe

1/2, 

where 

(34) Xe - \z2 - w2\2 + e4 + i(t ~ s + 2 Im z2w2) = 2(A - z2w2) + e4 = X + e4. 
Then 

(35) Z(Xe) = à\(/àz + 2izz2 à\e/àt = 0, 

(36) Z(Xe) - 4s(*2 - w2), 

(37) Z(Xe) = Z(Xe) = 4:z(z2 - w2), 

(38) Z(X€) = Z(X7) = 0. 

Next 

zz(arl) = zz(x€-1 / 2x€-1 / 2) = z ( -èx e - 3 / 2 [4s (s 2 - ™2)]xe-
1/2) 

= -èxe-3/2{[4â(22 - w2)]Z(\rU2) + 8|s|2xe-
1/2î 

= - 4 | s | 2 | X £ | - 3 ( X € - \Z2 - W 2 | 2 ) . 
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Thus we have 

(39) -\{ZZ + ZZ)[-~\ = - ^ £ . 
\47T0V A" V* 

In part icular 

(40) ^(a-1) = 0 if (*,/) 9* (±w,s). 

(41) PROPOSITION. For all e > 0 

-^tdvOsj) = 1. 

Proof. First we evaluate the d/ integral 

«4|a| V 1 f °° [(|22 - w2 |2 + e4)2 + ( t - s + 2lm z2w2ff2dt 
J -co 

foo 
4i i2 - 1 I / / i 2 2 i 2 , 4 \ 2 , , 2 \ - 3 / 2 7. 

= e |JS I 7T I ((12 - w I + e ) + / ) at 
J - o o 

D - 1 4i i 2 / i 2 212 , 

Next we compute 

/ = 2T * I e4\z\2(\z2 — w2\2 + e4) 2dv(z). 
J R 2 

Let r = \z\ and set 

r\2 = \z — w\2 = r2 + |w|2 — 2r|w| cos 0, 

r^ = \z + w|2 = r2 + |w|2 + 2r|w| cos 0. 

Then, using cos2 0 = | ( 1 + c o s 20), we have 

\z2 — w2\2 = ri2r2
2 = (r2 + |w|2)2 — 4r2\w\2 cos2 0 

= r4 + \w\4 — 2r2\w\2 cos 

Therefore 

r3^r (r4 + | ^ | 4 + e4 - 2 r > | 2 cos 20)~2 d0. 
0 *^ 0 

We use the formula 

/

'2ir 

(a - b cos 0)~2^0 = 2ira(a2 - b2)~m a > b ^ 0, 
o 
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which yields 

f CO 

I = 4e4 I ( / + \w\^ + e4)r3((r4 + jw|4 + e4)2 — 4r4|w|4) 3/ dr 
J o 

= e4 f°° (t + M4 + e4)((/ + M4 + e4)2 - 4/M4)-3/2^ 
J o 

= e4 f" (t + |w|4 + e4)((/ + e4 - |wf)2 + 4|w|V)-8/2d/ 
«^ 0 

= e4 fœ (t + 2\w\i)(t2 + 4ei\w\irV2dt= 1, 
t / É-1_|M,|4 

which is the required result. 

We would like to express our thanks to P. G. Rooney for computing / . 

(44) Remark. Via contour integration 

/

2TT 

d_d_ 2 T T 

b cos 6 sja — b2 

Differentiating (45) with respect to a one obtains (43). 
Next we set 

(46) ge = i log he, 

and c o m p u t e d (ge/o-e). We note that g€ is real. Then 

ZZ(gjat) = zz{arl)g, + z{<jrl)Z(g() + Z(<T^)Z(g<)+ arlzz(g<). 

Therefore 

(47) (ZZ + ZZ)(g,/a.) = (ZZ + ZZ)(*r1)gt + 2Z( (rr1)2(g e)_ 

+ 2Z(<rr1)Z(gt) + arl(ZZ + ZZ) (gO-

Using (33)- (38) we obtain 

(48) Z(arl) = -2z(z2 - W2) \J<r* = Z(arl). 

Similarly 

(49) Z(At) = àAt/àz + 2izz2 àAc/dt = 0 = Z(À~(), 

(50) Z(4«) = 2zz2 = Z(At), 

(51) Z(/>«) = 0 = Z(pt), 

(52) Z(£«) = 27 /5 ( l - x ) = ^ ) -

We recall that ge = g(pe, P*)- Hence 

(53, * < « . > - # . ( ! - # ) $ - 255-
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Therefore 

(54) (Z* + *Z)(,.)--*H"&£ + £U: 
+ 2 Ml 

A. 
From (26) we also have 

(55) <re
2 = A\At - zW\2 = 4\At[

2 |1 - pe
2\\ 

Therefore (47), (48), (53)—(55) and (39) yield 

(ZZ + ZZ)(g./a.) = -8\z\Vgt/at
3 

+ 8 Re \2z(w2 - z2)(Ae - zV)Z(g«)}/<r* + i\A. - z V 

2 ~2 

We calculate the necessary derivatives. 

