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A FUNDAMENTAL SOLUTION FOR A NONELLIPTIC
PARTIAL DIFFERENTIAL OPERATOR

PETER C. GREINER

Let
_9 4520
1)y ZzZ-= az—i—Zzzz Y
and set
- 5 o . 26( 9 _a)
’ — - 1 - % 9 9 _;9
Q) Y=Y, =-Y22+22) 6262+2zlz| Py Zaz 2o
62
—4[2655.

Here z = x 4+ 1y, 0/0z = $(0/0x — i 0/9dy). Z is the “‘unique’’ (modulo
multiplication by nonzero functions) holomorphic vector-field which is tangent
to the boundary of the ‘‘degenerate generalized upper half-plane”

B) D =1{(z1,2) € Cp=Imz — [z]* > 0}.

In our terminology ¢ = Re z;. We note that % is nowhere elliptic. To put it
into context,.# is of the type [ ], i.e. operators like # occur in the study of the
boundary Cauchy-Riemann complex. For more information concerning this
connection the reader should consult [1] and [2].

In this paper we give a fundamental solution, F(z, t; w, s) = Fu (2, t)
for %, ie.

4)  (FunZL (@) = ¢w,s), ¢ € C”(RY).

Here z = x 4+ 1y, w = u + v and with a mild abuse of notation (z, ¢) and
(w, s) stand for (x, v, t) € R*and (u, v, s) € R3, respectively. (,) denotes the
action of distributions, as linear functionals, on Cy*(R3). We set

(5) A =3(z" + [w|* + it — ),

and

_ Jaw/AM ifw =0
© P“{o ifw = 0.
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A2 denotes the principal value of the square root, i.e. 472 > 0if 4 > 0.
We note that p is a C”-function of (z, t) whenever (w, s) is fixed.

(7) THEOREM. If (3, 1) # (w, s) sel
i [t4pl il —p

4n°|A| L+ |pf

*1 2 . 2 —1
1 [ (|1+pl +ill = p', 1) .

XT=7 J, 1+ [pP
Then F 1is a fundamental solution of & .

) F

Remark. In particular
9)  Fuolzt) =41 (j2* 4+ (t — 5)2)712

The proof of Theorem 7 will be given in a series of steps. We note that
(10) |p| = |zw/A12] = 1,

and

.

pl=1e 2| =t =5
(11) {P =41 (3t) = (w, s).

An easy calculation yields

P+l = p|
Therefore, if 0 < £ = 1,
O o e o)

ifp=1e(z1) # (ws).

This justifies formula (8) if (3, t) # (w, s). Next we derive two different
representations for F. Set

(13) o = |22 — w?|* 4+ (t + 2 Im z2@?)?,
and

) o, p) = FELEEER)

(15) ProrositiON. Assume (z, t) = (kw, s). Then

1 1
(16) Fe,0(z,t) = m-*‘ mlog h.

Proof. First we note that the right hand side of (16) is well defined as long
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s (3, 1) # (£w,s). Next
ptp Lol

L+ ol 14 Jpf*
Hence
N

1 ([ ll+p|+zll—pl])}
2’ 12+110g ! 1+ [pf /

_ iy (1_|1+p| +zu—p1)
2r'c 1+ |p|f

log denotes its principal value, i.e., log z > 0 if 2 > 1. Since (z, t) # (w, s)

L+ pf 4l —pZi)
log (1 Y

is well defined. Furthermore

(18) o = 2[4 |1 = p|[1 + pl.

Now
_ i [l a1 = pY f d
R E PR e Y v S P
1+ |pff

and simplifying the right hand side by |1 + p[, see (18), we obtain F, ) (3, t).
This proves Proposition (15).

(19) LEMMA. Assume w #£ 0. Then p is near &1 if and only if (z, t) is near
(Ew, s), respectively.

Proof. Since |p| = 1

1= plz 31—z 10— o) = L1 - s

where

We note that
2] I*Jw]® <
11 d
o S T
It is easy to see that the first inequality in this proof implies
_2(z)/Jw])’
1 - 1 = 2|1 — p|,
T+ (el = 1 7
1= (1+ )72 < 21 — 4]

ll/\
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If 2

1 — p| <8 <1, then
2> = [wl? < 3lwl*-v/6(1 = 8)~!
It — s| < 35w|?-/8(1 — )2

i.e., (2], t) must be arbitrarily near (||, s) by choosing |p| sufficiently near 1.
The converse is clear, i.e., (|z], ) is near (
Finally set z = [z]e?’, w = |w|e™. Then

is near 1.

I2llw] -

1—[):1_|AII/26

Therefore p is near 1 if and only if |z| |w|/[4]'/? is near 1 and w is near 6,
i.e. p is near 1if and only if (z, ¢) is near (w, s).

A similar argument shows that p is near —1 if and only if (z, {) is near
(—w, 5). This proves Lemma 19.

(20) LEMMA. Assume w # 0. Then when (3, t) is near (—w, s) F can be wriiten
wn the following form

1 ' dt
(21) FZ”*Q = f
dr'ldlp+p) Jo L L=

>+ p)

Proof. (17) yields

N —p—ﬁ+ﬂ1—ﬁg
F= 27 log ( 1+ |p|2 '

If p is near —1 this gives

2 1
F= f:rL arctan |—_p —| 7 gL —*pf—, ———(gg*mf

2r'c P 271' o p+p 1+ |1Af_p:_|;

and now (18) implies (21).

(22) THEOREM. F(y (2, t) 1s @ C* function of (z, 1) = (x, v, 1) as long as
(2,1) # (w,s).

Proof. If w = 0 the result follows from (9). If w 5 0, then A='/2, =12 p and
p are C® functions of (z, t). Thus, if w 0 and (3, {) # (£w,s), then (16) is
a C® function of (z, t) and the result follows. Finally, if w # 0 and (z, ¢) isin a
sufficiently small neighbourhood of (—w, s), then (21) is a C® function of p
and p, because = (1 — p?)(1 — p?)isa C® function of p, p, hence
the result follows in this case too. This proves Theorem 22.

Let
(23) dv(z, t) = dxdydt and dv(z) = dxdy
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denote Lebesgue measure on R? and R?, respectively. We introduce a ‘‘regular-
ization”’, F., of F as follows. We set

(04) A = bl + ol £ e+ il — ),
(25) p. = zw/A "

This yields

(26) ol = (]2 — w?* + ) + ({ — s + 2 Im z22?)?,

and

(27) Fe= F(w,s),e(zr t) =

Ire. T 2ni0,
where, again
(28)  he(p, p) = h(pe Po),
and zis given by (14). F.is C” in all the variables if ¢ > 0.
(29) PROPOSITION. Iy o = lim o Frp.g c as a distribution in R3.

Proof. Formulas (8) and (9) show that F, o (2, 1) = Fu.s (3, t), pointwise,
ase—0,aslongas (3,t) # (w, s). Since |k = 1,

(30) [Fd < C/o,

with some C > 0, independent of ¢ > 0. We shall show that 1/¢ is locally
integrable. Then the Lebesgue dominated convergence theorem implies that

Foo.e— Fa.oin D'(R?), as e — 0.

The question of integrability occurs only at (z, t) = (fw, s). We may as
well set s = 0. To include the two points in question, or, possibly, one point,
if w = 0, we shall estimate the integral of ¢=! on the domain —1 £ ¢ £ 1,
|z| £ R, where R = 1 4+ 2|w|. Then

1 14-21m 2232 1+2R4
dt ds ds
31 f @ _ , iy < zf I
CER N B A (e L o v e F

— 2log ([(1 4 2R%)? + [s — w?]2 4 1 4 2RY)
— 4 log |22 — w?|.

The first log term is clearly integrable on every compact domain in the
z-plane. As for the second term

f |log |z — w| + log |z + w]||dv(z) < 2f |log |2||dv(z) < 0.
lzI<R |z|<2R

This finishes the proof of Proposition 29.
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Since the bounds in the proof of Proposition 29 can be chosen independently
of (w, s) if (w, s) belongs to a compact set in R?, Fubini's Theorem implies

(32) COROLLARY. F(y,5 (3, 1) is locally integrable in R? X RS,

A short heuristic explanation of the proof of Theorem 7 is in order. We shall
show that ' F, o(z,t) = 0if (2, 1) # (w, s), i.e.

supp & (Fu,o) C {(w, 5)}.
According to Proposition 29
L (Fu.o.0) =L (Fu.y)
in D’ (R?). Next we show that
L Fip .,z t) € L'(R?),
and
1L (Fan. O nwsy < M,
M independent of ¢ > 0. This yields
L(Fuy) = limeo L (Fipy.) = By,

where

c = limH(, fRﬂg}(‘(w,S%e(z’ t)dv(z, lf) = 1y
which proves Theorem 7.