3g« 1 - £.* 1 

1 -
4, 

2 ~2 

dptdpe 

dpe \1-Pe
2\l+ \Pe\ 

~2 -2 Rep, 
"2\2 | 1 - ^ 2 | ( 1 + \pef) 

We recall 

gt = i log /Î (, 

and 

ht 
|1 - £ e

2 | + 2 t R e j > , 

1 + bel 

Substituting for these derivatives we obtain 

(ZZ + ZZ)(gt/*t) = -8|2jVge/cr (
3 + 

16|1 - p2\ 

^ 3 ( l l - \p.\*) 

J 2W , _ 2 -1\f A I | 4 \ I 12 2W . 2 _2x 

X Re |^"T72 (w - z)(A( - \z\ ) - \z\ -~J72 (A€- zw) 

\w\*\A< 
i 4 i 2 Z W 

.4, I / a U .1 + M5/ 
We multiply through by \A€\ + |zw|2 and in {• • •} collect the terms as coeffi­

cient of A€~
1/2, e.g., 

Ae 

1 M l _ _ 1 j 
1/2 1̂ 1 I — j 1/2 ^ i 1 / ' 
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This yields 

177A.V7M I \ - 8 N | V , 1 6 | l - ^ f
2 | p / i f l ( e ) \ 

where 

(56) Ki(e) = zw\zw\2(w2 - z2)(At - |s|4) + zw(w2 - z2)Ae(Âe - |s|4) 

— \z\2zwAe(Ae — z2w2) — \z\2\zw\2zw (Â e — z2w2) — \w\2zw\Ae — \z\4\2. 

(57) LEMMA. i£i(0) = 0. In particular 

i?(^f-*) =0 

i / (s, /) 7e (dzw, 5) and w 7e 0. 

Proof. Ki(0) = a(t — s)2 -\- b(t ~ s) + c and a simple bu t tedious calcula­
tion yields a = b = c = 0. The rest follows if we note tha t the above calcula­
tion yields 

i77 , 77^iMh\ _ i6|i-/>2| Rp toq)\ _ 
( z z + z z ) \ ff / - ( i + b | 2 ) V M I W 1 / 2 / 

Finally, Lemma 57 yields 

(58) (ZZ + ZZ) [-^- ) = - - ^ r - , log *. + ^ ^ Y T " ^ ) V? 

X Re (^4.-1/2JS:(0), 
where 

(59) K(e) = zw\zw\2(w2 - z2) + zw(w2 - z2)(A€ + A - |s|4) 

— \z\2zw(Ae + A — z2w2) — |z|2|2;w|22;w — \w\2zw(A€ + Â — 2|z|4). 

(60) PROPOSITION. ^ (F) = 0 as long as (z, t) 9^ (w, s). 

Proof, (i) w = 0. Then , according to Proposition 15, F(Wtfl)(z} t) = l/47ro-, 
hence (40) is the required result. 

(ii) w 9^ 0. In this case Proposition 15, (40) and Lemma 57 imply tha t 

^FWiS(z,t) = 0 

as long as (z, t) 7^ ( ± w , s). On the other hand, according to Theorem 22, 
F(W,s)(Zj t) is C°° in a neighbourhood of ( — w, s). Therefore J??F(WjS) (z, t) = 0 
in a neighbourhood of ( — w,s), which yields Proposition 60. 

(61) LEMMA. J£ F(WtS)tt(z, t) —-> 0 uniformly on compact subsets of R 3 which 
do not contain the point (w, s) as e —> 0. 

Proo/. (i) w = 0. From (39) 

i f Z ) , ( ( 4 ^ | | s | 4 + e4 + *(/ - s)\)~i) = ^\z\2ir-l\\z\' + e4 + i(* - .v)h3 - > 0 , 

uniformly on compact sets which exclude the point (0, s) as e —-> 0. 
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(ii) w T6 0 and let TV be a compact subset of R3 which excludes the points 
(diw, s). Since Ae —> A, uniformly on TV and since \A(\ is bounded away from 
zero, independently of e > 0, pe —> p, uniformly on TV. Furthermore, since TV 
misses a neighbourhood of (±20, s), p misses a neighbourhood of ± 1 (see 
Lemma 19). Therefore, for sufficiently small e > 0, there exists S > 0, such that 
\l + pe\ > à and |1 - p(\ > ô on TV. Recall that 

a ? = 4|^6 |2 |1 - p?\\ 

Therefore, Proposition 15, (39) and (58) imply that 

J ^ i t ( F ( „ , s ) t e ( M ) ) - » 0 , 

uniformly on TV as e —> 0. 
(iii) Finally assume w 9e 0 and (z, t) is in a sufficiently small neighbourhood, 

U, of ( — w,s). By Lemma 20 

p , A L _ p dt. _ 
F(...,..(*,0 - ^ I ^ I ^ +-p7) Jo - j i - ^ i ^ -

1 +"(*>. + £ . ) ' * 
where pe is in a sufficiently small neighbourhood of — 1. Clearly, all derivatives 
Da

Zjt F{WtS)^(z, t) converge, uniformly in U to Da
Ztt F(W>s)(z, t). In particular, 

^F(w,s),e(z, t) ->&FilDtS)(z, t) = 0, 

as e —> 0, uniformly for (2, t) £ U (see Proposition 60). This proves Lemma 61. 