To carry out this procedure we need more precise information about
agF(wys)‘JZ, t) = e(f(F(wvs)'()~ We set

(33) 0. = A IX1
where

(34) AN=[22—w PP+ e+l —s+2Imz2@?) =2(4 — 22w) + €' = N+ €

Then
(35) Z(\e) = ON/ Oz + 2133% ON/ Ot = 0,
(36) Z(\) = 43(z2 — w?),
(B7) Z(X) = Z(\) = 43(z* — w?),
(38) Z(X) =Z(\) = 0.
Next

ZZ(ae“l) — ZZ()\G—I/2X6——1/2) — Z(——%)\e—3/2[42(z2 — .wz)])'\e—l/z)
= —INT{[45(* — @)]Z(X2) + 8ls|R 172
= —4[z[2 NP (X — |22 — w?).
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Thus we have

(39) —3(2Z + ZZ)(—I—) - }ri'

41, O
In particular
(40) L) =0 if (3¢ # (xw,s).

(41) PROPOSITION. For all ¢ > 0
1é z|2
(42) f ——S5-dv(z, t) = 1.
R3 T O
Proof. First we evaluate the d¢ integral

e4]z)27r_1f (|2 — @) + )’ + ¢ — s + 2 Im 20°)" )&t

- e4lz|27r—lf (('22 _ w?]? + 64)2 + t2)—3/2dt
— 27T_1€4‘Zl2(|22 _ w2‘2 + 64)—2.
Next we compute

I= 27r_1fR2 e'lz]*(|2" — w*" + ') du(z).

Let » = |z| and set
7= |z — w|* = + |w]®> — 2r|w| cos 6,
722 = |z + w|? = 72 4 |w|? + 2r|w| cos 6.
Then, using cos? § = 3(1 + cos 260), we have
22 — w2 = ri%r? = (1 4 |w[?)? — 4r¥|w|? cos® 0
=7t + |w|* — 2r%|w|? cos 26.

Therefore
o) 2r
I= 27r_le4f r3drf (' + Jw|]* + €' — 2% w|® cos 20)7* d.
0 0
We use the formula

2
(43) f (@ — bcos0)7do = 2ma(a® — b > b =0,
0
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which yields

I= 4e4f:o '+ w|' + )P0+ ]t + ) — 4w dr

7 ol ol e — ey

f4fm (¢ + Jo" + ) (@ + €' — fw])* + 4fw|'e)™a
0

= e4f (t + 2w (¢ + 4€'fw|) ™t = 1,
el—[w|*
which is the required result.
We would like to express our thanks to P. G. Rooney for computing I.

(44) Remark. Via contour integration

27{ db _ 2T
o @ —Dbcost ~a -0’

Differentiating (45) with respect to « one obtains (43).
Next we set

(46) ¢ = zlog ke,

(45) a>b=0.

and compute ¥ (g./a.). We note that g. is real. Then
ZZ(g /o) = ZZ(e g+ Z (e ) Z(g) + Z(0 N Z(g) + 0 T ZZ(¢).
Therefore
(47) (ZZ+ 2Z)(g/o) = (ZZ + ZZ) (e M) ge + 2Z(0 ) Z(g0)
+2Z(cNZ(g) + o ZZ + ZZ)(g).
Using (33)-(38) we obtain
(48) Z(s") = —22(82 — @) \Jo P = Z(a ).

Similarly
(49) Z(A.) = 04./0z + 20232 04/t = 0 = Z(A,),
(50) Z(A) = 2282 = Z(A.),
(1) Z(p) =0 = Z(po),

(52) Z(p) = s (1 - Lilj) = Z(po).

We recall that g, = g(p., p.). Hence

63 26 = 5 (1~ 2) 2 - 75,
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Therefore

5.z o Be 92 z)eag)
(54) (ZZ + Z2)(g) = —20] (A R
k')
A.

9%
dp0p. ’

lwl

+ 27 1—

From (26) we also have
(535) o2 =4|4. — 2w = 442 |1 — p22
Therefore (47), (48), (53)—(55) and (39) yield

(ZZ + Z2)(g)o) = —8|z|%'g. /o’
+ 8Re {2z’ — ) A, — 20V Z(g)} /o’ + 4|4 — 2W7°

! (pe ag) 2hw|* || _ [z
X4l Re \Ggp) + a1 AL

We calculate the necessary derivatives.

g 1 —p; 1

ape (1 —pl[ L+ [p]*”

82ge _ —2 Re p.
apdpe |1 —pll(1+ p )"
We recall
g = 1log ke,
and
b = ]1—p|+%Repe.
1+ |p.f
Substituting for these derivatives we obtain
5 | 5 16]1 f
ZZ + 22)(g /o) = —8Jz%'g /a0’
X Re {2, @ — 5 (4. — 1Y — lzf—f%‘% ~ )
_ 12 12 ZW 1
- |w| |A6 |Z, ‘ Ael/2 |Ae| + Izw|2} .
We multiply through by |4 -+ |zw[? and in {- - -} collect the terms as coeffi-

cient of 4,712 e.g.,
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This yields

I 8% 161 — p.2| {Kl(e)l,
(B2 4 200) = = 5 R T p Y (Al R VA

where
(56) Ki(e) = zw|zw|?(@? — 22) (A — |3]*) + z@w(w? — 22)4 (A, — |3]*)
— |2|2%2wA (A — 220?) — |z]2]zw|2Zw (A — 220?) — |w|%w|d . — |z]*|>
(57) LEMMa. K(0) = 0. In particular
g(mg_h) _o
g
if (z,t) # (£w,s) and w #= 0.
Proof. K,(0) = a(l — s)* 4+ b(t — s) + ¢ and a simple but tedious calcula-

tion yields @ = b = ¢ = 0. The rest follows if we note that the above calcula-
tion yields

1 log h) 16]1 — sz R (K‘(O)) = 0.

= 172
T AY

(22 + ZZ)( =0+ PP A]

Finally, Lemma 57 yields

_ _ doi@) _ §|z]2e_4 . 8‘1 — {)(2[64
B8) (zZzZ + ZZ)( .. = o ilog he + A0 F [p s
] X Re (47K (e)),
where
(59) K(e) = zw|zw|*(@? — 22) + zw(w? — 22) (A + A — |z|)
— g4 + A — 22w?) — |3]2|zw|%w — |w|2Zw(d. + A — 2|z|*).

(60) PropPOSITION. Z (F) = 0 as long as (z,t) # (w, s).

Proof. (i) w = 0. Then, according to Proposition 15, F, (2, {) = 1/4ma,
hence (40) is the required result.
(i1) w # 0. In this case Proposition 15, (40) and Lemma 57 imply that

LFp(z,t) =0

as long as (2, t) # (4w, s). On the other hand, according to Theorem 22,
Fw.o (2, t) is C* in a neighbourhood of (—w, s). Therefore £ F(, (2, 1) = 0
in a neighbourhood of (—w, s), which yields Proposition 60.

(61) LEMMA. & Fiy.g (2, 1) — O uniformly on compact subsets of R3 which
do not contain the point (w, s) as e — 0.

Proof. (i) w = 0. From (39)
L (allzlt 4 e i = D7) = elefrtlfo]t + €+ — )]0,

uniformly on compact sets which exclude the point (0, s) as ¢ — 0.
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(it) w # 0 and let N be a compact subset of R* which excludes the points
(4w, s). Since 4. — A, uniformly on N and since |4 is bounded away from
zero, independently of ¢ > 0, p. — p, uniformly on N. Furthermore, since N
misses a neighbourhood of (£w, s), p misses a neighbourhood of 41 (see

Lemma 19). Therefore, for sufficiently small ¢ > 0, there exists § > 0, such that
|1 4+ p > dand |1l — p| > 6 on N. Recall that

ol = 4|4 21 — p22
Therefore, Proposition 15, (39) and (58) imply that
yz,t(F(w,x),e(Zy 1)) —0,

uniformly on N as € — 0.
(ii1) Finally assume w # 0 and (z, t) is in a sufficiently small neighbourhood,
U, of (—w,s). By Lemma 20

dg
‘1 _ Pe_ﬂi 52 '
(pé + ﬁf).
where p. is in a sufficiently small neighbourhood of —1. Clearly, all derivatives
D5, Fuw.g.(z, 1) converge, uniformly in U to D%, Fu (2, t). In particular,

1 1
Fe @0 = 520016+ 5 fo 1+

gF(w,,\),e(zv t) —)gF(w,x)(zv t) = 0;
as e — 0, uniformly for (z,t) € U (see Proposition 60). This proves Lemma 61.