(62) LEMMA. For every fixed (w, s) 

(63) I \^F(w,she(z,t)\dv(z}t) < C, 
J R 3 

for some C > 0, C independent of e > 0. 

Proof. First of all we have 

(64) |i"7v,s ) ,6(M)|<C^J^-A 

which follows immediately from (40), (58) and (59). We note that 

— 7T < i log ke < 7T, 

since |fte| = 1 and \pe\ < 1 if e > 0. Thus to show that (64) implies (63) all 
we have to show is that 

(65) I (eA/<r*)dv(z,t) < 00 , 

uniformly in e > 0, if w 7^ 0. The case w = 0 follows from (16) and (42). 
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Now 

~*dt I eV6
 ddv(z, t) < Ci I dv(z) I a 

J W3 J \7.\<\W\I2 J —œ 

+ I dv(z) i t*<rt-*dt = h + h. 
J \x\>\w\/2 J —m 

R 3 u \z\<\w\/2 

UlèM/2 
First 

fi = Ci I <fo(«) I " 
•^ i z i< r i«> i /2 ^ - , 

/i = d *(*) ( l ^ - w T + O 7 * 
l z K l w l / 2 

• i I |z2 — w2\ Adv(z) I 
•^ \z\<\w\/2 J -cr 

Ci I \% - wX àv(z) (i + ry'dt < °o, 
•^ \z\<\w\/2 J -oo 

since |s| < \w\/2 =$ \z — w\ > \w\/2 and \z + w| > |w|/2. Ci may be chosen 
to be one if 0 < e < 1. 

Next we note that 

|z| ^ \w\/2 => 1 < C2|s|2. 

Therefore 

h < C2 I dz;(z) I €4|z|V€~3^(2, t) < C2 I e4 |s|Vc~3^(s, t) 
J \z\t\w\l2 «^-oo ^ R 3 

= 7rC2, 

where C2 is independent of e > 0. This proves Lemma 62. 

(66) LEMMA. For all e > 0 

* / R 3 \ ae / 

Proof. This follows immediately from 

(i) J£z,A ! I G L^R 8 ) , according to Lemma 62, and 

(ii) from (58) one sees that 

Proof of Theorem 7. Let </> £ C0°°(R3). Recall that we want to show that 
<j>(w, s) = (F(WjS),J£(<j>)). According to Proposition 29 

(FiWf8h&(4>)) = lim^o <F(lp>s).ifjSf(0)) = lim^o <if (F(l0,s),e), 0). 

Furthermore, by Proposition 41 and Lemmas 62 and 66 we can write 

J R 3 

+ I &FiuflS)tt(z,t)(<l>(zft) - <l>(w,s))dv(z,t). 
J R3 
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Next let U be a neighbourhood of (w, s). Then 

lime^o I if^(tt>,*),e(z, t)(<t>(z, t) - <l>(w,s))dv(z,t) = 0, 
^ R 3 - * 7 

because J^F(w,s)re(z, t) —> 0 as e —> 0, uniformly on {supp 0} P\ }R3 — [/} 
(see Lemma 61). Furthermore, according to Lemma 62 

I ifF(WtShe(z, t)(<l>(z,t) - (t>(w,s))dv(z,t)\ 
I J u I 

^ Csup(Zf/)€tf |0(z, 0 - 0(w, s)| . 
Since [/ is arbitrary, we see that 

0(w, 5) = lim^o (if(F(„,fJo,e), (/>) = <F(„ fS),if(0)), 

which proves Theorem 7. 

(67) COROLLARY. Le/ (/> G C0°°(R3). LAerc £fte distribution -

u(z,t)= I FiWtS)(z,t)<l>(w,s)dv(w,s) 

Furthermore, u G C°°(R3). 

Proof. Corollary 32 shows that M is a locally integrable distribution. Let 
x/y G CV°(R3). Then 

\if,S£J 3 F(WtS)(z, O0(w, s)<fo(w, s y 

= \^(^),J 3 Fil0tS)(z,t)<l>(w, s)dv(w, s y 

/ 
J R 3 

^(w, s)(t>(w, s)dv(w, s) 

by Theorem 7. This implies S£(u) = </>. Finally w G C°°(R3) because i f = 
- (Re Z)2 - (Im Z)2 is hypoelliptic (see [3], [4] and [5]). 

(68) Remark. It is interesting to compute the singularity of F(WtS)(z, t) when 
(z, t) is near (w, s). First assume w ^ 0. Then £ = 1 at (2, /) = (w, 5) and 

8 - 1 + ^2 - I &tp- 1 . 
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We note t ha t I m z > 0 i f £ ^ ± l . Next, 

T oit 
J o zt — 1 

= ; log ( 1 - s ) 
z=2 Z 

-11Y 

~2~' z=2 

Therefore, according to (8), F has the following singularity when (z, /) is 
near (w, s)\ 

1 

8ir\A\1/2\Al/2 -zw\' 

This holds even when w = 0. 
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