(62) LEMMA. For every fixed (w, s)

(63) f L P ,e(z, D)dv(z, 1) < C,
R3

for some C > 0, Cindependent of € > 0.
Proof. First of all we have

1+ lZIi 4
3 €
T

which follows immediately from (40), (58) and (59). We note that

(64) [gF(w.s),e(zv t)| <

’

—r <tlogh.<m,

since |k = 1 and |p] < 1if € > 0. Thus to show that (64) implies (63) all
we have to show is that

(65) fRa ('/o)dv(z, ) < ©,

uniformly in ¢ > 0, if w 5 0. The case w = 0 follows from (16) and (42).
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Now

f o dv(z, 1) < le dv(z)f o ’dt
R3 l21<lwl /2 o

+ dv(2) f ot = I + Io.
[z1Z|wl/2 —

First
I =G f dv(z) f (|2 — @' + )7 dt
lzl<lwl|/2 —o

=C f l.z2 — w2|_4dv(z)f A+t < o0,
lzl<|wl/2 —®

since |z| < |w|/2 = |z — w| > |w|/2and |z + w| > |w|/2. C; may be chosen
to be one if 0 < e < 1.
Next we note that

2| = [w]/2 =1 < Gz

Therefore

I, < sz dv(z)j 'lzl’edu(z, 1) < C2f ¢'lz’o v (s, 1)
2121wl /2 —eo R?

= 7|'C2,
where C, is independent of ¢ > 0. This proves Lemma 62.

(66) LEMMA. For all ¢ > 0

f gz,,(l lOgh)dw(z, t) = 0.
R3 ¢

Proof. This follows immediately from

@) g“<t log&) ¢ L'(R?), according to Lemma 62, and

g

(i1) from (58) one sees that

(8] - (58

Proof of Theorem 7. Let ¢ € Cy”(R?). Recall that we want to show that
d(w, s) = (Fa.o, L (¢)). According to Proposition 29

<F(w.s)r°§/ﬂ(¢')> = limeao <F(w,s),ev°g(¢)> = lin]e—)() <$(F(w,x),e)y ¢>

Furthermore, by Proposition 41 and Lemmas 62 and 66 we can write
<$(F(w.s),e)y ¢) = fR3 gF(w.s).e(zy )¢z, t)dv(z, t) = ¢(w, s)

+f gF(w,s)J(zr t)(¢(zr t) - ¢(wv S))dv(z) t)'
R3
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Next let U be a neighbourhood of (w, s). Then

limes fm_vwm,s),e(z, D86, 1) — 6w, 5)do(z, 1) = 0,

because £ Fup o (2, ) — 0 as e — 0, uniformly on {supp ¢} N {R® — U}
(see Lemma 61). Furthermore, according to Lemma 62

’ fU.,%F(w,@,e(z, 1) (¢(z, 1) — o, s))dv(z, 1)

é Csup(z.t)éU |¢(Z, t) - ¢(w7 S)|
Since U is arbitrary, we see that

¢(wy S) = lin]E—)O <$(F(’w,s),e)v ¢> = <F‘(w,8),$(¢)>y
which proves Theorem 7.

(67) COROLLARY. Let ¢ € Co®(R?). Then the distribution

H(Z, t) = f 5 P‘(w,s) (Zy t)¢(wv S)d‘i}(w, S)
R
solves
L (u) = ¢.
Furthermore, u € C*(R?).

Proof. Corollary 32 shows that # is a locally integrable distribution. Let
Y € Co”(R?). Then

<¢,$fR3 F,g (2, 1) ¢(w, s)dv(w, S)>
= <$(¢,),fR3 Fo,» (@, t) ¢ (w, s)dv(w, 5)>
= <fR3 Foos (2, )L (¥) (2, dv(z, 1), ¢>

= ng Y(w, s)¢(w, s)dv(w, 5)
by Theorem 7. This implies % (1) = ¢. Finally u € C*(R3) because .¥ =
—(Re Z)? — (Im Z)? is hypoelliptic (see [3], [4] and [5]).

(68) Remark. It is interesting to compute the singularity of F, ) (2, ) when
(z, t) is near (w, s). First assume w # 0. Then p = 1 at (3,t) = (w, s) and

_ L4l —p" _
g = 1+|p|2 =2 atp = 1.
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We note that Im 2 > 0if p # 41. Next,

Therefore, according to (8), I has the following singularity when (z, t) is
near (w, s):

1
8w|A|"*A4Y* — zw|”

This holds even when w = 0.
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